Human cognition performance model based evaluation of safe spacing in air traffic

Henk A.P. Blom, Sybert H. Stroeve, Mariken H.C. Everdij, Marco N.J. van der Park

National Aerospace Laboratory NLR PO Box 90502, 1006 BM Amsterdam, The Netherlands **E-mail:** *blom@nlr.nl, stroeve@nlr.nl, everdij@nlr.nl, park@nlr.nl*

Keywords: accident risk, human cognition model, safe spacing, air traffic management

Abstract

This paper develops a mathematical model for cognitive performance of a tactical air traffic controller in an en-route air traffic context. The aim of this model-based approach is to enable the evaluation of both accident risk and aspects like cognitive workload and effectiveness in managing air traffic safely. Use is made of human error modelling, Hollnagel's cognitive mode model and Wickens Multiple Resources model. The paper describes how these psychological sub-models are combined into a single model of controller cognitive performance, and how the interaction of these human sub-models with the technical sub-systems is brought into account. The approach is applied to evaluate safe spacings for a conventional air traffic control example. The evaluation includes a bias and uncertainty assessment, and a safety criticality analysis.

1 Introduction

1.1 Safety based air traffic management design

Over decades, the aviation industry has been able to compensate the increase in traffic with a decrease in accident risk per flight hour. In view of the rapid growth of air traffic and the technological and organizational complexity of it, this has been a major accomplishment. Unfortunately, the point has been reached where it is unclear how to continue such compensation. The reason is that in the past the decrease in risk per flight hour has come in large part from technology driven improvements of safety. The effect of this technology-driven approach is shown through the accident statistics; they reveal that the relative share of human related causes is some eighty percent. This means that the historical air traffic safety compensation process can be continued if one learns to understand how the human and procedure related accidents could be reduced. This should be accomplished by learning the principles behind human related accident causes in aviation.

If we would try to understand these principles on the basis of an evaluation of incidents and accidents alone, then several difficulties arise. The number of incidents and accidents is limited, while the situations that caused them are quite complex (e.g. [1]). Moreover a retrospective learning approach does not work for advanced air traffic management concepts. By now there is a broad consensus that appropriate prospective safety models are needed to assess accident risk in relation to separation criteria and near-misses [2] with the aim to optimize advanced air traffic operations [3], [4], [5].

1.2 Air traffic safety modelling

In air traffic there are various human operators: a pilot crew in each aircraft and per ground sector air traffic controllers, who all have an active role in maintaining air traffic safety. In comparison with other safety critical operations the safety control of air traffic is by its very nature highly distributed. This is depicted in Figure 1. Because of the distributed control nature of air traffic, established techniques fall short in performing accident risk assessment. In [6] this problem has been addressed with the development of a stochastic analysis based methodology that takes an integral approach towards accident risk assessment for air traffic. It has also been studied how this approach effectively supports safety management and the building of modern Safety Cases for advanced operations in air traffic [7].

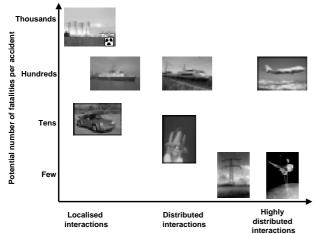


Figure 1: Potential fatalities and level of distributed interactions of air traffic and other safety critical activities.

1.3 Human performance modelling

A crucial issue in air traffic safety evaluation is how the human factor is incorporated into the risk model. Hence there is a clear need for a modelling approach to assess and understand accident risk in relation to the performance of the human operators involved. This means that appropriate human performance models are required that describe human cognitive and responsibility principles up to the level of accident risk. This paper aims to present the developments of such a human cognition performance model for a tactical controller within the context of conventional en-route Air Traffic Control (ATC). This development is based on the following three complementary psychological models:

- Multiple Resources Model [8]
- Human Error Modelling (e.g. [9])
- Contextual Control Mode Model [10]

The first two of these three psychological models are well known in aviation (e.g., [11], [12], [13], [14]). Novel is the development of Hollnagel's control mode model for controller cognitive performance and air traffic safety.

At present, the view on human reliability has shifted from a context-free error centred approach, in which unreliability is modeled as failures of human information processing, towards a contextual perspective in which human actions are the product of human internal states, strategies and the environment [15], [10], [16]. From this viewpoint, safety critical human actions should be modelled in their relation to the other activities of the operator and the environment. Thus for a proper description of human reliability it is necessary to include the cognitive processes that underlie the operator actions. As a result, one obtains a comprehensive model of the operator performing his job.

1.4 Organisation of this paper

The paper is organised as follows. Section 2 provides the background of psychological models used to model an air traffic controller. Next, in Section 3 this mathematical model is integrated with the other air traffic systems. In Section 4, this integrated model is used to assess an operational concept on controller performance and accident risk. Next, in Section 5, a bias and uncertainty assessment is performed. Finally, in Section 6 we discuss the results obtained.

