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1  Introduction 
One of the important aspects of future Air 
Traffic Management (ATM) scenarios [1], is to 
increase capacity without reducing safety [2]. 
This requires consideration of smaller 
separations [3], together with measures ensuring 
that the risk of collision is reduced and the need 
for collision avoidance maneuvers [4] is not 
increased. The methods of calculation of 
probability of collision have been developed in 
considerable detail [5,6,7], involving both 
collection [8,9,10] and analysis [11,12,13] of 
traffic data. A good example is the Reduced 
Vertical Separation Minima (RVSM), halving 
the vertical separation in controlled air space 
from 2000ft to 1000ft, based on a careful study 
of collision probabilities [14]. The latter was 
based on flight data on aircraft altitude 
deviations fitted by appropriate probability 
distributions [15-23], generally non-gaussian 
[24-26]. For the purpose of establishing a safety 
metric, the probability of collision is the most 
obvious choice, but it is not only one. Other 
related parameters may be used as safety 
metrics [27], which may be advantageous if 
they are easier to measure. 

2  Safety requirements for aircraft collision 
avoidance  
To each aircraft may be associated a “safety 
volume”, so that a collision between aircraft 
occurs when their safety volumes first touch. 
Thus the probability of collision depends on the 
intended flight paths of the aircraft, and the 
deviations from them, which could lead to their 
safety volumes overlapping. A simple 
approximation to the safety volume of an 
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aircraft is a rectangle with sides equal to the 
length Rx, span Ry and height Rz of the aircraft. 
The exact safety volume would depend on the 
shape of the aircraft and its angular position 
(heading and bank angle) relative to other 
aircraft; the rectangular safety volume is a 
simple approximation, which overestimates 
slightly the collision risk. The collision rate 
between two aircraft is given by the probability 
that its safety volume be penetrated on any side 
[5], viz.: 

yzxxzyzyxr NPPNPPNPPP ��� ,   (1) 

where the � �zyx PPP ,,  are the probabilities of 
separations of less than � �zyx RRR ,,  respectively 
along track, across track and in altitude, and 
� �zyx NNN ,,  the frequency with these separation 
reduce to less than � �zy RR ,xR , . The frequencies 
of penetration � �zNyx NN , ,  are the probabilities 
of deviation � �zyx PPP ,,  divided by the time 
periods � �zy tt ,,xt  when the deviations exceed 
� �zyx RRR ,, , viz.: 

zyxi ,,� :     ,       (2) iii tPN /�
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In order to obtain a collision rate per 
aircraft pair this must be summed over the 
safety volume of the aircraft: 

  .  (4) � �zyxPdzdydxP r
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Note that the probabilities of deviation 
� �zyx PPP ,,  have the dimensions of inverse of 
length L-1, the frequency of penetration 
� �zyx NNN ,,  has dimensions of inverse of 
length and time L-1T-1, the collision rate (3) has 
dimensions L-3T-1, and the collision probability 
(4) has the dimensions of the inverse time T-1, 

and thus can be compared directly to the ICAO 
Target Level of Safety (TLS) standard. 

If the collision rate (3) varies slowly over 
the aircraft size, the collision rate per aircraft 
pair (4) simplifies to: 
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The frequency of penetration is [5] 
approximately 

iiii RVPN 2/ � ,   (6) 

where iV  is the average rate of change of 
relative position between aircraft, and relates to 
the time spent at separation larger than  by 
(2) viz.: 

iR

iii VRt  /2� .    (7) 

Substituting (7) in (5) yields for the 
collision rate per aircraft pair is given by: 
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The collision probability is the collision 
rate per pair multiplied by the time the aircraft 
spend in close proximity 

��

prox
aac TPP ,    (9) 

summed for all cases where aircraft fly by each 
other. This sum is dimensionless and will 
depend on the ATM scenario, viz. the geometry 
of flight paths and traffic flows along them. 
There general formulas will be illustrated in 
same simple cases in the sequel.  

3  Use of general probability distributions 
and statistics 
Consider next two aircraft flying on parallel 
paths at a constant distance L equal to the 
minimum separation distance. In this collision 
scenario, the aircraft can at all times drift into 
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positions less than a minimum separation 
distance apart. The minimum separation 
distance is in general smaller in the vertical 
direction than in the lateral or longitudinal 
direction; a similar analysis would apply to 
aircraft on the same flight path with a given 
longitudinal separation. In general, it will be 
assumed that along track, across track and 
altitude errors are statistically independent. 
Thus the three-dimensional collision problem is 
decoupled into three one-dimensional collision 
problems. Each may have different parameters, 
e.g. separation distances but the basic analysis is 
the same.  

