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Abgtract

Up to the present various flight control systems
have been proposed for linear arcraft motion on
some equilibrium point such as steady flight, but
very little has been done for nonlinear one on
dynamic maneuver. Origindly arcraft motion is
expressed with gx-degree-of-freedom  nonlinear
equations, especidly the equations become more
complicated for some specid VTOL arcraft which
change the form because the thrusts act like
variable vectors.

To solve the problems, we propose a nonlinear
model matching method. This method will give a
hint to solve other complicated nonlinear control
problems.

1 Introduction

Recently many advanced middle sze arplanes
have been developed for transportation of the
passengers and the freight. Generdly airplanes need
vast arports [1], especidly the long run ways. Also
it seems that it codts a vast sum of money to
congtruct and manage an arport. Then it isuseful if
a VTOL [2] and middie sze arcraft, which does
not need the airports, could be devel oped.

The VTOL and middle size aircraft suggested
in this sudy has the flat body, no main plains, and
the four duct fans which angles can be adequately
controlled. It hovers from the apron near a coast
line, speeds up above sea surface making the best of
the ground effect by the four duct fans, turns the
duct fans backward gradudly and flies like a
normd arplane with the lift arisen by the flat body.

It isnamed “ Lift/Cruise Fan Aircraft (L/CFA) [3]”.

In the past time NASA had tried to develop a
Lift/Cruise Fan Type VTOL Aircraft X-22A [4]
which was very smilar to above aircraft, but the
plan was suspended for some reason. At present
time some Tilt Rotor Type VTOL aircraft like
BAGQ9 [5] have been aready developed, but this
type VTOL arcraft hasthe smal payload.

And so far linear control laws like PI control
law with gain scheduler have been used for normal
arplanes. But in the case of above VTOL aircraft,
the equations of arcraft motion [6] include severd
teems of the products and the trigonometric
functions with respect to the sate-gpace variables.
That is, this controlled sysem is complicated
nonlineer one. Perhgps the enough control
performance can not be obtained by linear control
law such as P controller. Especidly in the
equations there exist severa terms of the products
of the thrust and the trigonometric function of the
duct fan angles. It means that the control law can
not be determined uniquely, because both the
thrusts and the duct fan angles may be consdered
as the main contral inputs for L/CFA. Then we
have a question, whoever or whatever turnsthe duct
fans backward gradualy on taking off and landing
and makes the arcraft go forward? We think the
answer isonly an expert pilot a present time.

To solve the above problems, we propose a
nonlinear mode matching method [7] and atempt
to apply it for the maneuver of L/CFA. This method
will give ahint to solve other complicated nonlinear
control problems.



2 Longitudinal Nonlinear Equations of Aircraft
Motion

In this section, the longitudina nonlinear equations
of arcraft motion [6] for L/CFA are shown as the
controlled system. At first the nonlinear ones are
congructed in continuous time, secondly they are
transformed to the discreteform [7].

2.1 Longitudinal Motion of L/CFA
The body axesof L/CFA canbeset asinFg.1.

: thrust

©I[deg] : pitch angle
Qldeg/s) : pitch rate
Vimval : lateral velocity

Pldeg] : roll angle
Pldegss] : roll rate
Uln/e] : forwand velocity

¥ldeg] : yaw angle
f \R[deglu] : yaw rate

Win/e] : vertical velocity

Fig. 1. Body Axesof L/CFA

Then the longitudina nonlinear equations of
L/CFA motion are expressed asfollows:

m(U +QW-VR+gsin®) = X D
m(W + PV - UQ- gcos®cosd) = Z (2)
©® = Qcosd - Rsin® ©)
Ql, +PR(l, -1,)+(P-R*)J,, =M (4

where m: arcraft mass [kg], g: gravity accderaion
[9.8mVsec?], Iy, ly, 12 moments of inertia about each
body axis [kg- m?, J.: product of inertia[kg- m?,
X: thrust and aerodynamic force in direction of X
body axis [N], Z: thrust and aerodynamic force in
direction of Z body axis [N], M: aerodynamic
moment about Y body axis[N-m].

Also the longitudinal model of L/CFA motion
[3] can be consdered such asFig. 2.
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Fig. 2. Longitudind Model of L/CFA

Where Tg and Tg: thrusts of the front and rear duct
fans[N], Try and Tgry: horizontd elements of Trand
Tr[N], Try and Try: verticd dementsof Teand Tr
[N], ®rand ORr: angles of the front and rear duct
fans[deg].