2 Psychological modelling

The aim of this section is to show how the complementary psychological models are used to develop a mathematical model of a tactical controller performing his job at a high (cognitive) level in an en-route ATC environment.

2.1 Decomposition of controller task

The idea is to decompose the controller's task into several subtasks. This decomposition has been carried out along two dimensions: first a *generic dimension*, where the task is decomposed into cognitive activities at a general level which is independent from the scenario and operational concept. Secondly, the task is decomposed according to a *scenario/concept specific dimension*, where the controller task is described at the level of operational functions in the scenario.

A task decomposition along the generic dimension originates in [17]. Subsequently, in [18] this was merged with other task analyses [19], [20], [21], [22]. The following subtasks resulted:

- 1. <u>Sensing</u> (to gather all information which is needed to get an overview over the air traffic situation).
- 2. <u>Integration</u> (to connect the gathered information thus forming a more global air traffic picture).
- 3. <u>Prediction</u> (to use the more global picture to anticipate future situations and events).
- 4. <u>Complementary communication</u> (pass the information to aircraft in order to improve the pilots understanding of the situation).

- 5. <u>ATC problem solving planning</u> (to use the understanding gained from the more global perspective to plan and prioritise aircraft actions).
- 6. <u>Executive action</u> (to communicate information and priorities as instructions to the aircraft in the system).
- 7. <u>Rule monitoring</u> (to ensure that the active components of the system behave in accordance with the 'rules'; monitoring and taking corrective actions for exceptions).
- 8. <u>Co-ordination</u> (to coordinate laterally with other parts of the ATC organisation).
- 9. <u>Over-all performance</u> (to ensure that the objectives of the operation are achieved, and that the infrastructure functions correctly).
- 10. <u>Maintenance and monitoring of non-human part</u> (to ensure that all systems supporting the controller work correctly).

Secondly, subtasks are also defined along the enroute ATC specific dimensions, where attention is focused on safety critical actions in the definition of the subtasks. This leads to the identification of three en-route context specific tasks:

- A. Anticipate for aircraft deviating from intentions.
- B. React to Automation alerts.
- C. Perform other control activities.

Next, we identified the task overlap *across* the dimensions in Table 1. This leads to 19 combinations across the dimensions, and thus a decomposition into 19 combined controller subtasks.

Table 1: Task overlap across the generic cognitive activities and the en-route ATC specific tasks.

	A. Anticipate	B. Alerts	C. Others
1. Sensing	Х		Х
2. Integration	Х		Х
3. Prediction	Х		Х
4. Complementary communication			Х
5. Problem solving /planning	Х	Х	Х
6. Executive action	Х	Х	Х
7. Rule monitoring	Х	Х	Х
8. Coordination			Х
9. Overall			Х
performance			
10. Maintenance			Х

2.2 Hollnagel's control modes

Hollnagel [10] developed an approach that is complementary to task modelling. It focuses on different control modes of the human operator's cognition, which reflect different control strategies in operator behaviour.

The specific four control modes that are described by Hollnagel [10] characterise in more detail regions of the continuum of control and can be specified as follows:

- **Scrambled** Scrambled control denotes the case where the choice of the next action is completely unpredictable or random. The scrambled control mode includes the extreme situation of zero control.
- **Opportunistic** Opportunistic control corresponds to the case when the next action is chosen from the current context alone, and mainly based on salient features rather than on more durable intentions or goals. It is opportunistic in the sense that the operator takes a chance, not because he is deliberately exploring an alternative, but because there is no time or possibility to do anything better.
- **Tactical** Tactical control is characteristic for situations where the operator's performance is based on some kind of planning. Hence, the operator more or less follows a known procedure or rule. The planning is limited of scope and/or limited of range, and the needs taken into account may sometimes be ad hoc.
- **Strategic** Strategic control means that the operator is considering the global context, i.e. using a wider event-horizon and looking ahead at higher level goals: either those which have been suspended and have to be resumed or those which, according to experience and expectations, may appear in the near future. This mode should provide a more efficient and robust performance.

In modelling the influence of the context on performance we incorporate two control modes: tactical control and opportunistic control. Table 2 describes the characteristic influence of these control modes on the performance of the A subtasks. These characterizations appeared to be easily available from air traffic controllers. For the B subtasks a similar characterization applies. For subtasks C it suffices to describe differences in tactical and opportunistic control mode at a general level only [23]. Table 2 illustrates that the quality of performing a subtask may vary significantly with the cognitive control mode of the controller.

Table 2: Control mode characteristics of subtasks related to anticipation.

