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Abstract

A preconditioned multi-model formulation for
three dimensional compressible flows is pre-
sented. The goal is to minimize the overall com-
putational time and memory required to simulate
the flow by using locally selected, more compu-
tational efficient physical models without sacri-
ficing the global fidelity of the simulation. We
review a finite volume based conservative dis-
cretization for the coupling of the full potential
equation and the Euler equations. The resulting
nonlinear system is solved by a pseudo-transient
Newton-Krylov method. The novelty in this pa-
per is the use of an incomplete LU factorization
applied to precondition the linear system derived
for the multi-model formulation at each Newton
step. We present computed solutions for subsonic
and transonic flows around half a NACA0012 air-
foil extruded in 3D to demonstrate the feasibility
of this method. Results show that the ILU pre-
conditioner works well for the multi-model for-
mulation.

1 Introduction

Compressible fluid flow simulations needed for
aerodynamic applications can be modeled with
different degrees of complexity. A simple model
is the full potential equation which assumes in-
viscid, irrotational and isentropic flows. This
model utilizes a single second-order nonlinear

differential equation that is inexpensive with re-
spect to the execution time and the memory re-
quirement. Validity of the full potential equation
is, however, restricted. The isentropic assump-
tion of the full potential flow model leads to in-
accurate physics for transonic flows with strong
shocks. The next level of approximation is the
Euler equations which describe the complete be-
havior of inviscid compressible flows. The Euler
model utilizes a coupled system of five nonlin-
ear differential equations of first order. The five
field variables lead to a fivefold increase in the
memory needed over the full potential, for the
same mesh density. Finally, the Navier-Stokes
equations include the viscous effects needed for
accurate modeling of the boundary layer. These
equations are not only more time consuming to
solve but also require an associated mesh that is
stretched and very fine in viscous regions. Nev-
ertheless, for complex flows with separation of
the boundary layer, the Navier-Stokes equations
are mandatory to provide an accurate simulation.
Furthermore, for high Reynolds number flows,
turbulence appears and needs to be modeled.

In this work, we only consider a coupling be-
tween the Full potential equation and the Euler
equations. This coupling has been demonstrated
in [10] for both subsonic and transonic flows over
wings. Results show that convergence is reached,
the solution across the interface is smooth and the
solution is improved when the full potential re-
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gion includes the leading edge of the wing. The
use of the full potential equation does not gen-
erate artificial entropy, contrary to the us of the
Euler equations. Nevertheless, the iterative so-
lution of the coupled nonlinear problem exhibits
a slow convergence. In this work, we look for
possible cures to this problem by investigating a
preconditioned strategy.

The solution of the coupled flow field re-
quires the solution of a non-linear problem in the
Euclidean space Rn:

H
�
x ��� 0 � (1)

To solve this system we use an inexact Newton
iteration strategy [3] in which the linear system
is not solved exactly. Note that, in the case of
our two-equations problem, the linear system has
two distinct contributions, i.e., from the full po-
tential equation and the Euler equations. The cost
of solving the linear system is crucial because it
is to be solved at each Newton iteration. In this
paper a technique to improve the convergence of
the linear system by using a better preconditioner
is developed.

The remainder of this paper is as follows. In
Section 2, we review numerical approaches used
to dicretized the governing equations, i.e., the full
potential equation and the Euler equations. Sec-
tion 3 describe the multi-model formulation. In
Section 4, we compare the performance of the
multi-model formulation with the classical Euler
formulation by analyzing the number of nonlin-
ear iterations.

2 Compressible flow simulation

Our interest lies in the numerical simulation of
three-dimensional compressible flows. This flow
can be simulated by solving the Navier-Stokes
equations. However, as motivated above, the in-
viscid regions can also be modeled with the Eu-
ler equations or with the full potential equation
for the particular case when the assumptions of
irrotationality and isentropy are satisfied.