A convenient assumption would be that the 
position error satisfies Gaussian statistics for 
both aircraft. Note that the central limit theorem 
of the theory of probability [25] indicates that a 
long sequence N of statistically independent 
events, in this case position errors, tends to a 
Gaussian distribution, with an accuracy of order 

N/1 , if the Lindeberg condition [26] it met, 
that events with large separation make a small 
contribution to the total variance. These two 
conditions, viz. (i) Lindeberg and (ii) large 
number of events can be questioned: aircraft 
collisions are extremely rare events, involving 
large deviations from the mean. Thus the 
number of statistically independent events may 
not be enough to justify a law of large numbers. 
Also, collisions correspond to the “tails” of the 
probability distribution, i.e. the large deviations, 
which the Lindeberg condition assumes to make 
a small contribution to the variance. The 
theoretical counter-arguments to the Gaussian 
distribution seem to be supported by 
observations of navigation errors [14], which 
suggest [15-23] that some form of generalized 
exponential distribution could be more 
appropriate. In order to assess the sensivity of 
results to the assumed probability distribution, 
the Gaussian is considered first, then the 
Laplace (§4.3), and then an exponential 
parametric family including both is considered 
(§7). Starting with the Gaussian case, the 
probability of the first aircraft having a lateral 
position error x is: 
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xxP             (10) 

where  is the r.m.s. position error. �

4 Maximum and cumulative probabilities of 
coincidence or overlap 
The highest probability of coincidence is not the 
only relevant result, because coincidences can 
also occur for other positions , even if 
they are less likely; in fact, the probability of 
coincidence decays rapidly for x greater than L, 
but remains close to the maximum for x close to 
L/2. One way to address this aspect is to 
consider the total of cumulative probability of 
coincidence, summed or integrated over all 
possible positions transverse to the flight paths 
and in the same plane, viz.: 

2/Lx �

� � ,12�
��

��

� dxxPP             (11) 

which is specified by: 
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and thus depends only on separation distance L 
and r.m.s. position error � . A change of 
variable and the well-known Gaussian integral, 
leads to: 
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namely, the cumulative probability of 
coincidence P  as a function of separation 
distance L and r.m.s. position error  due to all 
causes. For a fixed separation distance L, it is 
possible to use as safety metric, instead of the 
cumulative probability of coincidence 

�

P , the 
r.m.s. position error . �

There are both theoretical and 
observational [14,24] counter-arguments to the 
use of a Gaussian probability distribution for 
position errors, and a Laplace distributions has 
been used [5-7] instead: 
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where  is again the r.m.s. position error.  �
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5 Application to separation in controlled and 
uncontrolled airspace 
The difference between the Gaussian and 
Laplace distributions will become apparent in 
the application vertical (§5.2) separation and 
horizontal separation in controlled (§5.1) and 
uncontrolled (§5.3) airspace. 

5.1 Application to lateral separation in 
controlled airspace 
Gaussian cumulative probability of coincidence 
(13) is most convenient use in logarithmic form: 

� �� � ,log
2
12loglog2/log 2

�������� LP (15) 

where the constant values can be inserted: 
� � .2655.1log/25.0log 2

������ LP   (16) 

Taking  nm for the separation 
distance specified by ICAO in controlled 
airspace leads to 

5�hL

,2655.1log/25.6log 2
������ hhhP   (17) 

as the relation between cumulative probability 
of coincidence hP  and r.m.s. position error  
in Table I. It seen from the table that large r.m.s. 
horizontal position errors �  of 2 to 3 nm, still 
bellow the minimum separation distance 

nm, give high cumulative probabilities of 
coincidence. A smaller r.m.s. position error of 
the order 0.7 to 1 nm would lead to lower 
probabilities of coincidence (10 ), 
which could be tested in simulations; the aim of 
these simulations would be to check that the 
formula (17) for  the cumulative probability of 
coincidence. 

h�

6�

h

5�hL

4 10to�

 
 
Table I- Assuming the ICAO standard horizontal separation nm in controlled air space, the r.m.s. horizontal 
position error  due to all causes can be used as an alternative safety metric to the (17) cumulative probability of 
coincidence 

5�hL

h�

hP  or the (19) maximum probability of coincidence  using Gaussian statistics, compared with Laplace 

statistics for (23) the cumulative joint probability 
mhP

hP~  and (21) the exponential fhP~  factor in it. 
 