A 1	Consingu
A1	Sensing:
	<i>Tactical</i> : Whenever possible the controller scans his display
	to detect possible deviations from ATC intentions. The controller partitions the display into regions of interest and
	assesses these regions in a particular order. If scanning is
	interrupted at some time instant, the controller will resume
	scanning starting at the region that he was scanning when
	the interruption took place. Further information may also be
	obtained through R/T communication.
	Opportunistic: Whenever possible the controller scans his
	display to detect possible deviations. The controller scans in
10	a random fashion.
A2	Integration:
	Tactical: The controller systematically integrates the
	information derived from scanning to improve his mental
	picture of the traffic situation. When some relevant
	information is not available, the controller may return to
	sensing to actively seek information to improve his
	assessment of the situation.
	Opportunistic: The controller integrates the randomly
	obtained information. An incomplete or even distorted
	mental picture may develop.
A3	Prediction:
	Tactical: The controller extrapolates his mental picture to
	the future traffic situation. On the basis of the assessment of
	the situation, the controller decides whether a problem may
	occur in the mid-term future.
	Opportunistic: The assessment of the future situation is
	restricted to a short time horizon and is based on
	incomplete information. It is assessed whether a problem
	may be expected in the short-term future.
A5	Problem solving/planning:
	Tactical: On the basis of the assessment of the (future)
	situation, the controller decides a resolution to the expected
	problem. In principle, the resolution involves replanning the
	aircraft trajectories in an optimal fashion with respect to
	safety, efficiency.
	Opportunistic: The resolution is aimed at solving the
	imminent problem only.
A6	Executive action:
	<i>Tactical</i> : The controller gives a series of R/T instructions to
	the aircraft involved. He verifies whether the pilot(s)
	readback these instructions correctly.
	Opportunistic: The verification of correct readback may be
	omitted.
A7	Rule monitoring:
	Tactical: After the R/T communication the controller
	verifies whether the aircraft comply to his clearances.
	Opportunistic: This verification may be omitted or be
	performed less thoroughly.

2.3 Aggregation of subtasks

Next the 19 subtasks are grouped into a smaller number of clusters. The adopted clusters are given in Table 3. The rationale for this clustering is as follows. Subtasks A and B are grouped when they are nominally performed in a sequence (A1-A3), (A5-A7), (B5-B7). Of subtasks C each safety relevant one forms its own cluster, while the others are grouped in the cluster Miscellaneous.

Table 3: Clustering of the subtasks.

Cluster	Initial subtasks
Monitoring _A	A1-A3
Communication _A	A5-A7
Communication _B	B5-B7
Complementary Communication _C	C4
Communication _C	C6
Co-ordination _C	C8
Miscellaneous _C	C1-C3, C5, C7, C9, C10

Next, based on knowledge of Wickens Multiple Resources model for controllers, we identified how task scheduling at the level of clusters of subtasks takes place. First, concurrent performance of the initial subtasks has been used to identify the concurrency for the subtask clusters. This is done conservatively using the principle that if one combination of the clustered subtasks cannot be performed concurrently, then the whole clusters of subtasks cannot be performed concurrently. Application of this principle yields concurrency for two clusters only: Miscellaneous and Monitoring. In a similar fashion, Table 4 for the pre-emption between clusters of subtasks has been identified. First this was done for the initial subtasks and based on knowledge of the Multiple Resources Model for controllers. Subsequently the following rule was applied to use this for the subtask clusters: if any subtask in some cluster A pre-empts all subtasks in some other cluster B, then cluster A pre-empts cluster B. Otherwise, cluster A does not pre-empt B.

Table 4: Pre-emption between clusters.

	Mon _A	Com _A	Com _B	CpC _C	Com _C	Coor _c	Misc _C
Mon _A	-	Ν	n	Ν	n	n	n
Com _A	Com _A	-	n	Com _A	Com _A	Com _A	Com _A
Com _B	Com _B	Com _B	-	Com _B	Com _B	Com _B	Com _B
CpC _c	CpC _c	Ν	n	-	n	n	CpC _C
Com _C	Com _C	Ν	n	Com _C	-	Com _C	Com _C
Coor _c	Coor _C	Ν	n	Coor _c	n	-	Coor _C
Miscc	n	Ν	n	Ν	n	n	-

The pre-emption table should be read as follows. Consider subtasks ComB and ComA in Table 4 at the column corresponding to ComA, we see that ComB pre-empts ComA. Thus if ComA is carried out and ComB is initiated, execution of ComA will stop and ComB will be performed first. In terms of a stack of to-be-performed subtasks this scheduling principle can be formulated generically as the following two rules.

Rule 1:An initiated subtask will be placed in the stack before the subtasks that it may pre-empt.

Rule 2:If the first two subtasks of the stack can be processed concurrently, this will be done (subtask duration will be slightly longer, however).

Following Table 4 the cluster Miscell_C does not preempt any other cluster and is pre-empted by all other clusters, except Monitoring_A. Furthermore, since Monitoring_A and Miscell_C can be performed concurrently, we conclude that performance of the subtasks in the cluster Miscell_C does not conflict with other subtasks at cluster level. Since the cluster Miscell_C itself does not contain subtasks which are directly relevant for safe separation, we can therefore discard this cluster in the model without compromising conservativeness. Altogether Table 4 implies that the remaining pre-emption rules boil down to a fixed priority list where Monitoring_A has lowest and Communication_B has highest priority. At the level of clustered tasks, the complexity of the scheduling principle is reduced significantly, without compromising conservativeness. In summary, we accomplished a reduction from 19 subtasks to 6 clusters of subtasks, the concurrent task performance is simplified into single task performance, and pre-emption rules for each combination of subtasks are simplified into a fixed priority list (see Table 5).

