
24TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES

1

Abstract

ADAS (Aircraft Design and Analysis
Software) is a FORTRAN package that allows
designers to optimise design systems consisting
of numerous often-conflicting design variables,
subject to given constraints and a merit
function. While created with the principal aim
of aircraft design applications, the software can
be utilised for any scenario of multi-disciplinary
optimisation. ADAS also executes in a number
of modes, supplying the user with ranges of
outputs that can be beneficial during many
stages in the design process.

There are many software tools available to
engineers and designers, which aid in the
decision-making process by allowing the user to
analyse the impact of certain design choices.
These tools include CFD/FEM Analysis
packages and CAD drawing applications,
among others. With recent improvements in
computer technology and parallel computer
architectures, it is becoming easier and more
efficient to fully integrate these tools to
accelerate the design process.

ADAS has been modified for execution in a
parallel environment, utilising the MPI
(Message-Passing Interface) standard to handle
inter-processor communications and load
sharing. This allows ADAS to execute on any
number of processors, and allocate workloads
in the most efficient manner at runtime,
dependent on the characteristics of the design
problem being solved, and the mode of
execution utilised.

Excellent results have been obtained using
ADAS on the VPAC Facilities in Melbourne

Australia, showing that systems incorporating
many design variables can be optimised without
an increase in response time. Tests were
performed using several simulations of
increasing design complexity, with speedup
results being in agreement, showing that
significant benefits can be gained by using this
software for very complex designs.

1 Introduction
The design process is an iterative process

and consists of many stages in which the design
is further refined. In aircraft design, the first
stage is generally referred to as conceptual
design, where the basic aircraft configuration
and layout are determined. Once the aircraft
configuration is selected, more advanced
calculations are made in the preliminary design
stage, where individual components of the
aircraft are designed and synthesised into a
complete system. These two phases together are
generally referred to as configuration
development, and for the majority of aircraft
design projects, this is as far as they will go. It
has been said [8] that the principal aim of
configuration development is to obtain the
information required in order to decide whether
the concept will be technically feasible and have
satisfactory economic possibilities.

Conceptual design is the pivotal stage in
aircraft design, as it determines the
technological feasibility of the design, its
applicability to the problem at hand, and what
can sometimes be of more significance, the
overall production and operational cost.

MULTIDISCIPLINARY AIRCRAFT DESIGN
OPTIMISATION USING PARALLEL COMPUTER

ARCHITECTURES

C. Peebles, C. Bil
School of Aerospace, Mechanical and Manufacturing Engineering

RMIT University, Melbourne Australia.
Keywords: Aerospace Engineering, Design Optimisation,

Parallel Computing, Message-Passing

PEEBLES C, Bil C

2

During configuration development, a team
of design engineers and specialists will work
together to optimise the overall design.
However, there are a large number of design
requirements that can influence the end product,
such as transport capacity, aerial refuelling
capability, take-off and climb performance,
maximum range, etc. As such, compromises
need to be made in order to achieve the best
possible overall design. A graphical method to
illustrate the need for compromise is called a
matching chart.

1.1 Matching Chart

A matching chart is a graphical
representation of design constraints as functions
of two design variables, for example, wing
loading (W/S) and thrust-to-weight ratio (T/W).
Design constraints may include range
performance, take-off distance, and lift
coefficients for various phases of flight. An
example of a typical matching chart is given in
Figure 1. Each constraint line displays hatch-
marks denoting the non-feasible area for that
constraint. When all constraints are plotted, it
produces a feasible design region from which a
design point can be chosen.

Th
ru

st
-t

o-
W

ei
gh

t
R

at
io

 =
 T

/W

Turn Rate
(manoeuvering)

Maximum Cruise Speed

CL (max, Landing) = 2.50

CL (max, Landing) = 2.40

CL (max, Landing) = 2.30

Wing Loading = W/S = Weight/Wing Area

FEASIBLE
DESIGN
REGION

Matching Point

Figure 1: Example Matching Chart for Aircraft
Design

The design point selection will depend on
the design specification, and in particular the
importance of each of the variables under
consideration. For example, given the variables
in Figure 1, the optimal choice is to minimise
T/W, while maximising W/S. In more
complicated scenarios, however, there may be a

more complex objective Function such as fuel
weight, maximum takeoff weight or direct
operating cost.

