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Abstract  
In this paper, a method is presented for the 
viscous flow simulations by solving the Navier-
Stokes equations on three-dimensional mixed 
element type unstructured grids. Pirzadeh’s 
advancing-layer method is modified to generate 
high quality mixed prismatic/pyramid/ 
tetrahedral element type unstructured grids in 
boundary-layer region, and advancing-front 
method is used to construct isotropic 
tetrahedral grids in the residual flow region. 
Three-dimensional Navier-Stokes equations are 
solved by using a cell-centered finite-volume 
method with AUSM+_up scheme and Spalart-
Allmaras one-equation turbulence model. Time 
is advanced by an implicit Gauss-Seidel 
relaxation procedure which is constructed by 
using the first-order linearizing of flux vector 
and the maximal eigenvalue splitting of flux 
Jacobian matrix. Adaptive local time stepping 
and residual averaging are used to accelerate 
convergence. The assessments of the presented 
method are derived from the simulation of 
viscous flow problems around the ONERA M6 
wing, DLR-F6 wing-body vs. DLR-F6 wing-
body-pylon-nacelle configuration and a 
business jet configuration. 

1 Introduction  
Unstructured grid technology is a 

promising approach offering geometric 
flexibility for handling of both complex 
configurations and flows. Compare with the 
structured grid, the unstructured grid has the 
merits of excellent flexibility, universal 
applicability for complex configurations and 

highly automatic grid generation process. 
Several unstructured grid generation and flow 
solver procedures have been developed and 
successfully demonstrated for inviscid flow 
around complex configurations. However, for 
viscous flow simulations, further improvement 
in efficiency, accuracy and robustness of 
unstructured grid generation and flow solver 
procedures are still needed. 

Up to now, several kinds of unstructured 
grid generation strategies for viscous flow 
applications have been developed such as a 
hybrid structured/unstructured grids by 
Soetrisno[1], a advancing-layer method by 
Pirzadeh[2] and mixed element type unstructured 
grid generation method by Marcum[3]. All these 
methods produce semi-structured anisotropic 
elements adjacent to solid boundaries and use 
isotropic tetrahedral elements to fill with the 
outside region. The use of anisotropic prismatic 
grid in boundary-layer region can reduce the 
memory and CPU requirement for the flow 
solver without loss the geometry flexibility and 
robustness of unstructured grids. 

 In this paper, a method is presented for the 
viscous flow simulations by solving the Navier-
Stokes equations on three-dimensional mixed 
element type unstructured grids. Pirzadeh’s 
advancing-layer method is modified to generate 
high quality mixed prismatic/pyramid/ 
tetrahedral element type unstructured grids in 
boundary-layer region, and advancing-front 
method is used to construct isotropic tetrahedral 
grids in the residual flow region. Three-
dimensional Navier-Stokes equations are solved 
by using an AUSM+_up [4] type cell-centered 
finite-volume method and Spalart-Allmaras[5] 
one-equation turbulence model. The temporal 
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integration is an implicit Gauss-Seidel 
relaxation procedure [6] which is based on the 
first-order linearizing of flux vector and the 
maximal eigenvalue splitting of flux Jacobian 
matrix. A new adaptive local time stepping 
method was developed to eliminate the adverse 
influence of some poor-quality grids on solve 
stability and convergence speed. The 
assessments of these modifications will be 
derived from the simulation of viscous flow 
problems around the ONERA M6 wing, DLR-
F6 wing-body and DLR-F6 wing-body-pylon-
nacelle configuration [7] and a business jet 
configuration. 

2 Numerical Approaches  

2.1 Grid Generation  
The advancing-layer method has proved 

very useful when generating the anisotropic 
tetrahedral grids in viscous region. Here, this 
method is modified to generate mixed 
prismatic/pyramid/ tetrahedral element type 
unstructured grids in boundary-layer region. 
The mixed element type unstructured grid 
generation method can be divided into the 
following steps: 

1) Triangulate the solid boundary surface 
and far field boundary surface. This part of job 
is similar to the boundary surface grid 
generation in advancing-front method. The only 
difference is that the symmetry surface grid 
needn’t to be generated; it will be created 
automatically after the generation of anisotropic 
grids in boundary-layer region is finished.    

2) Determine a normal vector direction at 
each solid boundary surface grid point. During 
the generation of boundary-layer grid, grid 
points will be distributed along with these 
normal vectors. A necessary condition to 
prevent formation of negative volume grid is 
that the surface vectors at grid points should be 
visible by all triangular faces connected to the 
corresponding points. A method is described in 
Ref.2 for the calculation of normal vector 
directions on surface grid points. 