Task	Prio	Description
$Monitoring_A$	6	Visual anticipation and detection of deviations from the controller intention
	2	Communicate clearance with aircraft that was detected visually to deviate severely from controller intention
$Communication_B$	1	Communicate clearance with aircraft for which an Automation alert was issued
Complementary communication _C	5	General complementary communication with pilots
$Communication_C$	3	General communication of executive action (i.e. clearances)
Co-ordination _C	4	General coordination with planner controller, controllers of other sectors.

Table 5: Six main cognitive tasks.

3 Integration with air traffic systems

In this section we illustrate how the controller model developed in Section 2 is integrated with the other elements of an air traffic example.

3.1 Hypothetical ATC example

We consider an hypothetical ATC example within an en-route sector that consists of two streams of air traffic, flying in opposite direction, at a single flight level. This example has been developed by Eurocontrol with the aim to learn understanding how ATC influences accident risk, and how far the nominal spacing S between opposite RNP1 traffic streams can safely be reduced. The specific details of this example are:

- Straight route, with two traffic lanes (Figure 2),
- Air Traffic Controller (ATCo) expects aircraft to stay on these lanes,
- Opposite traffic flows along each lane at one flight level only, with 3.6 aircraft/hour per lane and 15 aircraft per controller,
- All aircraft nominally perform RNP1,
- None of the aircraft are TCAS equipped,
- No military aircraft.

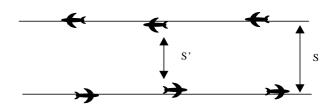


Figure 2: Opposite direction traffic at one flight level in a dual lane structure. S denotes spacing, S' denotes lateral separation minimum.

This traffic scenario is considered for a conventional ATC concept of routine monitoring based control of traffic. There is radar based surveillance and radio communication, but no automation support tools. Aircraft deviations are identified through routine monitoring by the controller (Figure 3).

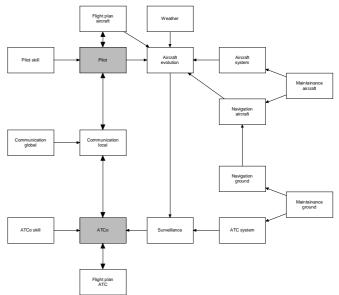


Figure 3: Functions in conventional ATC.

3.2 Errors in flightplans and intents

An important safety issue is that for one single aircraft there may be all kind of differences between the flight intents on the ground and in the air, and the controller and pilot awareness of those intents, i.e.:

- Tactical controller's awareness of the flight intent
- Flightplan in the ATC system
- Pilot's awareness of the flight intent
- Flightplan used by the FMS

To allow for these differences the following mathematical modelling approach is adopted:

Controller The tactical controller's awareness of the flight intent is assumed to be ATC's true reference. The quality of ATC's true reference is in one of the following two discrete modes: i) the true reference provides separation, ii) the true reference does not provide separation. In general the latter mode value may be reached if a controller has made a knowledge-based error.

ATC The quality of the flightplan in the ATC system may be in one of the following two discrete modes: i) agrees with ATC's true reference, ii) differs from ATC's true reference. The latter is due to an controller input error, or an ATC database error.

Pilot The quality of the pilot's awareness of ATC's true reference is in one of the following two discrete modes: i) agrees with ATC's true reference, ii) differs from ATC's true reference. The latter may happen due to a clearance error. There are two types of clearance errors: 1) intended clearance given to wrong aircraft or 2) wrong clearance given to intended aircraft. The causing factor may be with the controller, or the pilot or both, and may be knowledge-based, rule-based or skill-based.

FMS The quality of the flightplan used in the FMS is in one of the following two discrete modes: i) agrees with ATC's true reference, ii) differs from ATC's true reference. The latter happens if pilot awareness differs from ATC's true reference or is due to a pilot input error or an FMS data base error.

In elaborating the above it is assumed that all the controller related errors may occur at random during performance of subtasks A6, B6 or C6, (executive action) where the frequency of occurrence depends on the control mode the controller is in.

Furthermore, such errors may be detected and corrected during rule monitoring subtasks A7, B7 or C7, also depending on the control mode (e.g. [15]).

3.3 Petri net model of the ATC example

To integrate in a systematic way the elements of the air traffic en-route concept shown in Figure 3, including the six main controller cognitive tasks identified in Section 2, we use a dedicated Dynamically Coloured Petri Net (DCPN) specification formalism. A DCPN is a general formalism to represent a dynamical stochastic system with discrete and continuous-valued states [24]. For the ATC example considered in this paper the DCPN instantiation is specified in [25].