When selecting the optimum design point,
numerical algorithms can be utilised to progress
from an initial set of values to an optimum
design. Some of these methods are explained in
the following sections.

1.2 ADS – Fortran Software for Automated
Design Synthesis

ADS [2] is an open source Fortran program
for general-purpose numerical optimisation. The
basic functionality of the program serves to
minimise an objective function subject to given
design constraints, using gradient-based hill
climbing methods to achieve the optimum.

The ADS software allows for use of a wide
range of algorithms, incorporating different
optimisation strategies, numerical methods, and
search options used to determine the path to an
optimum value. It is written such that it is called
from a user-written program, and parameter
settings determine both the design case being
studied (variable values and constraint
definitions), and the methods used to determine
the solution.

The generality of the software means that
its scope of use is not limited to design in any
one field. As such, it can be used for any
numerical optimisation process, however in the
current project it was applied to aerospace
design.

1.2.1 Gradient Calculation

The ADS software allows the option for a
user-supplied program to supply gradients at
certain points during execution. This is
particularly useful if gradients can be
determined analytically. Alternatively, ADS can
approximate gradients internally using finite
difference calculations. However these
calculations are performed in serial and it was
the objective of this project to parallelise the
gradient calculation, allowing such calculations
to be performed simultaneously and thereby

3

MULTIDISCIPLINARY AIRCRAFT DESIGN OPTIMISATION USING
PARALLEL COMPUTER ARCHITECTURES

increasing the speedup efficiency of the parallel
code.

Newton’s Divided Difference is the
numerical method used for gradient
calculations. Due to the non-linear nature of the
constraints and objective functions, a quadratic
gradient approximation is applied using a
central finite difference technique. This requires
three data points to be determined for each
function for which gradients are required. Since
the central point is already known due to
previous ADS calculations, this requires a
further two data points for each function (per
design variable) as shown in Figure 2.

DV1 ∆x ∆x

DV2

Quadratic Approximation
Target Function

Figure 2: Quadratic Approximation of Constraint
Equation.

The step size from the central point for that
gradient is denoted ∆x, which is set at 5% of the
current value of that DV (Design Variable).
Note however that this process must be
performed not only for each of the constraints
plus the objective, but each gradient must be
separately calculated with respect to each of the
design variables in turn, keeping the others
constant. Thus, if the number of design
variables increases, the time saving due to
parallelisation also increases.

1.3 ADAS – Aircraft Design & Analysis System

ADAS [1] is a computer-based tool for
conceptual aircraft design and configuration
optimisation applications. ADAS is integrated
with other design tools, such as CAD, and the
aforementioned ADS numerical optimisation
software.

ADAS is designed such that engineers and
designers can modify the code to suit a
particular design problem and then compile and
execute it. The user-supplied code is contained
in a separate subroutine called DSPROG
(DeSign PROGram). DSPROG contains the
necessary design calculations, including the
constraint and objective functions for
optimisation. To make the development of the
DSPROG code more user-friendly, a library of
pre-programmed routines with standard design
calculations can be accessed.

For example, to generate the matching
chart in Figure 1, DSPROG would contain the
equations defining the constraint curves, where
input files would contain names of variables and
constraints, initial variable values to begin
optimisation, and definitions of feasible design
regions (hatch-marks) for each constraint.

1.3.1 ADAS Modes of Execution

ADAS has a number of execution modes,
which can be selected to provide different levels
of output:
• Design Analysis Mode, where the program

simply returns constraint tolerances (how
close the input design point is to the
constraints). This mode is executed in a
single pass, and is typically used for design-
point calculation for a chosen aircraft
configuration;

• Parametric Survey, where a separate input
file lists numerous parameters, each with a
range of values. This is similar to “Design
Analysis”; however analysis is performed
for each of the sets of values in the new
input file. Parametric survey mode is
generally used to determine the influence or
sensitivity of design characteristics
(dependent variables) with respect to design
parameters (independent variables);

• Optimisation Mode, where the program
makes numerous calls to the ADS software,
in order to optimise a non-linear objective
function, subject to non-linear constraints.
This mode results in a single optimum
design; and

PEEBLES C, Bil C

4

• A combination of parametric survey mode
and optimisation modes can also be
selected.