2.1 Euler and Navier-Stokes equations

Assuming that there are no external forces or
heat transfer, the governing system of PDEs for
compressible steady flows can be expressed in
coordinate-invariant form by:

∇ � �
ρu ��� 0 � (2)

∇ � �
ρuu � pI 	 ¯̄τ ��� 0 � (3)

∇ � �
�
ρe � p � u 	 k∇T 	 ¯̄τ � u ��� 0 � (4)

where ρ, u and e represent density, three-
dimensional velocity, and energy field solutions,
respectively. The pressure field p is determined
by an algebraic equation of state,

p � �
γ 	 1 � �

e 	 1
2

�
u2 � v2w2 �
� (5)

where e is the internal energy and the coefficient
γ is th ratio of specific heat coefficient under con-
stant pressure and constant volume, γ � cp � cv. In
(3), ¯̄τ represents the viscous shear stress tensor.
In (4), T and k represent the absolute temperature
and the thermal conductivity coefficient, respec-
tively.

For inviscid fluid, the equation reduce to the
Euler equations:

∇ � �
ρu ��� 0 � (6)

∇ � �
ρuu � pI �� 0 � (7)

∇ � �
�
ρe � p � u ��� 0 � (8)

To solve the Euler and Navier-Stokes equa-
tions, we take advantage of an existing code
based on an unstructured finite volume discretiza-
tion of the convective fluxes [5]. The com-
putational flow domain is divided into tetrahe-
dra to provide maximum flexibility for tessel-
lating complex geometries. To minimize stor-
age, flow variables are located at the vertices
of the elements. This code uses a second-order
flux discretization based on the standard MUSCL
(Monotonic Upwind Scheme for Conservative
Laws) scheme [9].

For completeness, we now briefly describe
the implicit approach used to solve the Eu-
ler equations. The Navier-Stokes equations are
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treated similarly but we will now only discuss the
Euler equations as only the coupling between Eu-
ler and full potential domains is addressed in this
paper. To ease notations, the subscript h identifies
the spatial discretized functions, and Ψh denotes
the second-order discretization of the convective
fluxes. The spatial discretization of the boundary
conditions is obtained using a non-reflecting ver-
sion of the flux–splitting scheme [4]. A pseudo-
transient approach to reach the steady state is em-
ployed. A fully discretized scheme, which is of
first order in time and of second-order in space,
can be written as

Un � 1
h 	 Un

h
∆tn

h
� Ψh

�
Un � 1

h ��� 0 � (9)

where n is a running time step and U con-
tains the conservative variables, i.e., U ��
ρ � ρu � ρv � ρw � ρE � T . The local time step size ∆tn

h
is defined for each control volume τc

i (with char-
acteristic size � τc

i � ) by

∆tn
h ��� τc

i � CFL
Cτc

i
��� Uτc

i
� 2

� (10)

where CFL is a preselected positive number, Cτc
i

is the sound speed and Uτc
i

is the velocity vector.
Increasing the time step by increasing the CFL
inversely proportional to the residual norm is rec-
ommended. This approach is used here; the CFL
at every time step is calculated as

CFLn � 1 � CFLn � Ψh
�
Un � 1 ���� Ψh
�
Un ��� � (11)

We use an inexact Newton method to solve
the non-linear problem (9). Given an initial solu-
tion U0, the solution is updated at each step n � 1
by

Un � 1 � Un � λn � 1δUn � 1 (12)

where δUn � 1 is an inexact solution to the linear
system of equations� � τc

i �
∆tn

h
� ∂Ψ � 1st �

h
�
Un

h �
∂Uh � δUn � 1 ��	 Ψ � 2nd �

h
�
Un

h ���
(13)

Note that the accuracy of the numerical solu-
tion is determined by how the term Ψ � 2nd �

h
�
Un � 1

h �
on the right-hand side of (13) is discretized in
space. However, the cost is mostly determined
by how the left–hand side of (13) is constructed
and solved. The advantage of this technique is
that we can solve a first order problem but still
obtain a second-order spatial accuracy by using a
first order Jacobian evaluated from analytic for-
mula with a second-order residual.

2.2 Full potential equation

To start we present the full potential equation,
the spatial discretization and the implicit method.
We also discuss the upwind procedure required
for transonic flows.

2.2.1 Governing equations

Let Ω � ℜ3 be the computational flow domain
and Γ its boundary. For compressible inviscid
and irrotational flows, there exists a potential
variable Φ satisfying the full potential equation

∂ρ
�
Φ �

∂t
� ∇ � G �

Φ ��� 0 � (14)

where G
�
Φ ��� ρ∇Φ and

∇Φ � �
u � v � w � T � (15)

Here, u � v, and w represent the three components
of velocity. Also, note that the full potential vari-
able, Φ, is a scalar.

