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Abstract 
 
Several MDO formulations have been proposed 
in the literature to overcome the difficulties in 
optimizing coupled engineering systems.  Some 
of these formulations were evaluated and 
compared in this paper to determine which 
should be envisaged for establishing a practical 
MDO capability.  The methods were tested 
using two demonstrative examples taken from 
the literature.  The results showed important 
differences in the behavior of each method, 
especially concerning reliability and efficiency. 
 
1. Introduction 
 
Multidisciplinary design optimization (MDO) is 
a methodology developed to address the 
computational and organizational complexity of 
complicated engineering systems.  The objective 
of a MDO process is to determine a design that 
optimizes certain system performance measures 
while considering the effects of several mutually 
interactive disciplines.  Conceptually, many 
approaches can be taken to address this type of 
problem.     
 
Several MDO formulations have been proposed 
in recent years.  Each has its own way of 
decomposing the problem into subtasks, 
resulting in specific characteristics related to 
ease of implementation and use, complexity, 
robustness, and computational efficiency.  
Moreover, some of these formulations permit 
the use of autonomous concurrent disciplinary 
optimizations allowing parallel computational 

work for each discipline.  With these 
autonomous decomposition approaches each 
team of disciplinary experts can be in charge of 
its own aspects of the project and be totally free 
to choose the set of methods that are best suited 
for its particular subsystem [1]. 
 
In this study, five existing MDO methods are 
described, evaluated and compared:   the 
MultiDisciplinary Feasible (MDF) method [2], 
the Individual Discipline Feasible (IDF) method 
[3], the Concurrent SubSpace Optimization with 
Response Surfaces (CSSO/RS) method [4], the 
Collaborative Optimization (CO) method [5], 
and the Bi-Level Integrated System Synthesis 
with Response Surfaces (BLISS/RS) method 
[6].   
 
The evaluation presented in this paper has been 
entirely performed using MATLAB and its 
optimization toolbox [7,8]. 
 
2. Multidisciplinary design analysis and 

optimization 
 
In general, three types of variables can be 
defined in a multidisciplinary problem.  The 
first type corresponds to the global or shared 
input variables z, required by more than one 
discipline, or by system-level calculations.  
Conversely, disciplinary or local input variables 
xi are used in calculations concerning the ith 
discipline only.  Finally, state or behavior 
variables yi, corresponding to the disciplinary 
responses, are subsystem output values that can 
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be used as input parameters to other disciplinary 
calculations as, for a N-discipline problem; 
 

yi = yi(xi, yj, z),   j = 1,…,N,   j � i.  
 
The analysis of a multidisciplinary system 
consists of determining the disciplinary state 
parameters y that correspond to a specific set of 
local and shared input parameters x and z.  The 
conventional solution approach results in a 
sequence of iterations between the various 
disciplinary analyses.  At convergence, all state 
variables are compatible and the system is in a 
so-called state of multidisciplinary feasibility.  A 
typical multidisciplinary analysis is sketched in 
Figure 1 for a three-discipline system. 
 

 
Figure 1.  Multidisciplinary analysis. 

  
The optimization of such a system is the process 
of determining the values of x and z, within 
certain limits, that minimize or maximize an 
objective function f(z, y(x, y, z)) representing the 
system performance potentially subject to some 
global constraints.  Further, each subsystem is 
subject to local constraints, gi.  To be 
acceptable, the final design must be 
multidisciplinary feasible, must satisfy all 
constraints, and must utilize the same values for 
the shared variables z in all subsystems. 
 
As was mentioned, there exist several 
approaches to formulate MDO.  Each approach 
is based on different concepts, which result in a 
certain level of complexity and efficiency.  The 
formulations consist of sequences of subtasks 

including disciplinary analyses, disciplinary and 
system sensitivity analyses, optimization and 
approximations at the subsystem (discipline) 
and system (coordination) levels.   
 
3. MDO Formulation 
 
This section briefly describes the five MDO 
formulations that are evaluated in this study.   
 