The user defines the design problem using

three files:
• Inputfile.txt: Formatted text file containing

variable and constraint names and
limits/tolerances; also includes parameters
that govern the optimiser;

• Para_input.txt: Formatted text file
containing names and values for each set of
parametric data. This file is only used in
Parametric Survey Mode; and

• DSPROG.FOR: FORTRAN routine
containing design calculations. This defines
the relationships of constraints to design
variables, which procedures are required for
calculations, external routines or programs
to call upon, etc.

No other files in ADAS require

modification. After these three files are defined,
the program can be compiled and executed.

1.4 MPI – The Message-Passing Interface

MPI is a portable package of routines
developed for message passing within a parallel
computer architecture. When a program is run
in parallel, typically each processor deals with
variable values that are local to that processor;
however, MPI can be used if values need to be
shared across different processors.

There are many memory architectures in
modern parallel computers. The Message-
Passing Model defines each process as having
local memory, but also having the ability to
communicate through messages with other
processes. This data transfer from the local
memory of one process to that of another
requires actions from both processes.

MPI has become one of the more widely
used paradigms for expressing parallel
algorithms. Although it has its limitations, it has
several advantages, such as high performance,
ease of debugging and universality. Although
MPI contains a large set of commands, about
125, the majority of those are for special-

purpose algorithms and for simpler parallel
programs usually six standard MPI calls are
sufficient.

A basic framework for a simple MPI
program could look something like this:
• Start Program;
• Initialise MPI (MPI_INIT);
• Determine how may processors are running

the program, and find out which process I
am (MPI_COMM_SIZE,
MPI_COMM_RANK);

• Send any messages (MPI_SEND);
• Receive any messages (MPI_RECV);
• Finalise MPI (MPI_FINALIZE); and
• End Program.

However, more advanced procedure calls
were made during the implementation of MPI
into ADAS, to perform such tasks as:

• Collective communication (broadcasting
data to numerous processors at once);

• Non-blocking communication (where
the processor can continue to perform work
while it waits for communication to complete);
and

• Rearrangement of the communicator
into a 2D Cartesian Topology (used for more
than one degree of parallelism).

As per the MPI standard, when an MPI

parallel program is written and run, each
processor executes identical code, and it is up to
the programmer to include the relevant MPI
calls for inter-processor communication and
program control.

1.5 Design Case Study

In order to evaluate the software, a
relatively simple design program was used to
demonstrate an aircraft design application. The
design case was to generate a matching chart,
comprising two design variables (W/S and
T/W), three constraints (take-off distance,
landing distance and cruise speed), and an
objective function (T/W). The aircraft design
specification was based on the work of

5

MULTIDISCIPLINARY AIRCRAFT DESIGN OPTIMISATION USING
PARALLEL COMPUTER ARCHITECTURES

Bittugieg et al [6], in the design of a Cruise
Missile Carrier with multi-role capabilities.
Given a specific mission profile and payload
requirements, initial estimates can be made for
the various operational aircraft weights, through
largely statistical/empirical methods.
Relationships are also included for various
performance parameters, as functions of the
given design variables (W/S, T/W). This
resulted in the following matching chart:

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

30 80 130 180 230 280

Wing Loading (W/S) - lb/ft^2

Th
ru

st
-to

-W
ei

gh
t (

T/
W

)

Take-off distance Landing distance Cruise

Feasible
Design
Region

Figure 3: Matching Chart for Cruise Missile Carrier.

Further modifications were made to

increase the complexity of the design case,
however they will not be mentioned here in
detail. The design case was expanded to include
five design variables and six constraints. This
allowed ADAS to operate on a larger number of
processors, allowing a more thorough
performance analysis to be performed.