Then X, Z and M [6] in the right hands of
Egs.(2), (2)& (4) may be given asfollows:

1
X= EPVTZS(CX +CorO: +Cior®r) ©®
+T-SiNBO.cosO +T,SiN B, CosO®
1
Z= 5 VTZS(CZ +C,0r 0 +C,010%) ©
- T-cos@®.cos® - T, cos®, cos®

1 _
M= EPVT2$(Cm +C0rO: +CorOr) (7

1
+ZpVT$2CmQQ
+ T-cos®./ - T, CcosOL/
where p: ar density [kg/m?, V., =/ U? +VZ + WP
resultant linear velocity [mV/s], S: wing area[m?], C:
mean aerodynamic chord [m], 7 : length from

center of gravity to duct fans [m], C,, C;, CioF

Cor Cor Cor Cn Chor Cheorand Cig:
non-dimensiona aerodynamic derivatives.
Moreover the laterd-directiond State variables
inEgs.(1)-(4) canbegivenasV =P=R=® =0,
asaresault the following equations can be obtained.

[Longitudina force]
U=-QW- gsin® 8

1
+ % PVTZS(CX +C,0rOr + CiorOr)

1_ . 1_ .
+ ETF SiN® cosO + ETR SiNO, cos®
[Vertical force]
W= UQ+gcos® 9

1
+%PVT23Cz +CorOr +CorOr)

1 1
-— T, C0SO) c0SO-— T, 0SB, COSO
m m

[Pitchrate]
®=0Q (10)



[Pitching moment]

. 1 _
Q= TPVTZSC(Cm + Cror®@r + CrerOr)
y
1 ~2
+ Iy pVTSC CmQQ

1 1
+ o T cos®./ - o T, COSO/ (12)
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Now we have a problem for the control inputs. As
you see, the products of the thrust and the
trigonometric function of the duct fan angles exist
in the above equations, the control law can not be
determined uniquely. Because both thrust and duct
fan angle can be conddered as the contral inputs.
Then congder the front and rear duct fan angles as
the date variables, the following first order systems

are added to the above equations.
i 1 1
@F:-?®F+?UF (12)
i 1 1
®R:_?®R+?UR (13)

Where T: time congtant of duct fan actuator, Ur and
Ur: piloted front and rear duct fan angles.

2.2 Discrete Time Nonlinear Equation of L/CFA
Normaly we have no grict transform method for
nonlinear equation between continuous and discrete.
Then gpply following first order gpproximetion [7]
to the differentiation terms of Sate variables in left
hands of Egs.(8)-(13). A isthesamplingtime(g].

Xi) = Xi(ktD)—xKI/A  (14)

The discrete time nonlinear State-space equation
can begiven asfollows

X (k+1) = Hx) + BX)u(k), y (k) =Cx(K) (15)

where x(k) = [U(K), W(K), ©(k), Qk), ©¢K),

Or(K)]": sate variable vector, u(t) = [TH), Tr(),

Ur(t), UR®]™: input vector, y(t) = [W(Y), © (),
Ot), Og(t)]": output vector and

C — [ C]_T CZT C3T C4T]T
c:=[0 1000 0 ]
¢, =[0 01000 ]

[000O0 10 ]
[0000O0 1]

F(x) = [f,(K), f,(K),.... f(K)]"

f1(k) = U(k) - AQ(k)W(k) - Agsin ©(k)

A
+ om PVISC, + CorOr(K)

+ C,orOr (K)}
f,(K) = W(K) + AU(K)Q(K) + Agcos@(k)

A
+ % pV‘I?qCZ + Cz®F®F(k)

+Co @2 (K}
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B(x) = [by (x), b (X),..., bg ()]

b,(x)=[ by(x) bp(x) O 0 ]
b, (x) = %sin O (k) cos®(k)

b, (x) = %sin O (k) cosO(k)
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3 SYNTHESIS OF NONLINEAR MODEL
MATCHING CONTROL SYSTEM

In this section a design method using our proposed
nonlinear model matching method [7] for nonlinear
systemisgenerdly described.