 
 

 

Probability 
Distribution Gaussian Laplace 

r.m.s. position 
error 

Cumulative 
probability of 
coincidence 

Maximum probability 
of coincidence Exponential factor Cumulative joint 

probability 

h�   
(nautical miles) 

hP  
(per-nautical mile) 

mhP  
(per-square nautical 

mile) 

 

fhP~  
(per nautical mile) 

 

hP~  
(per nautical mile) 

3 4.70x10-2 8.83x10-3 4.46x10-2 6.92x10-4 

2 2.96x10-2 8.34x10-3 2.06x10-2 4.79x10-4 

1 5.45x10-4 3.07x10-4 1.20x10-3 5.58x10-5 

0.7 1.16x10-6 9.38x10-7 8.29x10-5 5.51x10-6 

0.6 1.36x10-8 1.28x10-8 1.80x10-5 1.40x10-6 

0.5 7.83x10-12 8.84x10-12 2.04x10-6 1.90x10-7 
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The main use of the formula (17) is for smaller 
r.m.s. position errors, as it shows that a value of 

nm leads to a cumulative probability of 
coincidence of less than 

5.0��

121083.7 �

��hP  per 
nautical mile; for an aircraft cruising at a speed 
not exceeding V kt, this leads to a 
cumulative probability of collision 

600�

9107. �

�4�VPh  per hour, which meets the 
ICAO requirement of less than 5x109 in the 
conditions for which (18) holds. Specifying a 
larger r.m.s. position error quickly increases 
probability of collision, e.g. to 81036.1 �

��hP  
for nm. A smaller r.m.s. position error 
does decrease coincidence probability to minute 
levels, e.g.  

6.0��h

31�1051.6 ��

h

hP

5.0��h

h nmL ��� 105

 for nm, 
but this places an unnecessarily severe demand 
in position accuracy, which could be costly to 
meet in terms of aircraft on-board equipment 
and hard to comply with by the ground based 
ATM system. The r.m.s. position error 

nm of one-tenth the separation distance 
, is a fairly robust result as 

concerns meeting the ICAO target safety level 
(TLS), since: (i) a larger r.m.s. position error 
will rapidly increase the cumulative probability 
of coincidence to unacceptable levels; (ii) a 
smaller r.m.s. position error does reduce the 
cumulative probability of coincidence, but is 
unnecessary. 

3.0��

The ICAO target level of safety (TLS) of 
low probability of collision (5x10-9 per hour) 
can be obtained, with a five nautical mile 
minimum separation distance , by 
requiring a  nm r.m.s. position error; 
the latter leads to a cumulative probability of 
coincidence not exceeding 

nmLh 5�

5.0��h

121083.7 �

��hP  per 
nautical mile flown, or 71069. �

�1�DPh  for a 
nm flight around the 

earth on a great circle. This low upper bound for 
the cumulative probability of coincidence makes 
it unnecessary to demand a higher r.m.s. 
position accuracy. To degrade the r.m.s. 
position accuracy would quickly lead to much 
higher probabilities of coincidence. The safety 
standard of 0.5 nm r.m.s. position error should 

include all causes for position error, e.g. 
inaccuracy of the navigation system, effects of 
atmospheric disturbances, trajectory drift 
between updates of position fixes, etc.. The 0.5 
nm r.m.s. position error is easy to use as a safety 
metric in simulations: it just requires calculation 
of the r.m.s. deviation from the desired flight 
path. The preceding discussion has been based 
on the Gaussian cumulative probability of 
coincidence (17) per nautical mile flown by one 
aircraft. It also possible to use the Gaussian 
maximum probability of coincidence (36) per 
square nautical mile, i.e. per nautical mile flown 
by each aircraft: 

21587�km40000�D

� � � �� �22 /25.0exp/1592.0 ���� LPm ,   (18) 
or for five nautical mile minimum separation 
distance 