2 ADAS – Incorporating Parallel Algorithms
A parallel program runs simultaneously on

a number of processors, as opposed to a
conventional single processor architecture.
Parallel programs have many advantages over
serial (single processor) programs, due to the
possibility of performing several operations
simultaneously. Parallel programs can share
information and allocate tasks, so that all
processors are kept busy. Different parallel
software layouts (or paradigms) are available
that define the relationships between processors,
how and when tasks are performed, and how
information is shared and collected between
processors. Serial programs, however, are

limited by the requirement to perform
operations once at a time, and in a set order.

When incorporating parallel modifications
into an originally serial algorithm (a process
known as parallelisation), problems may occur
during implementation, and the end product
may not be as efficient as one that was written
specifically for a parallel environment. This is
due to portions of the code still requiring
execution in serial; therefore not all the code is
strictly parallel. This is the case with the ADAS
software when running in optimisation mode.

When ADAS runs in Design analysis or
parameter survey mode (without optimisation),
calls are made to the user-supplied DSPROG for
design-point calculation (only one processor is
required for design analysis), and parameter
survey calculations are done in parallel. When
the optimiser is included, however, ADS is
executed. As ADS was originally written for
serial execution, this limits the extent of
speedup achievable through parallelisation. As
the complexity of the design case contained in
DSPROG increases, proportionally less time is
spent in ADS, and hence the speedup increases;
however, for optimal speedup of the ADAS
software, the modification of the ADS software,
or finding a suitable parallel version, may be
required.

Start

DSPROG
icall = 1

DSPROG
icall = 2

ADS
OPTIMISER

DSPROG
icall = 3

new values
for survey
variables

DSPROG
icall = 4

Optim.
mode?

Optimum
found?

par. survey
mode?

survey
complete?

DSPROG
icall = 5

END

yes

yes

yes

yes

no

no

no

no

Figure 4: Original ADAS program flowchart.

PEEBLES C, Bil C

6

Figure 4 shows the original ADAS flow
chart. Note that the tasks performed by
DSPROG vary with the ‘icall’ parameter. The
value of this parameter can be set to allow
DSPROG to perform input/output calls,
calculate the required constraint and parameter
values, etc. There are additional values (icall =
2,4) that are currently blank, allowing the user
to insert code at those points if required.

2.1 Optimisation Mode
The first stage taken in the implementation

of MPI into the ADAS software, included
adding simple MPI commands to perform
“Optimisation” mode execution in parallel
(Parametric survey mode was not included). The
“Task Farming” method was utilised, where a
single process acts as Master, with other
processes acting as Slaves, sending their results
to the master after completion. The general
execution flowchart is shown below in Figure 5.

Figure 5: Initial Parallel ADAS Execution Flowchart.

(a) Overall program execution
(b) Specific Slave Code

As can be seen from Figure 5, unless the
content of DSPROG is complex, only a small
amount of time is spent in the parallel portion of
ADAS. The rest is spent in either serial ADS
calculations or communications delays, which
occur during sending/receiving of messages, etc.
These are an inevitable part of using MPI, and
even though these delays are relatively small,
care must be taken in the organisation of the
program to ensure that these delays do not
become significant. In the case of ADAS,
because such a large amount of time may be
spent in serial execution, with slaves idling,
special attention was given to maximising
program runtime efficiency, both in MPI calls
and in improving general software execution.

At runtime, one processor is defined as
being the “Master”, governing the roles of all
other processors running the program. This
processor reads and writes input and output files
at the start and end of the program respectively,
and also manages workload allocation to the
slaves, and general communication issues. The
code was written such that it can run on any
number of processors (of course, user discretion
is required to limit processor idling).

2.2 Parametric Survey Mode
The next phase was that of integrating the

Parametric Survey Mode into the parallel code.
This required the use of more specialised MPI
calls, and was in general more complicated than
the first phase, as ADAS can be run both modes
at once.

Although ADAS was able to organise its
allocation of processors to calculate gradients to
optimise a single set of values, incorporating
parametric survey became more complicated, as
multiple such groups need to handle more than
one set of values to optimise. In order to achieve
this, MPI contains a series of procedures that
can be used to re-organise the communications
network into a grid structure in any number of
dimensions (in this case only 2 are required).