3) Determine the length of normal vector. 
According to the predetermined normal vector 
direction, the process of advancing layers 
method is performed by successively pushing 
the layers far away from solid boundary. The 
advancing of layers will stop if the grid size 
locally matches the background length or two 
opposite layers are crossing each other. After 
the advancing layers stop marching in their 
locations, the final marching distance between 
the solid grid points and their corresponding 
points on current advancing layers is the length 
of their normal vectors.  

4) Generate mixed anisotropic element type 
unstructured grid. Considering a triangular 
surface on solid boundary with three grid points 
1-2-3 and their corresponding normal vectors 
(see Fig 1.a), the end points of these normal 
vectors are labeled as 1´-2´-3´. A prismatic cell 
can be formed by connecting the above six 
points. Subsequently, this prismatic cell will be 
cut into several layers along with boundary 
normal vectors (see Fig 1.b). The normal grid 
spacing along the surfaces vector at each layer-
cutting process is determined by the following 
stretching function                              

11
210 ])1(1[ −−++= nn

n rrδδ                 （1） 

here, nδ is the normal spacing for the nth layer, 

0δ  is a prescribed first layer spacing, and the 
factors 21, rr  are constants that determine the 
rate of stretching. 
 

 
(a)                                                          (b) 

 
Fig.1. sketch map for the creation of mixed element type 

unstructured gird 
      

In case of some complex configurations, 
the length of boundary normal vectors may 
different from each other. So three possible 
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pyramid grids and tetrahedral grids, are likely to 
be generated by the last layer-cutting operation. 
As shown in Fig 1.b, some prismatic grids and a 
pyramid grid are generated by cutting prismatic 
cell 1- 2 -3 - 1´-2´-3´ into several layers. After 
the above cutting operation has carried out on 
every solid boundary grid surface, the ‘viscous’ 
portion of mixed element type unstructured 
grids is formed. 
    5) The rest part of the flow domain is filled 
with isotropic tetrahedral grids by advancing-
front method. When the step 4) is finished, the 
process automatically generates the symmetry 
surface grid and switches to the conventional 
advancing-front method to form regular 
isotropic tetrahedral cells in the rest part of the 
domain.  

2.2 Governing Equations  
The fluid motion is governed by the time 

dependent Navier-Stokes equations for an ideal 
gas which express the conservation of mass, 
momentum, and energy for a compressible fluid 
in the absence of external forces. The equations 
are given below in integral form for a bounded 
domain Ω with a boundary Ω∂  

∫∫∫∫∫∫∫ Ω∂Ω∂Ω
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Here 0,,,,, epwvuρ and th are respectively 
represent density of fluid, velocity components 
in the x, y and z directions, pressure, total 
energy of per unit volume and total enthalpy.  

zyx nnn ,,  are the Cartesian components of the 
exterior surface unit normal n  on the boundary 
Ω∂ . γ is the ratio of specific heats and is 

prescribed as 1.4 for air. For laminar viscous 

flow, viscosity µ is computed by Sutherland’s 
law. 

2.3 Spatial discretization  
In order to fit with different grid type, the 

cell-centered finite-volume spatial discretization is 
used. On an arbitrary selected grid surface kS , the 
inviscid flux kk SQF ⋅)(  is computed by the 
AUSM+_up scheme: 
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In this scheme, the conservation 

variables kLQ  and kRQ  which are interpolated 
from the lift and right cells of grid surface 

kS should be used. Here, we show the 
interpolation method of kLQ  on different types 
of cells as an example. Consider three types of 
grid in Fig.2, number 1, 2, 3, 4, 5, 6 denote the 
grid vertexes and the letter c stands for the cell 
center.  

 

 
(a)                      (b)                    (c) 

 
Fig.2. Different types of grid element 

 
For the tetrahedral cell showed in Fig.2 (a), 

we assume that the grid surface kS is constituted 
by vertex 2, 3 and 4. Then the kLQ  can be 
calculated with the following expression 

  4]3)([ 1432 QQQQQQ −+++= ckL          (4) 

For the prismatic cell showed in Fig.2 (b), 
if grid surface kS is a downside triangle 
constituted by vertex 1,2 and 3, then the kLQ  
can be interpolated by using the following 
expression 
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6)(6)( 654321 QQQQQQQQ ++−+++= ckL     (5) 

If grid surface kS is a side quadrangle face 
constituted by vertex 1, 2, 4 and 5, then the kLQ  
can be interpolated by using the following 
expression 