� � � �./25.6exp/1592.0 22
hhmhP ����        (19) 

The Table I also includes in the fourth 
column the factor in the exponential joint 
probability (51) which is independent of aircraft 
size: 

��

�
��

�

�
�

�
	

LPf 4142.1exp4142.1~ ,          (20) 

in the case of five nautical mile lateral 
separation: 

� ��

�

� /0711.7exp4142.1~
fhP �

�

.             (21) 

The aircraft size appears in the exponential 
joint probability (51): 

� �� /4142.1sinh~~ RPP f ,             (22) 
indicated in the fifth column of Table I for an 
aircraft span ft nm: 200�yR 21029.3 �

��

~ � ����
� /106525.4sinh~ 2

fhh PP .          (23) 

5.2 Application to reduced vertical 
separation minima 
The values indicated in Table I are calculated 
from (17), (19), (21) and (23), and apply to a 
five nautical mile minimum horizontal 
separation distance in controlled airspace; the 
formulas (16),(18), (20) and (22) could also be 
applied to other minimum separation distances, 
e.g. to the vertical instead of the horizontal 
separation distance. The horizontal separation 
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distance nm used in (56,58,60,62) is that 
which applies to flight in controlled air space, 
for which the vertical separation 
is ft nm at lower flight levels 
(below FL 290); the same vertical separation 
distance is being applied for higher flight levels 
[14] where the earlier value of 2000 ft is being 
replaced by the RVSM of 

ft nm. Using this value in 
(16) specifies the cumulative probability of 
coincidence due to error in vertical position : 

5�hL

1000 �

.0�

�vL

1000�v

1645.0

1645L

v�

,2655.1log/107631.6log 23
�������

�

vvvP

100��

(2
4)which is indicated in Table II.  For a vertical 
separation error of ft, the cumulative 
probability of coincidence does not exceed 

101038.2 �

��vP
61014.5 �

��DPv

 per nautical mile or 
 for a great circle tour of the 

earth. The recommended r.m.s. error for vertical 

separation is smaller , i.e. about one-
eleventh of the minimum vertical separation 

, i.e. . Note that the 
recommended r.m.s. horizontal position error 

, was one-tenth �  of the 
minimum horizontal separation . The 
reason for a smaller relative value here is that a 
r.m.s. vertical position error �  leads to 
an upper bound for the cumulative probability 
of coincidence 

ftv 90��

09.0/ �vL

/h

v

ftLv 1000�

nmh 5.0��

�v

�

1.0�hL
nmLh 5�

ft90

131051.7 ��
�

vP per nautical 
mile; for the fastest commercial aircraft 
(Concorde), which cruises at a speed of 

kt, the cumulative probability of 
collision, does not exceed 

1166�V
1010�76.8�V �Pv  

per hour which meets the ICAO TLS standard 
of less than 5x10-9 per hour, in the condition for 
which (18) holds. 

 
 
Table II- The cumulative vP

vP

 (24) and maximum  (25) probabilities of coincidence for Gaussian statistics and 

cumulative joint probability 
mvP

~  (27) and its exponential factor fvP~  (26) can be similarly related to the r.m.s. altitude error 

, for the fixed vertical minimum separation , applying in controlled and uncontrolled air space, at lower 
flight level at present (and higher flight levels in the future). 

v� ftLv � 1000

 
Probability 
Distribution Gaussian Laplace 

Vertical 
separation error 

Cumulative 
probability of 
coincidence 

Maximum probability 
of coincidence Exponential factor Cumulative joint 

probability 

v�   
(ft) 

vP  
(per-nautical mile) 

mvP  
(per-square nautical 

mile) 

 

fvP~  
(per nautical mile) 

 

vP~  
(per nautical mile) 

100 2.38x10-10 8.17x10-9 6.20x10-5 4.76x10-5 

90 7.51x10-13 2.86x10-11 1.43x10-5 1.24x10-5 

80 2.33x10-16 9.97x10-15 2.26x10-6 2.27x10-6 

70 1.70x10-21 8.35x10-20 2.07x10-7 2.47x10-7 

60 1.98x10-29 1.13x10-27 8.32x10-9 1.22x10-8 

50 1.28x10-42 8.75x10-41 8.95x10-11 1.73x10-10 
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The Gaussian maximum probability of 

coincidence per square mile (18), can also be 
calculated for the  reduced vertical separation 
minima of nm: 1645.01000 �� ftLv