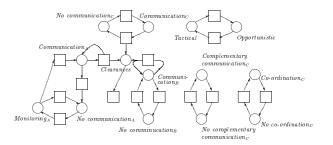


Figure 4: Petri Net of reduced controller model. A circle denotes a discrete state (e.g., the performance of a task) and a square denotes a transition between discrete states.

As a part of the complete DCPN, the Petri Net describing the discrete modes for the controller model is given in Figure 4. In this Petri Net the six main cognitive tasks of Table 5 are represented. For each task, we assume a relative priority ranking, an average duration under the opportunistic and tactical control modes and the percentage of his time that the operator would spend on the task if uninterrupted. The controller performs these tasks one at a time, according to the given priorities. Task scheduling is kept straightforward: high priority tasks are performed first, possibly interrupting a low priority task. Furthermore, Figure 4 shows the two cognitive control modes of the air traffic controller: Tactical and Opportunistic. The switching between the control modes depends on the subjectively available time (measured as the number of tasks waiting to be performed) and the outcome of previous actions (measured as the number of recent corrective actions, i.e. *Communication*_A and *Communication*_B). If the subjectively available time is short or if the outcome of previous actions is bad then the controller switches to the *Opportunistic* control mode. Controller erroneous clearances are taken into account as follows: the controller may give a different clearance than he intended to (e.g. switching heading and speed), or he may give the clearance to a different aircraft than he intended to (call-signs mixed up). These errors are incorporated as random variations in the controller actions. The error types are represented in the place *Clearances*.

The switching between the states in the controller model is influenced by several functional entities in air traffic indicated in Figure 3, such as Aircraft evolution, Surveillance, ATC system, R/T local, R/T global, Pilot Performance. Surveillance output (i.e. the estimated aircraft state) is input for the visual detection of severe deviations by the controller. The ATC system must be Working for the controller to be able to do his job. The R/T entities and Pilot entity together form the Decision Making loop or DM-loop. If all entities in the DM-loop are Working, Relaxed, Delaying or Busy for a given aircraft, then the controller is able to give a clearance to that aircraft. Properly integrated, these entities together represent the air traffic control concept discussed in Section 3.1. Once having developed this DCPN instantiation, it is possible to both implement and run a Monte Carlo simulator and combine this with stochastic analysis based collision risk evaluation for this model [23], [26].

4 Model based results

Based on the mathematical model we ran Monte Carlo simulations in order to assess controller reaction times, controller cognitive performance and accident risk for the model.

4.1 Controller reaction times

Next we evaluated for the controller routine monitoring concept the period to detect severe deviations such that a comparison with available statistical data is possible [27]. Comparison, in Figure 5, with the model based results shows that the detection time results of both the original and the reduced controller model agree quite well with the measured data. It should be noticed that in [27] only very few detection times beyond 150 s were measured. Although these longer detection times have low probability, they times add significantly to the risk, and Figure 5 shows that model based results do extend to these low probability values. We may conclude that both the full and the reduced model curves agree quite well with the statistical data. This clearly contributes to gaining confidence in the model-based approach taken.

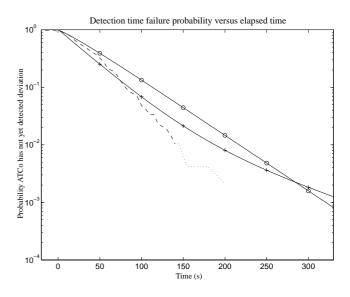


Figure 5: controller detection time of severe deviations of the full model (line marked '+'), of the reduced model (line marked 'o') and of statistical data [27] (dashed/dotted line, the dotted part representing data based on less than 5 measurements).

From Figure 5 it appears that our reduced model yields only slightly more conservative controller detection time results. Therefore we conclude that for the particular application considered here, incorporation of concurrent task processing into the controller performance model is not necessary for avoiding overly conservative risk estimates. Obviously, incorporation of concurrent processing into human performance models may be essential for other applications such as detailed workload assessment.

4.2 Controller cognitive performance

The relative shares of the various controller tasks, following from simulation of the ATC model, are shown in Table 6. In the model the controller is about 35% of the time not involved in any task, about 25% of the time specifying general clearances (Comm. C), about 22% of the time communicating with aircraft crews not involving clearances (Compl. Comm.), about 9% of the time coordinating with other controller's, about 8% of the time monitoring the traffic display and about 2% of the time specifying back-to-lane clearances as a result of monitored deviations (Comm. A).

Table 6: Relative task times for the various controller tasks and the relative time spent in the opportunistic cognitive mode. The tasks are ordered from high to low priority.

Task	Time (%)	Opportunistic (%)
Comm. B	0	n.a.
Comm. A	2.3	2.8
Comm. C	25	19
Coordination	8.6	47
Compl. Comm.	22	16
Monitoring A	8.4	0.97
Miscellaneous	35	0

Table 7: Mean task duration and the mean time the process is pending due to a process with a higher priority. The tasks are ordered from high to low priority.