The primary grid length is dimensioned
according to the number of parameter sets being
studied. The primary grid length is defined to be

7

MULTIDISCIPLINARY AIRCRAFT DESIGN OPTIMISATION USING
PARALLEL COMPUTER ARCHITECTURES

equal to the number of parameter sets being
studied, or the next lowest equal fraction (e.g.
1/2, 1/3, 1/4, …). The secondary grid length is
then determined to utilise all the allocated
processors in a rectangular grid. An example of
this is shown below, where there are eight sets
of parametric values to optimise, and twenty
processors free to run the software:

Masters

Slaves

Eight surveys to complete,
therefore two for each column.

Figure 6: Definition of MPI Communicator Grid

Topology.
As can be seen in Figure 6, the grid has

been arranged such that no processor is
constantly idle, and also the layout is optimised
to give the best load balancing between
parameter sets, as this is likely to give the best
overall efficiency.

Now that the grid is defined, MPI calls are
made to define each column in the
communicator (as communications networks are
defined in MPI) as a separate communicator,
such that communication calls can be specified
either to communicate internally within each
column, or globally, as would be the case when
final results are sent from the “Local Master” of
each column to the “Global Master”, which
controls the execution of the program as a
whole. The definition of these masters is of no
real importance; in effect any processor is
suitable to act in these roles, however for
simplicity and ease-of use, the ‘top’ processor in
each column acts as a “local Master” to that
column, and the local master of the first column
acts as the “global master”, and has roles similar
to the master processor mentioned in the
previous section.

This scenario has again been written such
that it may be executed on any number of

processors (including one), even if it only acts
with a single column in the grid.

3 Results – Speedup Achieved
Excellent results have been achieved using

the ADAS system. A number of runs were
performed, and the complexity of the design
case was increased to allow it to benefit from
the use of more processors by adding more
design variables. Parametric survey analysis
was later incorporated into the design case,
allowing another dimension of parallelisation to
be utilised.

To measure ADAS’ performance, three
different versions of the program were compiled
and run over a range of processors. Each had
different lengths of time spent within the
parallel code DSPROG, in order to depict
designs of increasing complexity. To do this, a
simple command was added to the DSPROG
code to cause the process to pause execution for
1, 2, 3 or 4 seconds. As DSPROG is called
many times during execution, this was sufficient
to give an indication of the expected
performance. These results were obtained using
a design case consisting of 5 design variables, 4
constraints, 3 parametric equations and 20
parametric studies. The parametric studies and
equations were only integrated for the results in
section 3.2.

3.1 Optimisation Mode

This section shows the results of a single
optimisation performed by a varying number of
processors. As mentioned previously, several
different versions of the software were
compiled, to integrate differing levels of
complexity. The results for this optimisation
case are shown below:

Table 1: Summarised ADAS Optimiser Execution
Times.

 Execution Times [seconds]
#procs ADAS1 ADAS2 ADAS3 ADAS4

1 67.7833 134.8433 201.8600 268.9167
2 43.9000 86.9000 129.9233 173.0567
3 31.9367 63.0767 93.9800 124.9633
5 20.1833 39.1133 58.0933 77.1233

PEEBLES C, Bil C

8

0.0000

50.0000

100.0000

150.0000

200.0000

250.0000

300.0000

1 1.5 2 2.5 3 3.5 4 4.5 5

of Processors

El
ap

se
d

Ti
m

e
(s

ec
)

ADAS1 ADAS2 ADAS3 ADAS4

Figure 7: ADAS Optimiser Execution Times.

The method used by the ADAS software to

distribute tasks to the slave processors greatly
affects the time performance of the software.
When distributing tasks for gradient
calculations, the master processor allocates
them much like a card dealer distributing
playing cards, starting with itself, and
progressing through all available processors,
looping if required. As a result, there may be
cases where the allocation of tasks is
imbalanced and where processors will have
more than one optimisation task to complete.
For example, in a 5-Variable design case such
as that used to obtain these results, using two
processors will result in one being allocated
three tasks, and the other only two; hence the
second processor will be idle while it waits for
the first to complete its extra task. User
discretion is advised to choose the appropriate
number of processors to use to minimise this
imbalance. Especially when solving complex
design systems, where execution times are long,
even a small load distribution could mean a
noticeable waste of precious computer
resources.