 � � � �,/107631.6exp/1592.0 232
vvmvP �����

� (25) 
and is also indicated in Table II. For the 
recommended r.m.s. vertical position error of 

, the maximum probability of 
coincidence is  per nautical mile 
flown by each aircraft, or  
for a great circle tour of the earth suggesting 
that a smaller r.m.s. position error be 
considered. For two aircraft with a cruise speed 
not exceeding V , the maximum 
probability of coincidence  per 
square nautical mile, for a  vertical 
r.m.s. position error, leads to an upper bound for 
the maximum probability of coincidence of 

 per flight hour squared, 
below to the ICAO modified TLS value of  

per hour squared. 

ftv 90��

2 .2�VPmv

9105 �

�

1110.2 �

��mvP
P

kt547�

mvP

910�

22 1033.1 �

��Dmv

151097.9 �

��

ftv 80��

98�

 The Laplace exponential factor (20) for 
the same vertical separation is given: 

��

�
��

�

�
�

�
	

2326.0exp4142.1~
fvP ,             (26) 

per nautical mile, not affected by aircraft size; 
the values in Table II show that the Gaussian 
cumulative probability of coincidence is much 
smaller than for the Laplace exponential factor. 
The aircraft size enters through the factor (22) in 
the cumulative joint probability: 

� ����
� /102245.8sinh~~ 3

fvv PP ,             (27) 
where the aircraft size was taken to be the 
height ft m� nm.  50�zR 2.15�

3102245.8 �

�

6 Three-dimensional separation with 
Gaussian or Laplacian statistics 
The preceding analysis of one-dimensional 
separation, can be combined for two and three-
dimensional separation, for example, for aircraft 
staggered along parallel tracks. Consider: (i) a 

nm lateral separation in transoceanic 

airspace, with  r.m.s. position error, 
leading by Table III  to a Gaussian cumulative 
probability of coincidence  
(Laplace joint cumulative probability 

) per nautical mile; (ii) a  
along track stagger, with a  
longitudinal position error, leading by Table I to 
a Gaussian cumulative probability of 
coincidence (Laplace joint 
cumulative probability 1 ) per nautical 
mile. Then the combined two-dimensional 
probability of coincidence is 

(1 ) per nautical 
mile squared. If there is an altitude 
difference  and vertical r.m.s. 
position error , the Table II, gives the 
corresponding Gaussian cumulative probability 
of coincidence (Laplace joint 
cumulative probability 1 )  per nautical 
mile; hence, the combined three-dimensional 
probability of collision is 

( ) per 
nautical mile cubed. This shows that stagger and 
altitude difference combined with lateral 
separation lead to very low probabilities of 
coincidence. Taking for the aircraft “size” the 
span , the 

length ft=45.7m= nm and 
height ft m nm, the 
aircraft volume is  

(nm)

60�yL

nmy  5��

16.1 ��xP
.

23� 58. �

ft1000
ftz 90��

51.7�zP
.

351014. �

�

mft 8.60 ��

0 2.15�

171031.1 �

��yP

nmLx  5�

nmx  7.0��

6�

13

5�

2110�

�

nm210�

�

210�

�

31022 �

�

�� zyx RRRR3

101013.1 �

�

52.1�yx PP

L

3 � zyx PPPP

Ry �

�xR

zR

61068.6 �

�

610�

1040�

1610�

10�

�

1024�

25.2

29.3

47.2
.8�

10�

z �

1�

200

150
5�

3, and the Gaussian (Laplace) 
cumulative probability of overlap 

4110�

� .33 �� RPP 62.7 (1 ) is 
dimensionless. It has been assumed that the 
aircraft remain always at the minimum 
separation distance, but if this happened say 
only a fraction 40% of the time , the 
probability of collision would be further 
reduced to 

26�

4.0�f

1050�

41 .1004.3 �

��Pf ( 6 ). 271000 �

�
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7 The generalized exponential family of 
probability distributions 
The Gaussian (10) and Laplace (14) probability 
distributions are respectively the particular cases 
k=2 and k=1 of the generalized probability 
distribution: 

� � � �k
k xaAxF �� exp ,             (28) 

where A, a are two constants, viz.: (§7.1) the 
normalization constant A is determined by the 
condition of unit total probability, leads to the 
family of probability distributions: 
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k
xF

2/

/1
/3exp

/1
/3

/11
1

2
1

,          (29) 

as the generalized exponential distribution with 
mean  and variance � . The more interesting 
instances of the new family of probability 
distributions (83), for ATM applications, should 
be 1 and . 