Task	Mean duration (s)	Mean pending (s)
Comm. B	n.a.	n.a.
Comm. A	6.4	0
Comm. C	13	0.11
Coordination	28	8.3
Compl. Comm.	14	9.6
Monitoring A	7.1	17

The results show that monitoring and the specification of clearances as a result of monitored deviations is almost always (>96%) done in the tactical control mode. The low contribution of opportunistic control during monitoring is a result of the low task priority given to monitoring in the model. In particular, monitoring is only performed if no other tasks are pending. This results in a low workload, implying that this task is almost always done with a tactical control mode. The small share of opportunistic control during the specification of clearances as a result of monitored deviations (Comm. A) can be explained by the notions that this task directly follows monitoring, which is mostly done under tactical control, and that the task is short lasting.

It follows from Table 7 that the ratio of opportunistic control increases with the task priority for complementary communication and coordination, which are performed about 16% and 47% of the time in the opportunistic control mode, respectively. However, for the specification of general clearances (Comm. C), which has priority over coordination, a decrease in the opportunistic mode share can be observed. This may be explained by the relatively long duration of coordination tasks (see Table 7), such that the chances are high that a complementary communication or monitoring task become pending during a coordination task, whereas the probability that tasks with a lower priority become pending during the specification of general clearances (Comm. C) are more modest.

4.3 Accident risk of model

Using dedicated Monte Carlo simulations [26] for the ATC example we assessed accident risk as a function of the spacing parameter S. The accident risk results are presented in Figure 6.

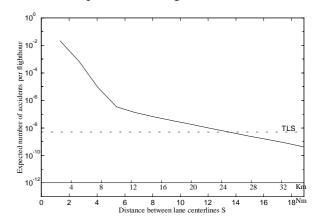


Figure 6. ATC routine monitoring model-based accident risk curve. The horizontal line is the Target Level of Safety (TLS) of [28].

The accident risk curve crosses the TLS level at S = 13.5 NM. This means that a safe spacing value for the model is 13.5 NM. Of course the key question is, what does this mean for reality.

5 Risk model validation

So far we took a formal modelling approach towards the accident risk assessment. This means that for the instantiated model of the ATC example accident risk and controller performance indicators are assessed. One thing is sure, for operations as complex as the ATC example considered, a model will always differ from reality, and thus model validation can not be a matter of showing that the model equals reality. The validation problem rather is how to verify that the model 'matches' reality sufficiently well, with respect to the intended use of the model. An absolute 'match' is neither feasible nor necessary. Thus, validation addresses the questions:

• how much differs the instantiated model from reality, and

• how large is the effect of these deviations on the outcomes of the assessment?

Hence, it is necessary to bring the model assumptions made to the foreground and subsequently perform a bias and uncertainty analysis of the model versus reality.

5.1 Bias and uncertainty assessment

Five types of model assumptions are identified in [29] that influence the bias and uncertainty for a target operational concept:

- I. Differences in the operational concept used in the model and the target operational concept;
- II. Non-coverage of hazards;
- III. Model structure;
- IV. Parameter values;
- V. Numerical approximations.

The effect of each model assumption on accident risk can be of two kinds:

- Bias. Due to the adoption of the formal model assumption, the DCPN model-based accident risk is systematically higher or lower than expected for the real operation.
- Uncertainty. There exists uncertainty in the DCPN model-based accident risk, for example due to uncertainty in the value of some parameter.

Table 8: Assumptions that have a major or significant effect on the bias.

Assumption	Туре	Effect
There is no STCA system	Ι	Major
No semi-circular use of route structure	Ι	Major
Aircraft are not TCAS equipped	Ι	Signif.
All aircraft are equipped for RNP1 and	Ι	Signif.
fly according to it		
Pilots do not fly off-set from their lane	Ι	Signif.
Short term conflicts are represented,	II	Signif.
monitored and treated as if they are		
large deviations		
ATCo neglects secondary conflicts	II	Signif.
when giving an avoidance instruction		
Aircraft do not join track in the	II	Signif.
opposite direction		
ATCo does not fall back to procedural	II	Signif.
control when ATC system fails		
Estimated aircraft states follow alpha-	II	Signif.
beta filter and single radar coverage		
only is considered		

Based on the results of a bias and uncertainty assessment for the ATC routine monitoring

operational concept [29] and ACAS results [30], [31], an overview of the assumptions which have the strongest effect on the bias in the accident risk is provided in Table 8. An overview of the assumptions regarding the parameters which have the strongest effect on the uncertainty in the accident risk at S=13.5 NM is provided in Table 9.

Table 9: Main uncertainties in the model risk due to uncertainty in the parameter values (type IV).