The MultiDisciplinary Feasible (MDF) or All-
in-One (A-i-O) [2] method is the simplest way 
to perform MDO.  The multidisciplinary 
problem is fully solved by conventional iterative 
methods at each optimization step resulting in a 
system that is always multidisciplinary feasible.  
It is not a decomposition method and does not 
exploit the modularity of the problem.  
Therefore, all variables and constraints are 
treated at the global level.   
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The MDF optimization can be stated as; 
 

minimize  f(z, y(x, y, z)) 
 subject to g(z, y(x, y, z)) � 0 
  
where f is the objective function and g 
represents all system and/or disciplinary 
constraints.  Figure 2 demonstrates this method. 
 

SYSTEM ANALYSIS
(Fig. 1)

Converged?

Yes

No

OPTIMIZER

 
Figure 2.  MDF method. 

 
The Individual Discipline Feasible (IDF) 
[2][3] method uncouples the disciplinary 
analyses but keeps the optimization at the 
system level to form a single-level decomposed 
optimization problem.  The subsystems are 
individually analyzed and the optimization is 
performed for the system as a whole with 
constraints imposing multidisciplinary 
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feasibility using extra coupling variables that are 
introduced in the formulation.  The disciplines 
are always feasible, individually, but the 
complete system may not be feasible until the 
optimization process converges.    
 
The IDF optimization statement is; 
 

minimize  f(z, y(x, y’,z)) 
subject to g(z, y(x, y’, z)) � 0 

y’ - y(x, y’, z) = 0 
 
where y’ are auxiliary disciplinary input 
variables corresponding to the various state 
variables.  The second constraint ensures 
multidisciplinary feasibility when y is equal to 
y’.  The IDF procedure is illustrated in Figure 3. 
 

 
Figure 3.  IDF method 

 
The Collaborative Optimization (CO) 
[2],[5],[9],[10],[11], which decomposes and 
reformulates the problem as a bi-level 
optimization, is one of the most studied and 
documented MDO formulations. The system is 
optimized at the coordination level by 
determining target values for subsystem 
responses and shared design variables with 
compatibility constraints that ensure 
multidisciplinary feasibility.  The optimization 
objectives for the subsystems are to match, as 
closely as possible, these target values while 
satisfying local disciplinary constraints.  As in 
the IDF method, multidisciplinary feasibility is 
achieved at the end of the process.  If the target 
values corresponding to the shared and state 

variables are z and y’, respectively, the system 
level optimization problem can be written as; 
 

minimize  f(z, y’) 
 subject to c(z, z*, y’, y(xi

*, y’, zi
*)) = 0 

 
where c represents the compatibility constraints, 
one for each subsystem, of the form; 
 

ci = (z – zi
*)2 + (y’ – yi(xi

*, y’, zi
*))2 

 
where the asterisks indicate optimal subsystem 
values. 
 
Similarly, at the disciplinary level, the ith 
subsystem optimization can be stated as; 
 

minimize  ci(z, zi, y’,y(xi, y’, zi)) 
subject to g(x, z, y(x, y, z)) � 0 
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where the objective ci is of the same form as the 
constraints at the global level. 
  
The CO procedure is illustrated in Figure 4. 
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Figure 4.  CO method. 

 
The Concurrent SubSpace Optimization with 
Response Surfaces (CSSO/RS) [4] is also a 
true decomposition strategy. The system and 
subsystems are optimized sequentially using 
their specific objective functions, constraints, 
and variables.  A specific system performance is 
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approximated in each subsystem optimization 
using Response Surface (RS) models for 
simulating other discipline state variables.  
Similarly, the system is optimized at the 
coordination level using RS models, which 
replace the required disciplinary analyses.  As 
the analyses and optimizations are performed, 
more information is known about the actual 
system, thus permitting updates to the various 
models.  The ith discipline optimization can be 
stated as;  
 
minimize  f(z, yi(xi, yj

app, zi), yj
app) 

subject to       gi(xi, z, yi(xi, yj
app, zi), yj

app) � 0 
 
where yj

app = yj
app(z, xj) represents the other 

discipline approximate state responses.  A 
complete multidisciplinary analysis is 
performed for each subsystem optimal design to 
generate a set of multidisciplinary feasible 
designs that will improve the quality of the 
approximation models.  A system optimization 
is then performed as;  
 

minimize  f(z, yapp) 
 subject to g(z, yapp) � 0. 
 