3.1 Formulation of the Problem
Congder the following nonlinear system as a
controlled system.

(System x)
x(k+1) = F(x) + BX)u(k), x(0)=xo (16)
y(k) = Cx(k) 17
where

F) =[f109) , Fa(%),--, Fa (17, Fi () : R"R

B(9) = [br (),b2'(x), - - - o' (¥)]", bi' (:R " RP

C= [ClT,CzT,- .. ,CpT]T ERpxn

x(k) = [xa(k), X2(K), - -, Xo(K)] " €R"

y(K) =[ya(k), ya(K), - - -, yo(K)] ' eR?

U(K) = [tk UeAK), - - -, Up(K)]" R
x(K)eR ", y(k)e R ? and u(k) € R P are the sate
variable vector, the output sgnd vector and the
input signal vector, and the above inverse sysem is
assumed to be stable. Let F(x) and B(x) be the red
polynomia functions with respect to the dae
vaiable.

On the other hand, consder the following

equation as a reference model which the system
designer satsarbitrarily.

(Reference Sysem )
XM(k+l) = AMXM(k) + BMUM(k) (18)
ym(K) = Cuxm(K) (19)
where
Xm(K) = [Xma(K) Xm2(K), - - - Xmm(K)] "
yn(K) = [yma(k) ymz(K), - - - Ymp(K)]"
Un(K) = [ (K),Uwa(K), - - - Unap(K)] "
Cv =[ow' vz, Cwp'l"
xu(k) € R" is the reference sate vaiable,
uv(k) € R® and yw(k) € R P are the bounded
reference input and output.

The objective of this study is to desgn a
mode matching control system which forces the
output of the state vector nonlinear system y(k) to
match the reference model output ym(k).

And here the modd matching is defined as
follows.

[Definition]
For the following condition of System x and
Reference Modd x v

X0=0, Xmo=0, F(Xo) =0, B(Xo) =0
, when
ymK)=y(k) for k > 0

can be achieved, it is cdled tha Sysemz can be
mode-matched to Reference Modd = .

3.2 Nonlinear Mode Matching

In this subsection, for Sysemx> and Reference
Systemz y, the dynamic model matching control
system based on Hirschorn's dgorithm [8] extended
with Silverman's Sructure algorithm [9] is proposed.
For Sysems and Reference Systems v, perform
the following procedure.

[Step 1] Condder the time shift signds of the
output y1(t) and left-multiply the both sides of Egs.
(17) & (19) by z the following eguations are
obtained

zyi(K) =ciF(X)+ aBX)u(k)
zymi(K) = cmiAmxm(K) + cwiBmum(K)
where z isthe time-shift operator.

Next formaly replace the above eguations
with asfollows:

z™yi(k) = Canu(X) + Dan(x)u(k)

2™ ym(k) = Cavn(X)xm(K) + Dawn(X)um(K)
where the left "1" of subindex "11" means the 1t
output, the right 1" means the 1st power of z*. And
generaly Cau(x), Cavu(x), Dau(xX) and Davn(x)
are polynomid functions and matrices with respect
to x. In the above equations, when if Day(X)= 0,
replace f11, Cayn and Daywith f;, Ca and Da and
go to the next sep. When if Dau(x) = O, the
following equations are obtained by repeating the
time shift

z"yi(K) = Cay(x) + Day(x)u(k)

Z" ya(K) = Cawg ()X + Dawri(3)un(K)
where Dayj(x) = 0 and it is assumed that "j" which
satisfies the above eguations exists. Likewise,
replace the subindices "1j" of f, Ca and Da in the
above equationswith 1" and go to the next step.



[Step 2] Do the same procedure as Step 1 for the
output y»(K), the following equations are obtained

2"l yo(K) = Cay(x) + Dag(x)u(k)

2" ya(K) = Cavz(3)Xu + Davia(})um(K)
[Step 3] When if Dayj(X) a1 (X)Dag(X);[ a1 (X) =
0], replace the subindex "2j" with "2" and do the
same procedure from Step 2 for ys(k). Where,
az (X) iIsapolynomia function with respect to x(t).