Parameter	Effect
Number of aircraft entering each lane per hour	Signif.
Probability of wrong clearance by ATCo in	Signif.
opportunistic mode	_
Maximum ATCo-allowed lateral deviation	Minor
from lane	
Standard deviation of vertical position of aircraft	Minor
Maximum course deviation during turn of aircraft	Minor
Mean duration of implementing clearances for <i>Relaxed</i> pilot	Minor
Mean duration of implementing clearances for Busy pilot	Minor
Mean duration of <i>No Comm C</i> by ATCo	Minor
Probability of wrong clearance by ATCo in tactical mode	Minor
Mean duration of transition of aircraft flightplan from <i>Conform to route</i> to <i>Different from route</i>	Minor
Mean duration of transition of aircraft flightplan from <i>Different from route</i> to <i>Conform</i> <i>to route</i>	Minor
Width of aircraft	Minor
Height of aircraft	Minor
Discretisation step	Minor

5.2 Expected accident risks and safe spacing

The idea behind the approach is that if one can judge the bias and uncertainty of each individual model assumption conditional on all previous assumptions, and is able to combine these results, one can estimate the bias and uncertainty in model-based accident risk due to all assumptions adopted. Next, one can determine an estimate for operational concept accident risk, by compensating for this evaluated bias and uncertainty in the model-based accident risk. The combined bias and uncertainty results are now added to the collision risk curve (see Figure 7). At S=13.5 NM the actual risk is expected to be 4.5 times smaller than the modelled risk. The 95% credibility interval has been assessed to range from a factor 4.5 higher to a factor 12.2 lower than the expected risk. It seems reasonable to assume that the bias and uncertainty correction applies for values of S > 8 NM. Then from Figure 7 we may conclude that for the operation considered a safe spacing value S=10 NM results for the ATC example considered.

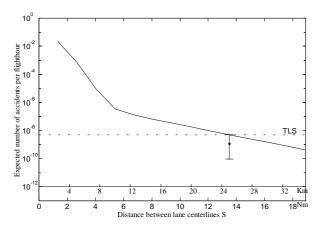


Figure 7. ATC routine monitoring model-based accident risk curve (continuous line) and expected accident risk at S=13.5 NM (denoted by *). The bar indicates the 95% credibility interval at S=13.5 NM.

5.3 Safety criticality analysis

A safety criticality analysis shows which events for a pair of aircraft contribute mostly to the accident risk for the spacing at which the target level of safety is attained. Analysis for the hypothetical ATC example considered indicates that the most safety critical situation is the one for which

- one aircraft is flying nominally along the flight lane (*Nominal*), and
- the opposite aircraft is making a strong and sudden deviation from the flight lane (*Sharp turn*),
- while the decision making loop (surveillance controller communication) is functioning properly for both aircraft, and
- the navigation systems of both aircraft and on the ground are working nominally.

Furthermore, it follows that aircraft with slowly developing deviations from the flight lane (*Nonnominal* evolution mode), due to degraded navigation systems or degraded aircraft systems, have a smaller impact on the collision risk, although the probability of *Non-nominal* evolution exceeds the probability of *Sharp turn* evolution. *Sharp turn* evolution is caused by an erroneous controller clearance or an aircraft flightplan error, whereas the *Non-nominal* deviations are largely caused by

degraded technical systems. Hence, from the safety criticality analysis we may conclude that the most safety critical situations are related to intent mismatches between pilots and controller rather than to degraded performance of technical systems.

6 Conclusions

When designing advanced ATC, it is important to understand the safety issues already at a conceptual level. Because of the extremely low probability of accidents in existing ATC practice, statistical data from practical situations is limited and analysing accident reports alone is not sufficient to understand safety at the level of the interactions between the various ATC components. For advanced ATC designs, data concerning unsafe events may even be lacking at all. Therefore, some kind of modelling approach is required to optimize for capacity and separation criteria without compromising safety.

Since in about eighty percent of the reported accidents humans were part of the cause, it is imperative to properly incorporate the human factor into the models used for risk assessment. In this report, we therefore investigated three complementary psychological models, and we combined them into a single mathematical model of a tactical controller in a conventional en-route context. Because monitoring activity is typically performed as an integrated part of the tactical controller job, it is necessary to also take into account other controller activities that may interfere with monitoring. This was accomplished through our contextual model of controller performance that takes into account the interfering tasks at a cognitive level, thus minimizing the level of modelling detail required to take into account the interfering tasks. This model is shown to be of great use in the evaluation of both controller cognitive performance and accident risks, when evaluating ATC concepts. We also showed that this advanced controller performance model can be used to evaluate ATC concepts from the level of controller performance up to the level of accident risk.

We conclude that the use of advanced psychological models in accident risk modelling is feasible, thus extending the applicability of the accident risk modelling approach to situations where isolated models of individual human actions do not suffice.