 A common measure of performance of
parallel programs is called Speedup, and is a
measure of the time taken to execute a program
on n processors, compared to the time taken to
execute the same program on a single processor.
For example, if a program takes 1/3 of the time
to execute on four processors compared to a
single processor, then the speedup on four
processors is 3. The speedup values obtained for
the ADAS optimiser are shown below:

Table 2: Summarised ADAS Optimiser Speedup
Results.

 Speedup Obtained [-]
procs ADAS1 ADAS2 ADAS3 ADAS4

1 1.0000 1.0000 1.0000 1.0000
2 1.5440 1.5517 1.5537 1.5539
3 2.1224 2.1378 2.1479 2.1520
5 3.3584 3.4475 3.4748 3.4868

0.0000

0.5000

1.0000

1.5000

2.0000

2.5000

3.0000

3.5000

4.0000

1 1.5 2 2.5 3 3.5 4 4.5 5

of Processors

Sp
ee

du
p

ADAS1 ADAS2 ADAS3 ADAS4

Figure 8: ADAS Speedup Results.

3.2 Parametric Survey Mode
In Parametric Survey mode, a number of

optimisation calls, such as those shown in the
previous section, were completed
simultaneously. The communicator is organised
into a grid structure, with each column being
responsible for one or more optimisation tasks.
A summary of the results obtained is contained
in Table 3 below:

Table 3: Summarised ADAS Parametric
Execution Times

 Execution Times [seconds]

#procs 1 2 4 5 10 20 40
ADAS
1SEC

299.8
3

178.3
2

118.8
3

107.1
6 80.70 68.91 57.10

ADAS
2SEC

593.0
8

353.3
4

232.3
9

211.7
2

159.6
1

135.6
2

112.0
4

ADAS
3SEC

891.6
2

529.5
5

348.4
7

315.3
2

239.2
9

203.0
5

167.5
2

9

MULTIDISCIPLINARY AIRCRAFT DESIGN OPTIMISATION USING
PARALLEL COMPUTER ARCHITECTURES

ADAS Time Performance

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

1000.00

0 5 10 15 20 25 30 35 40

of Processors Used

El
ap

se
d

Ti
m

e
(s

ec
on

ds
)

ADAS1SEC ADAS2SEC ADAS3SEC
Figure 9: ADAS Parametric Execution Times.

The numbers of processors chosen were

such that the MPI communicator in each run
had a single row of processors, but increasing
numbers of columns, as described previously. If
other data points were chosen, there would be
irregularities in the chart of Figure 9, due to
irregular distribution of tasks.

 The speedup of ADAS in Parametric
Survey mode is shown below:

Table 4: Summarised ADAS Speedup

Performance.
 Speedup Obtained [-]

#procs 1 2 4 5 10 20 40
ADAS
1SEC 1.000 1.681 2.523 2.798 3.715 4.351 5.251
ADAS
2SEC 1.000 1.679 2.552 2.801 3.716 4.373 5.293
ADAS
3SEC 1.000 1.684 2.559 2.828 3.726 4.391 5.322

ADAS Speedup Performance

0.000

1.000

2.000

3.000

4.000

5.000

6.000

0 5 10 15 20 25 30 35 40
of Processors Used

Sp
ee

du
p

A
ch

ie
ve

d

ADAS1SEC ADAS2SEC ADAS3SEC
Figure 10: ADAS Parametric Speedup Performance.

It should be noted that the speedups

obtained even using different versions of the
software (depicting differing design
complexities) achieve essentially identical
levels of speedup performance (actually

increasing slightly with design complexity),
which is an excellent measure of efficiency; that
even with a higher workload, the speedup
performance achieved is still the same. This is
important, as design cases become more and
more complex, that the speedup performance
does not decrease.

Ideally, the speedup achieved by using n
processors would be n; however, this is rarely
possible due to portions of the code running
inherently sequential. The fraction of sequential
code is termed f, and according to Amdahl’s
Law [8], the speedup obtainable can never
exceed 1/f, no matter how many processors are
used. Thus, as an example, a program with f =
0.1 would never achieve a speedup greater than
10. Factors affecting f include the time spent in
parallel execution as compared to serial
execution, which in this case would
theoretically decrease with increasing design
complexity; further study should be performed
to analyse the performance of ADAS on large
numbers of processors to investigate this.
Methods of optimising the ADAS code will be
incorporated in order to remove sequential
overhead and maximise speedup.