Another multidisciplinary analysis is performed 
with the system optimal design to further 
improve the models, and the whole process is 
repeated until convergence, as shown in Figure 
5. 
 
Finally, in the Bi-Level Integrated System 
Synthesis with Response Surfaces 
(BLISS/RS) [6] each subsystem is optimized 
with respect to local variables holding the 
shared variables constant to minimize the 
system objective under local constraints.  The 
shared variables are utilized by the system level 
optimization, only.  Total derivatives [12] are 
used to predict the effects of each set of 
variables on the objective function.  The 
optimization of the ith discipline takes the form;  
 

minimize  D(f, xi)T
� xi 

 subject to gi(xi) � 0 
 

where D(f, xi)T is the total derivative of the 
objective function with respect to the local 
variables of the disciplines.  It includes the 
indirect effects of these variables on other 
subsystems.  The term D(f, xi)T

�xi corresponds 
to the first order predicted objective function 
change due to a change in xi.  The optimization 
at the system level takes the same form with the 
shared variables, using RS approximation 
models for system performance estimation.  A 
simplified flowchart of the BLISS/RS is 
presented in Figure 6. 
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Figure 5. CSSO/RS method. 

 
It should be noted that the original versions of 
CSSO [13] and BLISS [14-16] do not include 
Response Surface methodologies.  This addition 
is assumed to be particularly efficient.  Indeed, 
such approximations usually improve the 
convergence characteristics if the number of 
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parameters used to build the approximation 
stays limited.  BLISS/RS is particularly 
promising because the number of system 
variables is kept low resulting in an effective use 
of such an approximation method.  

 
 

Figure 6.  BLISS/RS method. 
 
4. Evaluation 
 
Two examples were implemented to test these 
five formulations.  The efficiency of each 
method was evaluated by the number of 
subsystem evaluations required for convergence.    
 
4.1. Example 1: Simple two-discipline problem 
 
The first optimization problem corresponded to 
the test case that was used to demonstrate the 
capabilities of CSSO/RS [4].  It consisted of two 
simple subsystems coupled through shared and 
state variables.  The problem can be stated as; 
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and where the state variables y1 and y2, 
evaluated in subsystems 1 and 2, are defined as 
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The y1a and y2a parameters were not given in the 
aforementioned reference.  The values y1a = 8 
and y2a = 24 were used since they resulted in the 
same solution in this paper. 
 
Implementation 
 
Several decisions were taken concerning the 
implementation of the methods for solving this 
problem.  The following points were adopted for 
all methods: 
 

i. All three input variables were treated as 
global variables.  Indeed, they were either 
used in both disciplines (x1, x3), or used in 
the global objective function (x2, x3).  
Consequently, there was no local variable 
vector xi.   

ii. The termination criterion for multi-
disciplinary analysis (Fig. 1) is that the 
change in each yi between two consecutive 
iterations must be lower or equal to 0.0001. 

iii. The global objective function was evaluated 
outside the disciplines at the coordination 
level.  
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iv. The upper and lower bounds for the state 
variables (IDF, CO) were set to positive and 
negative infinity, respectively.  This avoided 
any beforehand estimation of the final values 
for these variables.  

v. No scaling of variables was made. 
vi. The initial values of y were obtained, when 

required, through a full multidisciplinary 
analysis.  The number of disciplinary 
analyses needed was included in the total 
number of subsystem evaluations. 

 
Two formulations were used to test the IDF 
optimization method .  The differences between 
the formulations lie in the way the y’ additional 
state variables were forced to converge to the 
actual state variables.  Table 2 describes the 
constraint formulations. 
 