7 References

- [1] Rodgers MD, Mogford RH, Mogford LS. *The relationship of sector characteristics to operational errors*. FAA report DOT/FAA/AM-98/14, 1998.
- [2] Cohen S, Hockaday S. (eds.). A concept paper for separation safety modelling. Report FAA/ Eurocontrol, May 1998.
- [3] Haraldsdottir A, Schwab RW, Alcabin MS. Air Traffic Management Capacity Driven Operational Concept Through 2015. In: Donohue GL and Zellweger AG (eds.), *Air Transp. Systems Eng.*, AIAA, pp. 9-25, 2001
- [4] Odoni AR et al. *Existing and required modelling capabilities for evaluating ATM systems and concepts.* Report MIT, 1997.
- [5] Wickens CD, Mavor AS, Parasuraman R, McGee JP (eds.). *The future of Air Traffic Control, Human Operators and Automation*. National Academy Press, Washington DC, 1998.
- [6] Blom HAP, Bakker GJ, Blanker PGJ, Daams J, Everdij MHC, Klompstra MB. Accident risk assessment for advanced air traffic management. In: Donohue GL and Zellweger AG (eds.), *Air Transp. Systems Eng.*, AIAA, pp. 463-480, 2001.
- Blom HAP, Everdij MHC, Daams J. Modern Safety Cases for a new operation in air traffic, Part II. Report NLR, http://www.nlr.nl/public/hostedsites/ariba/, 1999
- [8] Wickens CR. Engineering, Psychology and Human Performance. Columbus: Merrill, 1992.
- [9] Kirwan B. A guide to practical human reliability assessment. Taylor and Francis, 1994.
- [10] Hollnagel E. *Human Reliability analysis, context and control.* Academic press, London, 1993.
- [11] AGARD. A designer's guide to human performance modelling. AGARD Advisory report 356, 1998.
- [12] Corker KM. Cognitive models and control: Human and system dynamics in advanced airspace operations. In: Sarter, N., Amalberti, R., *Cognitive engineering in the aviation domain*. Lawrence Earlbaum Ass., 2000.
- [13] Isaac A, Ruitenberg B. Air traffic control: human performance factors. Ashgate, 1999.
- [14] Kilner A, Hook M, Duck R. Workload Assessment. Report TOSCA II WPR/8/01 Part I, NATS, 1997.
- [15] Amalberti R, Wioland, L. Human error in aviation, In: Soekkha H (ed.), Aviation safety, pp. 91-108, 1997.
- [16] Bainbridge L. The change of concepts needed to account for human behaviour in complex dynamic tasks. Proc. 1993 Int. Conf. on Systems, Man and Cybernetics, vol. 1, pp. 126-131, 1993
- [17] Jackson A. The role of the controller in future ATC systems with enhanced information processing capabilities. EEC report No 224, 1989.
- [18] Buck S, Biemans MCH, Hilburn BG, Van Woerkom PTLM. Synthesis of functions. Report NLR TR-970545L, 1996

- [19] Ammerman HL, Fairhurst WS, Hostler CM, Jones GW. FAA air traffic control concepts volume VI: ARTCC/HOST en route controllers. Report DOT/FAA/AP/87-01. Washington DC: FAA, 1987.
- [20] Cox M. Task analysis of selected operating positions within UK air traffic control. RAF Institute of Aviation Medicine, Report No. 749, 1994.
- [21] EATCHIP. Model for Task and Job Descriptions of Air Traffic controllers. Report HUM.ET.ST01.1000-REP-01, Eurocontrol, Brussels, 1996.
- [22] Endsley MR, Rodgers MD. Situation awareness information requirements for en route air traffic control. Texas Univ., 1994.
- [23] Daams J, Blom HAP, Nijhuis HB. Modelling human reliability in air traffic management. Proc. 5th Probabilistic Safety Assessment and Management Conference, Osaka, Japan, pp. 1193-1198, 2000.
- [24] Everdij MHC, Blom HAP. Piecewise deterministic Markov processes represented by Dynamically Coloured Petri Nets. Report NLR-TP-2000-428, National Aerospace Laboratory NLR, 2000
- [25] Stroeve SH, Van der Park MNJ, Everdij MHC, Blom HAP. Mathematical model used for TOPAZ evaluations in DADI. NLR Memorandum LL-2000-004, April, 2002.
- [26] Blom HAP, Daams J, Nijhuis HB. Human cognition modelling in ATM safety assessment. In: Donohue GL and Zellweger AG (eds.), *Air Transp. Systems Eng.*, AIAA, pp. 481-511, 2001
- [27] George PH, Johnson AE, Hopkin VD. Radar monitoring of parallel tracks, automatic warning to controllers of track deviations in a parallel track system. EEC Report No 67, Bretigny, 1973.
- [28] ICAO. Annex 11 Air Traffic Services, 12th edition, incorporating amendments 1-38, Green pages, attachment B, paragraph 3.2.1., July 1998.
- [29] Everdij MHC, Blom HAP. Bias and uncertainty in accident risk assessment. Report NLR TR-2002-137, March 2002
- [30] Hawkes D. Airborne Collision Avoidance Systems II (ACAS II). Joint Aviation Authorities, Position paper 017_12, 27 November 1998
- [31] Arino T, Carpenter K, Chabert S, Hutchinson H, Miquel T, Raynaud B, Rigotti K, Vallauri E. ACASA, Final report on the full system safety study. Report CENA, QinetiQ, Sofreavia, 2002.