4 Results – AutoCAD Output
A final outcome of the modification of the

ADAS software was to integrate the existing
AutoCAD Integration into the Parallel version.
This integration allows for results to be shown
graphically in 3 dimensions within the
AutoCAD software. Routines were included in
ADAS to create AutoCAD ‘DXF’ graphics files
after analysis had been completed. This allowed
for creation of 2D or 3D carpet plots of the data,
allowing for independent studies of each design
variable in the system. Some examples of the
plots created for the above case study are shown
below.

PEEBLES C, Bil C

10

Figure 11: AutoCAD Carpet Plot of Aircraft

Endurance as a function of
Fuel Weight and Cruise Speed

Figure 12: AutoCAD Carpet Plot of Optimum

Thickness/Chord Ratio
versus Wing Sweep and Mach Number

Figure 13: AutoCAD Plot of Required Fuel Weight

versus Aircraft Cruise Range and Speed.

Figure 14: AutoCAD Plot of Optimal Wing Sweep

versus Thickness-to-Chord Ratio and Mach Number.

5 Conclusions
This paper documents the method and

results of modifying an existing Fortran
software package for use on Parallel
architectures, using the MPI standard. These
modifications allow complex designs
incorporating numerous design variables to be
optimised without an increase in execution time,
as workload is distributed between processors.
Results show excellent decreases in execution
time as workload is distributed amongst
numerous processors, however user discretion is
advised to maximise load balancing and
minimise processor idling.

The ADAS software provides great
advantages to engineers and designers in
allowing complex design systems to be solved
quickly and easily, and the adaptability of the
software allows it to be used in any field of
design optimisation. This coupled with the
numerous tasks that the software can perform,
shows that ADAS will be an invaluable tool for
designers in the future.

6 Recommendations & Further Work
The ADAS software system includes many

different tools and functions, including
incorporation of AutoCAD Computer Drafting
software, FEM meshing, etc. While the basic
AutoCAD integration has been completed, there
are other aspects of the ADAS system that have
not yet been incorporated into the parallel

11

MULTIDISCIPLINARY AIRCRAFT DESIGN OPTIMISATION USING
PARALLEL COMPUTER ARCHITECTURES

version. The interfacing of ADAS with
AutoCAD is achieved through the use of ‘DXF’
geometry files; plans are currently underway
aimed at achieving this same goal with the more
modern and widespread CATIA software, in
cooperation with Dassault Systems Inc.

Also, while the software may not yet be at
a suitable stage in terms of general user-
friendliness, an end goal is to make it available
as a Teaching and Research tool in a university
environment.

7 Acknowledgements
The authors wish to acknowledge the

funding and computational support of the
Victorian Partnership for Advanced Computing
(VPAC).

8 References
[1] Bil C. Aircraft Design and Analysis System

(ADAS) User’s Manual. Delft University
Handleiding LR-110, 1992.

[2] Vanderplaats G. ADS – A Fortran Program
for Automated Design Synthesis Ver 2.01
User’s Manual. Engineering Design
Optimization Inc. California, 1987

[3] Gropp W, Lusk E, Skjellum A. Using MPI
– Portable Parallel Programming with the
Message-Passing Interface. MIT Press,
London, 1995

[4] Bil C. Development and Application of a
Computer-based System for Conceptual
Aircraft Design. Delft University Press,
1988.

[5] Dowd K, Severance C. High Performance
Computing. O’Reilly, Cambridge, 1998

[6] Buttigieg P et al. AV465 Design Project –
Cruise Missile Carrier Proposal (Group
Charlie). RMIT University Department of
Aerospace Engineering, 2001.

[7] Torenbeek E. Synthesis of Subsonic
Airplane Design. Kluwer Academic
Publishers, Dordrecht, the Netherlands,
1982.

[8] Parhami B. Introduction to Parallel
Processing. Plenum Press, New York,
1999.