By appealing the isentropic flow assumption
we can write the density ρ as a nonlinear function
of the potential, such as

ρ
�
Φ ��� (16)

ρ∞ � 1 � γ 	 1
2

M2
∞

�
1 	�� � ∇Φ �!� 22

q2
∞

	 ∂Φ
∂t

�#" 1 $ � γ � 1 � �
where M∞, q∞, and ρ∞ are the free–stream Mach
number, the magnitude of the free–stream ve-
locity and the free–stream density, respectively.
γ � 1 � 4 is the ratio of specific heat. This equa-
tion is a nonlinear second order partial differen-
tial equation which is very fast to solve numeri-
cally relative to the Euler equations. In this paper,
only the steady state solution is studied. We next
introduce the spatial discretization.
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2.2.2 Spatial discretization

Using a finite volume approach, the integral form
of the full potential equation for the control vol-
ume τc

i is simply%
τc

i

∇ � G �
Φ � dA � 0 � (17)

Note that the union of τc
i covers the whole do-

main Ω, i.e., Ω �'& τc
i . The triangulation is ac-

complished by dividing the domain into tetrahe-
dral elements, τi ( j. This triangulation is the most
common in the aerospace industry [11] allow-
ing for easy triangulations of complex geome-
tries and for adaptive mesh refinements. It is also
the same triangulation of the Euler solve utilized
in this study and therefore allowing easy solu-
tion transfer between the two solvers. The po-
tential variable is stored at the vertices. An illus-
tration, in two space dimensions, is presented in
Figure 1. By using this triangulation, the space of
the potential solution is taken to be piecewise lin-
ear continuous functions determined by the ver-
tex values Φi.

For the control volume τc
i associated with the

dual mesh, we can write the discrete form of (17)
as %

τc
i

∇
�
ρ∇Φ � dA � %

∂τc
i

ρ∇Φ � n dS (18)� ∑
τi ) j ρi ( j � ∇Φ � i ( j � Sc

i ( j �
where τi ( j is the “triangulation” associated with
the control volume τc

i and Sc
i ( j �+* ∂τc

i , τi ) j ndA.
Here n is the unit outward normal vector of the
face associated with the control volume τc

i in the
element τi ( j. Note that ρi ( j, the discrete density, is
a function of

�
∇Φ � i ( j which is constant for each

element τi ( j.
2.2.3 Upwinding

For transonic flows, upwinding is required; there-
fore, the density is modified to add artificial com-
pressibility prior to the flux calculation. For sim-
plicity we describe our upwinding method for
two space dimensions. Following [8, 12], we
write

ρ̃ � ρ 	 µv � ∇ � ρ � (19)

- τi ( 1
τc

i

τi ( 2
τi ( 3

τi ( 4
τi ( 5 τi ( 6Sc

i ( 6

Fig. 1 Two space dimensions representation of
the control volume.

j

v
v

j

k
nk

k
nk l

nl

Fig. 2 Upwind configurations.
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where v is the normalized element velocity and
∇ � ρ is an upwind difference. In two space di-
mensions there are two cases to consider. Either
the mass flux enters on one side (Fig. 2.2.3 a)
or the mass flux enters through two sides (Fig.
2.2.3 b). It follows that the density for each dif-
ferent case becomes

ρ̃ j � ρ j � µv � nk
�
ρj 	 ρk � (20)

ρ̃ j � ρ j � µv � nk
�
ρj 	 ρk �� µv � nl

�
ρj 	 ρl ��� (21)

The switching function, µ, is defined for each
element as

µ � νo max . 0 � 1 	 M2
c � M2 / � (22)

where M is the element Mach number, Mc is a
pre–selected cutoff Mach number chosen to in-
troduce dissipation in the transonic regime. The
parameter νo is used to increase the amount of
dissipation in the supersonic elements. Parame-
ters Mc and νo are selected by hand; Mc is just
smaller than 1 and νo is usually set between 1
and 3. Additional viscosity is added by taking
the switching function in each element to be the
maximum value of all its immediate neighbors.
We refer the reader to [1, 6] for more details.