Method Constraint formulation 
IDF 1 y1 - y1’ = 0 

y2 - y2’ = 0 
IDF 2 (y1 - y1’)2 � 0 

(y2 - y2’)2 � 0 
 

Table 1.  IDF formulations. 
 
Four formulations were used to test CO.  As 
with IDF, equality and inequality constraints 
were tested, as well as analytical gradients 
instead of finite differences for system 
constraints.  Table 3 describes the constraint 
formulations.   
 

Method Constraint formulation 
CO 1 c � 0; finite differences 
CO 2 c � 0; analytical 
CO 3 c = 0; finite differences 
CO 4 c = 0; analytical 

 
Table 2.  CO formulations. 

 
It is possible to use several techniques to build 
the model approximations required in the CSSO.  
The chosen method corresponds to the response 
surface method proposed in reference [6].   
 
BLISS/RS is not included in this particular 
evaluation, as there were no local variables x. 
 

The number of iterations to meet convergence is 
shown in .  The red bars correspond to the runs 
that converged to the wrong solutions. 
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Figure 7: Results for Example 1. 
 

Although most methods resulted in the same 
solution, the formulations show substantial 
differences in terms of their numerical 
efficiencies.  For this study, the most efficient 
method was IDF1 with only 88 disciplinary 
analyses. 
 
Furthermore, the Collaborative Optimization 
(CO) based on finite differences failed to 
converge in one case, and converged to a wrong 
solution in another.  It is also seen that even 
when this method worked, it was the slowest 
formulation to converge with at least 2075 
disciplinary analyses. 
 
4.2. Example 2: Supersonic business jet 

preliminary design (four disciplines) 
 
The second optimization problem corresponded 
to the problem used by NASA to present BLISS 
[14].  It addressed the maximization of the range 
of a supersonic business jet.  Four coupled 
subsystems representing structures, 
aerodynamics, propulsion, and range by semi-
empirical relations were used to determine the 
multidisciplinary state of the aircraft.  The first 
three disciplines are fully coupled since they 
share common variables and exchange 

11R1.6 



ICAS 2002 CONGRESS  
    

computed values, and the forth discipline 
receives information from the others to evaluate 
the performance of the design. 
 
The various disciplines include 6 shared 
variables, 4 local variables, and 9 disciplinary 
state variables that act as input variables to other 
disciplines.  The performance value is treated as 
a 10th state variable evaluated by the range 
discipline.   
 
It should be noted that there are a number of 
discrepancies between the equations or 
references [6, 14-16] and the program presented 
at the end of reference [14].  Furthermore, an 
error was reported [17] in the program itself.  
 
A number of parameters were calculated using 
polynomial functions “pf”, which are given in 
the referenced program [14].  The independent 
variables of these polynomials, given in the 
parentheses, were normalized by their initial 
values.  However, the initial values that 
corresponded to the disciplinary state variables 
are not mentioned in any paper.  Based on the 
fact that the system responses for the initial 
design must be equal to the initial values of y, a 
simple iterative sequence of multidisciplinary 
analyses was performed to determine the initial 
values of these variables. 
 
Implementation 
 
Due to the nature of the problem, the methods 
were not implemented exactly as for the first 
demonstrative example.  The following 
considerations concern all methods: 
 

i. The termination criterion for 
multidisciplinary analysis (Fig. 1) is that the 
change in each yi between two consecutive 
iterations must be lower or equal to 0.0001. 

ii. The global objective function was evaluated 
inside one of the disciplines.  

iii. All variables were scaled using their initial 
values for all calculations.   

iv. When needed, the initial values of y were 
obtained through a full multidisciplinary 
analysis before the actual optimization was 

started.  The required disciplinary analyses 
were included in the total number of 
subsystem evaluations. 

 
The two variations of IDF were tested.  To 
simulate absolute ignorance of the expected 
state variables, the upper and lower bounds for 
the y design variables were set to positive and 
negative infinity, respectively.   
 