6)(12)( 635421 QQQQQQQQ +−++++= ckL      (6) 

For the pyramid grid showed in Fig.2 (c), if 
grid surface kS is a downside quadrangle face 
constituted by vertex 1, 2, 3 and 4, then the kLQ  
can be calculated with the following expression 

 5]4)([ 54321 QQQQQQQ −++++= ckL        (7) 

If kS is a side triangle face, we can assume 
that it is constituted by vertex 1, 2 and 5, then 

kLQ  can be interpolated by using the following 
expression 

4]2)(3)([ 43521 QQQQQQQ +−+++= ckL     (8) 

    The essential solution vectors on cell centers 
and vertexes will be both needed when using the 
formula (4) ~ (8) to calculate essential solution 
vectors on grid surface. But for cell-centered 
finite-volume scheme the essential solution 
vectors on grid vertexes cannot be achieved 
directly, thus a reconstruction process should be 
employed. The details of the reconstruction 
method have been introduced in Ref.8.   

The viscous flux ∑ ∆⋅=
facesAll

SnQGR ）（1  is 

computed by standard central difference scheme. 
When finite volume method is applied on each 
grid cell, we can get a set of semi-discrete form 
equations 

1d
d RnQFQ ∑ =∆⋅+

facesAll
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2.4 Implicit time integration  
Based on the first-order linearizing the 

inviscid flux term of equation (9) and the 

assumption of treating the viscous flux term 
explicitly, equation (9) can be expressed in the 
flowing style 

∑∑ +∆⋅−=∆+
∆
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 where, nn QQQ −=∆ +1 ,subscript ic denotes to 

the values of Q∆  at the center of cell i. The flux 

Jacobian matrix A  has real eigenvalues and 

may be split into two matrices by using the 

maximal eigenvalue splitting technology,     

2
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According to the direction of propagation 
of information in the flow, QA∆ can be 
approximated as neighboric QAQA ∆+∆ −+ , Then 
equation (10) becomes 

∑ ∑ ∑ ∆−∆⋅−=∆+
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A Gauss-Seidel relaxation approach is used 
to solve the equation (12). For steady case, time 
accuracy in the integration is not required, so 
the solution convergence to steady can be 
accelerated by implicit residual smoothing and 
local time stepping. For mixed element type 
unstructured grid, the following local time 
stepping form is usually adopted  

∑
= +++++

=∆
m

k zyxizyx
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V
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222 )(
 (13)  

Here iV  is the volume of grid cell i, CFL is 
the CFL number, yx SS ,  and zS  are the 
projected areas of each grid surface in x, y and z 
directions, ia is the local speed of sound and m is 
the surface number of cell i.  

Numerical experiments indicate that some 
poor-quality grids will remarkably influence the 
stability and convergence speed, when equation 
(13) is used to evaluate the local time steps. The 
main cause for this is that the local steps 
decided by equation (13) will exceed stability 
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limit on the time step for those poor-quality 
grids, but for those good-quality grids equation 
(13) is too conservative. Generally speaking, 
there are only very few poor-quality cells 
among the total tetrahedral grids. So in order to 
eliminate the adverse influence of some poor-
quality grids on solve stability and convergence 
speed, we developed the following modified 
equation for computing local time steps  

∑
= +++++

+=∆
m

k zyxizyx

i
ii

SSSawSvSuS

V
m

CFLt
1

222 )(
)( βα  (14) 

In this formula, iβ  is the quality factor of grid 
cell i. For tetrahedral cells, the range of iβ  is 
from 0.0 to 1.0 according to the definition of 
Ref.9. Tetrahedral cells with quality factor near 
1.0 are nearly equilateral while those tetrahedral 
cells with low quality factor look like thin slices. 
For the other two types of cells, iβ  is the ratio 
of the shortest edge length to the longest edge 
length of grid cell i. α  is an empirically-chosen 
coefficient, its recommended value is a number 
between 0.3 and 0.5. 

2.5 Turbulence model    
For the current study, closure of the Reynolds 
stress is provided by Spalart-Allmaras one-
equation turbulence model. This model is based 
on a transport equation written for a variable υ̂  
linked to the eddy viscosity by: 

1ˆ vT fυρµ = ;
3
1
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the transport equation related to the dependent 
variable υ̂  is written as  
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The above equation is solved by using the cell-
centered finite-volume spatial discretization and 
backward-Euler time-stepping-scheme. 