When if Dayj(X)=a.z (X)Dau(x), condder the

new outputq 10] asfollows:

-1 ()2 ys(k) + 2" yo(K)
a2 (2 "yna(K) + 2" ynra(K)
and do the same procedure from Step 2.
[Step 4] By repesting the above procedure to the

outputs yp(kK) and ymp(k), the following equations
can be obtained

Na(z, X)y(k) = Cax) + Da(x) u(k) (20)

Na(z, X)ym(k) = Cau(x)xm(K) + Dau(x)um (k) (21)
where Na(z, ) isalower triangular matrix inwhich
the diagona entriesare z "', and Ca(x) and Da(x)
are respectively

Calx) = [Cau(x), Calx), -+, Ca(¥) "

Da(x) = [Day '(X), D2y "(x),- - -, Day " (X)]"

Cau(x) =[Cau(¥), Cauz(¥),- -+, Caup) "

Dau(X) = [Daw1 ' (x), Dauz '(X), - -, Dawp ()]
Thenitisclear that Na(z, x) isalower triangular
meatrix because of the procedurein Step 3 which the
relations between y;(k) and u(k) can be obtained
with the time shift form of y; (k).

Using the above relation the following theorem

can be obtained.
<Theorem>
If the following condition is satisfied

rank (Da(x))=p for wvx(k)eR"

Sysem = can be modd-matched to Reference
Systemz y by the control law u(k) as

u(k) = Dax)] - Ca(X) + Cam(x)xn(K)
+Dau(x)um(K)]  (22)
(Proof) Definethe output error (k) as
&(k) = ym(K) - y(K) (23)
the following redion can be obtaned usng

Egs.(20)--(23)

Na(z, x) &k)=0 (24)
Where notice the form of Na(z , x), especidly the
diagond entries which have the stable polynomids,
for the condition : x(0)=0, xu(0)=0, F(x0)=0,
B(X0)=0, the following relation can be obtained

yk) = ywK), for k> 0 (25

and the modd matching can be achieved. Also
because of Eq.(24), for the arbitrary initid vaues,
the following relation can be obtained

y(k) ~ yuK), for k> %

[Comment] As aresult, by replacing Na(z, x) with
an interactor matrix [10] of a system, we can
understand that this method is a extenson of the
linear model matching control system proposed by
Wolovich [11].

4 Application to Lift/Cruise Fan Aircraft

In this section, we attempt to apply the proposed
method to the flight control system for the L/CFA,
and invedtigate the feashbility by numerica
smulations. The data[4] of L/CFA, flight condition
[12] and reference modds are given asfollows. Yet
many data of another aircraft areincluded in them.

[Data of L/CFA]
m: 5195 [kg], ly: 178457 [kg-n], S: 39.56 [,
C:4.89[m], ¢:45[m], A:005[g

[Flight Condition]
Hovering at dltitude 6,000 [m], p :0.5495 [kg/m?,
Cy:-0.0325, Cz-0.851, Cy-0.0373, Cx o E1.6,
Cx ® R:2-51 CZ ® |::3.4, CZ ® R:4.3, Cm ® F:5.2,
Cnor:6.1and Cyg:-6.0.

[Reference M oddl]

2nd order transfer functions with damping ratio ¢

= 0.9 and naturd frequency ®p = 5.2 [rad/g] are
given for each output. The reference inputs are
given as uw(K)={0.1{m/s], O[deg], O[deg], O[deg]}

from the beginning to 1 sec, um(k)={ 1[nVg], O[deg],
10[deg], 10[deg]} from 1 secto 5 sec, um(k) = {-1,
0, 10, 10} from 5 secto 10 sec.



Fig. 3 Responses of State Variables

Fig. 4 Control Inputs

[Evaluation]

The results show that each output perfectly matched
to the reference modd outputs and the smooth
verticd trandation keeping the pitch angle O deg
could be accomplished. Especidly the front and
rear duct fans are gradudly turned backward, the
forward veocity approximately 60 kmvh could be
obtained. Also the thrusts of front and rear duct fans
are made within the range of available power.

5 Conclusons

In this paper, we suggested a new type of L/CFA
and atempted to goply our nonlinear model
matching control method for its maneuver. And we



showed the feashility of proposed method with
numerical smulations. However it is necessary to
consder the following premises or assumptions. 1
The inverse system is dable. But normdly an
inverse system of nonlinear plant can not be defined
and its sability can not be proved. 2 All dae
variables of the aircraft can be messured. 3 The
plant isan M inputs and M outputs system. 4 The
plant parameters [3,13,14] such as non-dimensiond
aerodynamic derivatives are fixed. 5 The effect of
disturbance [15,16] such as gust is not considered.
These are remained as the theme which should be
improved.
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