The BLISS approximation models were as 
described in the CSSO/RS section of problem 1.  
Also, the g2 constraint was calculated at the 
system level since it depends solely on the 
global variables 
 
The results are shown in Figure 8.  In this case, 
the purple bar corresponds to a method that is 
unreliable, as described below.  

0

500

1000

1500

2000

2500

3000

M
D
F

ID
F1

C
O
1

C
O
2

C
SS
O
/R
S

BL
IS
S/
R
S

BL
IS
S/
R
S*

N
um

be
r o

f f
un

ct
io

n 
ev

al
ua

tio
ns

Figure 8:  Results for Example 2. 

 
As for Example 1, MDF and IDF1 appear to be 
computationally efficient.  However, as pointed 
out in the next section, they are probably not the 
best choice for establishing a practical MDO 
capability because of their lack of modularity. 
 
The IDF2 method failed because the variable 
representing the total weight became negative.  
However, IDF1 performed very well, as shown 
in Figure 8. 
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The four variations of CO were tested.  Unlike 
IDF, this method did not behave well when the 
bounds on the y variables were set to large 
numbers.  Even for a restricted design space, 
this method either failed or was unable to find 
the true solution.  For example, the total weight 
became less than the fuel weight when using 
CO1, and CO3 was not able to converge to a 
solution within the default maximum number of 
iterations allowed in MATLAB.  Many different 
variations were tested, including changes on the 
bounds, addition of constraints, and 
reformulation of existing constraints.  None led 
to better results. 
 
The CSSO/RS method did not appear to be well 
suited for this particular problem.  The response 
surface approximation used for problem 1 
appeared to be effective but not reliable, as most 
attempts caused premature mathematical 
problems as encountered with IDF2 and CO1.   
 
Finally, BLISS/RS was able to get the right 
solution in the smallest number (425) of 
iterations.  Furthermore, it did appear to be 
reasonably insensitive to the approximation 
models.  Several tests using different models 
and initial points all converged in less than 1000 
disciplinary analyses. 
 
5. Discussion 
 
The two examples showed that the methods 
differ greatly with respect to their efficiency and 
reliability.  
 
Several remarks and recommendations 
concerning the tested methods can be made, 
both from the numerical tests and from the 
experience gained in their implementation and 
use.  Obviously, the demonstrative problems 
included in this study might not reflect the 
characteristics of large-scale problems.  This is 
why caution should be applied when 
extrapolating these recommendations to real 
problems. 
 
Contrary to what is usually stated in the 
literature, MDF appears to be one of the most 

efficient approaches, while being the simplest 
one to implement and use.  It is a method worth 
considering when decomposition and 
multiprocessing are not desired or possible. 
 
One of the most efficient methods was 
undoubtedly IDF1, for both tested problems.  It 
was shown to be very stable and reliable since 
no predetermined bounds were necessary for the 
state variables.  It is also very simple to 
implement and use, although extra variables are 
needed to model the state variables.  The main 
problem with this method is that a convergence 
of the process is needed to ensure 
multidisciplinary compatibility.  
 
Although these two methods were shown to 
work well with these two simple problems, care 
should be taken when applying them to large-
scale MDO.  For instance, a common 
optimization method has to be defined for all 
disciplines.  Furthermore, all variables are 
treated simultaneously, which could lead to less 
efficient processes as the number of variables 
increases. Similarly, although worth 
considering, IDF could be much less efficient 
when the discipline outputs are in the form of 
fields represented by a large number of behavior 
variables 
 
The other three methods offer the type of 
decomposition that allows the use of specific 
methods for each discipline.  
 
The CO approach was shown to be ineffective 
and unreliable.  This behavior has been 
previously reported in the literature.  For 
example, CO has been qualified as “inherently 
difficult to solve by means of software intended 
for conventional, single-level, nonlinear 
programming problems” [2].  It is reported in 
the same reference that “much fine-tuning 
would be required to implement the method for 
a specific problem and that convergence 
behavior of conventional optimization methods 
applied to the CO formulation might be erratic”.  
Characteristics of the CO formulation that 
explains its “erratic behavior” have also been 
identified [10].   
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The CSSO method appeared to be a better 
option than CO for decomposing the problem.  
It was however not efficient in solving problem 
2 due to mathematical difficulties in the 
equations.  This method should be further tested 
with other approximation models.  Another 
problem with CSSO is that all the variables are 
used at the system level.  This strategy could 
lead to very expensive approximation models in 
a real-problem situation. 
  