3 Results  

Three test cases are presented in this 
section to show the practicability, accuracy and 
robustness of the mixed element type 
unstructured grid generation and the viscous 
flow simulation method. During the grid 
generation process, uniform first layer spacing 

5
0 100.2 −×=δ  is prescribed, and the factors 

21, rr  are set to 0.1 and 0.15.   

3.1 ONERA M6 Wing  
For the ONERA M6 wing configuration, 

the viscous flow simulation is performed at the 
flow condition of Re＝1.17×107, M∞=0.84,  α＝
5.06˚, which represent a high-Reynolds-number, 
transonic, separated flow condition. The surface 
grid on solid and symmetry boundary is shown 
in Fig 3. Fig 4 shows the velocity profile of 
boundary layer on the symmetry surface. 
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Fig.3. The solid and symmetry boundary surface grid 
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Fig.4. Velocity profile of boundary layer on the 

 symmetry surface 
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In Fig. 5 shows the chord-wise Cp 

distribution at η=0.80 and η=0.90 chord stations. 
By comparing the Cp distribution in Fig.5 with 
the experimental data, we can easily draw the 
conclusion that the viscous flow solver of this 
paper has good ability for simulating the shock 
induced separation on the outboard portion of 
the wing. 

 

 

 
Fig. 5. The chord-wise Cp distribution of M6 wing 

3.2 DLR-F6 wing-body and DLR-F6 wing-
body-pylon-nacelle configuration 

For the DLR-F6 wing-body and DLR-F6 
wing-body-pylon-nacelle configuration, the 
viscous flow simulation is performed at the flow 
condition of Re＝3.0×106，M∞=0.75，α＝1.0˚. 
The surface grid on solid and symmetry 
boundary is shown in Fig. 6 and Fig. 7. Fig.8 
present the surface pressure coefficient Cp 
distribution of the above two wing-body 
configurations at the pylon inboard (η=0.331) 
and outboard (η=0.377) chord-wise stations. In 
Fig. 8, we can find that the pylon and nacelle 

have severe influence on the pressure 
distribution of wing, which will result in a lift 
loss accompanying with the increasing of drag.  
The computed results agree well with the 
experimental data, this shows that the method of 
this paper has excellent accuracy in predicting 
the aerodynamic influence of the pylon and 
nacelle. In Fig. 9, the comparison of the 
calculated streamlines at the wing-body junction 
with the experimental oil flow is presented. This 
figure clearly indicates that the bubble area at 
the tailing edge of wing-body junction can be 
well simulated. 
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Fig. 6. Surface grid on solid and symmetry boundary of 
DLR-F6 wing-body configuration 
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Fig. 7. Surface grid on solid and symmetry boundary of 
DLR-F6 wing-body-pylon-nacelle configuration 
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Fig. 8. The chord-wise Cp distribution of DLR-F6 wing-

body and DLR-F6 wing-body-pylon-nacelle configuration 
 

 

 
 

Fig. 9. Comparison of the calculated streamlines (bubble 
area) at the wing-body junction with the experimental oil flow 

  

3.3 A business jet  
Finally, as an example of application, the 
developed method has been used to compute the 
transonic flow around a business jet 
configuration. The boundary grid used in the 
computation is shown in Fig. 10. The 
computation is performed at a Mach number of 
0.8, a Reynolds number of 3 million, and an 
angle of attack of 1.8˚. The computed pressure 
coefficient contours on the surface of the 
business jet and symmetry boundary are 
displayed in Fig. 11. In Fig. 11, we can find that 
the postpositive engine has significant influence 
about the distribution of the pressure on the up-
wing and after-body surface.   
 

 
 

Fig. 10. Boundary grid of business jet configuration 
 

 
 
Fig. 11. Pressure coefficient contours on the surface of the 

business jet and symmetry boundary 
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4 Conclusions 
A method for the mixed element type 

unstructured viscous grid generation has been 
introduced. Three-dimensional Navier-Stokes 
equations are solved by using a cell-centered 
finite-volume method with AUSM+_up scheme 
and Spalart-Allmaras one-equation turbulence 
model. Time is advanced by an implicit Gauss-
Seidel relaxation procedure which is constructed 
by using the first-order linearizing of flux vector 
and the maximal eigenvalue splitting of flux 
Jacobian matrix. A new local time stepping 
method was developed to eliminate the adverse 
influence of some poor-quality grids on solve 
stability and convergence speed. The simulation 
of three typical viscous flow problems show that 
the grid generation and numerical solution 
method has the merits of practicability, accuracy 
and robustness, so it is particularly useful in 
handling viscous flow problems around 
complex configurations with unstructured grid 
methodology. 
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