�

k

2

1�2�� 0 � k
In Figure 1 the distributions of large altitude 
errors in real flight [14] is shown to be 
consistent with the extended exponential 
probability distribution (83) with k=0.5, viz.  
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is a simple and relatively accurate probability 
distribution for position errors. 
 
 

 
 
Table III- For flight in transoceanic regions the minimum horizontal separation is , and the r.m.s. horizontal 
position error �  specifies the cumulative  (67) and maximum  (68) probabilities of coincidence for Gaussian 

statistics, and the cumulative joint probability 

nmLt 60�

t tP

tP
mtP

~  (70) and its exponential  factor ftP~  (69) using Laplace statistics. 
 

Probability 
Distribution Gaussian Laplace 

Vertical 
separation error 

Cumulative 
probability of 
coincidence 

Maximum probability 
of coincidence Exponential factor Cumulative joint 

probability 

t�  
(nautical miles) 

tP  
(per nautical mile) 

mtP  
(per square nautical 

mile) 

 

ftP~  
(per-square nautical 

mile) 

 

tP~  
(per-square nautical 

mile) 

10 3.48x10-6 1.96x10-6 2.92x10-5 1.36x10-7 

9 4.68x10-7 2.94x10-8 1.27x10-5 6.56x10-8 

8 2.75x10-8 1.94x10-9 4.38x10-6 2.55x10-8 

7 4.25x10-10 3.43x10-11 1.10x10-6 7.31x10-9 

6 6.53x10-13 6.14x10-14 1.70x10-7 1.32x10-9 

5 1.31x10-17 1.48x10-18 1.21x10-8 1.13x10-10 
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Figure1 The exponential probability distribution (29) 
with weight  close to one-half (30) approximates 
the altitude deviations measured [14] for aircraft in flight.  

53.0�k

8 Discussion 
It has been pointed out [5,6,7] that the Laplace 
distribution k=1 underestimates the “tails” of the 
probability distribution, and the uniform 
distribution k=0 overestimates, so that a more 
accurate assessment of collision risk lies 
somewhere in between. The value k=0.5 is 
consistent with these observations, and arises 
out a comparison with altitude deviations of 
aircraft measured from flight data [14]. This 
data has been closely fitted [15-23] using double 
exponential or Gaussian probability 
distributions, with five  parameters, allowing a 
close match both to the “body” and “tails” of the 
probability distribution. The choice of a 
generalized exponential distribution with weight 
k=0.5 is much simpler, in that it involves a 
single parameter (besides the mean), viz. the 
r.m.s. deviation � , which is readily estimated 
from the data. Given the various sources of error 
involved in estimation of collision risk, this 
simple one-parameter probability distribution 
may do nearly as well as more complex multi-
parameter models. 

The probability distribution for large rare 
deviations is the key input is assessing collision 
risk. The actual calculation, for a simple or 
complex ATM scenario, involves several other 
probabilities, all related to the probability of 
deviation of a single aircraft from its flight path. 
The difference between simple and complex 
ATM scenarios depend on the number of 

aircraft involved and their relative paths, which 
determine how many proximities have to be 
considered; the calculations become more 
complex for higher traffic densities and 
crossings from many different directions. Based 
on the (i) probability of deviation from the flight 
path of a single aircraft, the calculation of 
collision rates or assessment of collision risks, 
involves several others probabilities which 
could serve as intermediate safety metrics; (ii) 
the probability of coincidence of two aircraft at 
the same position; (iii) the maximum probability 
of coincidence, at the most likely position of 
coincidence; (iv) the cumulative probability of 
coincidence, at all possible positions; (v) the 
probability of overlap, taking into account finite 
aircraft size. These can be used to calculate (vi) 
collision rates, which can be compared to the 
ICAO TLS standard per unit time or (vii) per 
unit distance. The dimensionless (viii) collision 
probability for a given traffic system over a 
given time is the final safety metric, which 
depends on many parameters, since most of the 
preceding are used as building blocks. 
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