Finally, BLISS/RS demonstrated the best ability 
to solve problem 2 in a fully decomposed 
manner.  It also possesses the desirable 
characteristics of generating a multidisciplinary 
compatible design at each iteration cycle, and 
dealing with x and z design variables only.  It is 
for these reasons that BLISS/RS appears to be 
the most promising formulation for 
implementing true MDO capability.  Care 
should be taken in the formulation of the 
approximation models, as it could significantly 
affect the overall behavior of the method, 
especially when solving more realistic 
problems.  
 
6. BLISS/RS with new approximation model 
 
The good behavior of BLISS/RS with the 
aforementioned implementation can be partly 
explained by two facts.  First, no discipline 
calculations had to be performed in the 
aerodynamics discipline.  Indeed, the 
aerodynamics constraint depends only on z.  
Second, it was assumed that it is possible to 
calculate this constraint outside the 
aerodynamics discipline, at the system level.  
This assumption may not be valid in a real-
problem situation. 
 
A more realistic way of defining the problem is 
to use a response surface approximation to 
model the aerodynamics constraint at the system 
level.  The actual constraint values that are used 
to build this model are calculated at the 
disciplinary level during the various system 
analyses. 
 

The BLISS/RS method was unable to converge 
to a solution with a RS constraint approximation 
formulated as proposed in reference [6].  This 
could be due to the fact that the system objective 
and constraints were approximated in the z 
space only while they are, in general, functions 
of both z and x.  For example, the design at two 
distinct iterations can have quite different 
objective and constraint values even though they 
have the same or similar z vectors.  This can 
cause excessive distortion in the approximation 
models, where the approximated functions must 
vary significantly over a short distance.  
Furthermore, the objective and constraint values 
that were used to build the initial linear model 
may not be representative at subsequent 
iterations, where x is updated, even if the z 
values are similar. 
 
An extra step was added to the response surface 
building procedure to improve the overall 
behavior of BLISS/RS when faced with 
approximated global constraints. The idea was 
to make sure that none of the already stored 
points were in the neighborhood (in the z space) 
of the new point that was to be added to the 
approximation model.  If so, the old point was 
removed and replaced with the new point.  This 
procedure ensured that the approximation model 
used the most recent information for the current 
design space region.  
 
The modifications to the BLISS/RS method was 
more reliable when approximated global 
constraints were used.  Furthermore, the 
quadratic approximation led to the best results, 
reported in Figure 8 as “BLISS/RS*”. 
 
7. Conclusion 
 
Five MDO formulations were implemented and 
tested with two demonstrative problems in a 
MATLAB environment.  The results indicated 
that substantial efficiency and reliability 
differences exist among the different methods. 
 
The tests performed showed that three of the 
methods are worth considering when 
establishing a true MDO capability.  The 
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methods are the MultiDisciplinary Feasible 
(MDF) method, which corresponds to the 
traditional “all-in-one” approach, the 
Individually Feasible (IDF) method, and the Bi-
Level Integrated System Synthesis with 
Response Surfaces (BLISS/RS) method.  
Additional larger scale work should be carried 
out to determine if the two other methods could 
be retained as good candidates for a real MDO 
implementation. 
 
After comparisons, it appears that the best 
formulation for true MDO capability is the 
BLISS/RS. Modifications were proposed to 
improve the simulation models when 
approximated global constraints are used.  
Additional work should be carried out to 
improve the approximation features to make this 
method more reliable and possibly less 
dependent on preliminary model decisions.  For 
example, the use of neural networks should be 
studied to strengthen the optimization models. 
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