2.2.4 Implicit approach

To solve (17) we introduce a pseudo–time step.
Hence, we rewrite (17) as

d
dt

%
τc

i

ΦdA � %
τc

i

∇ � G �
Φ � dA � 0 � (23)

The semi-discrete form of (23) becomes� � τc
i �

∆tn
h

� ∂
�
ϒh

�
Φn �
�

∂Φ
"10 Φn � 1

h 	 Φn
h 2 �3	 ϒh

�
Φn ���
(24)

where ϒh is the discrete mass flux. In this ap-
proach we require the computation of the Jaco-
bian matrix ∂ϒi

�
Φn

i � � ∂Φ. A finite difference ap-
proximation of this Jacobian is introduced. For
each pair of indices i � j we define

∂
�
ϒi

�
Φ �
�

∂Φ j 4 ϒi
�
Φ � δΦ j �5	 ϒi

�
Φ �

δΦ j
� (25)

This first order accurate approach is chosen be-
cause a first order Jacobian is sufficient in the in-
exact Newton method. The resulting matrix is
sparse, with contributions from the neighbors of
node i only. Therefore, we do not consider this
matrix to be computationally very expensive. In
fact, if no upwinding is needed the calculation of
the Jacobian is only about five times more expen-
sive than calculating the mass flux .

The local time step size ∆tn
h is defined for

each control volume τc
i (with characteristic size� τc

i � ) by

∆tn
h ��� τc

i � CFL
Cτc

i
��� Uτc

i
� 2

� (26)

The approach to increase the CFL inversely pro-
portional to the residual norm, recommended for
the Euler solver is also used here.

3 Coupled solver

For simplicity, we describe the coupling between
the full potential and the Euler solver only.

3.1 Computational domain

The computational domain, Ω, is split into two
subdomains, ΩE and ΩΦ, wherein the Euler
equations and the full potential equation are
solved, respectively. We denote by ΓI the inter-
face between ΩE and ΩΦ, as shown in Figure 3.

The formulation presented for the full poten-
tial is similar to the unsteady Euler formulation
for finite volumes. In fact, we can define W as
the simulation variable, which represents either
the Euler variables, U , or the full potential vari-
able, Φ. We assume that W is the solution of the
equation

∂W
∂t

� ∇ � P �
W ��� 0 � (27)

where the flux function P is called the model
function that equals to either F or G, the Euler
or full potential fluxes respectively.

Consider the interface between the full poten-
tial domain and the Euler domain presented in
Figure 3. This interface is located between tetra-
hedra, therefore, the control volume associated
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ΓE

ΓΦ

interface ΓI

Euler domain ΩE

full potential
domain ΩΦ

Uo

Un

Um � Φm

ΦlΦk

U j � Φ j
Ui � Φi

Fig. 3 Overlapping interface of the Euler and the
full potential domains.

with a node on this interface is shared between
both the full potential domain and the Euler do-
main. This control volume is considered as part
of the overlapping region. Conservation laws for
the Euler equations as well as the conservation
laws for the full potential equation are forced on
this control volume.

First, we describe discretization of the con-
servation laws associated with the Euler equa-
tions, i.e., the conservation of mass, momentum
and energy. The fluxes across the surface of the
control volume that lies in the Euler domain (ΩE)
can be readily calculated. However, we require to
convert the potential variable to the Euler variable
to calculate the fluxes across the surface that lies
in the potential domain (ΩΦ). To this end we use
the potential to Euler variable transfer function
(found in [2]) to calculate, at vertices k and l, the
momentum and the energy. Note that, the density
and the velocity, ∇Φ, are constant in the elements
laying in the full potential domain. The value of
the density and velocity in elements surrounding
a vertex is averaged and used at that vertex.

Second, only the conservation of mass for an
overlapping control volume is required for the
full potential solver. To be more precise the con-

servation of mass is written as%
ΓE

ρV � nEdS � %
ΓΦ

ρ∇Φ � nΦdS � 0 � (28)

where ρV is the first component of the Euler flux
vector. Note that in this approach we have over
determined the conservations laws. Indeed, the
same control volume will satisfy the conservation
of mass for both the Euler equations and for the
full potential equation.

3.2 Algorithmic framework

A Newton-Krylov approach is used to obtain a
steady state solution of our coupled equations.
The system of nonlinear equations is of the form
H

�
W ��� 0. A solution of the nonlinear system is

sought by using an inexact Newton method. Lin-
earization with respect to W n � 1 yields

H
�
W n � 1 ��� H

�
W n �6� ∂H

∂W
∆W � 0 � (29)

Introducing Jn as the Jacobian of H with respect
to W n, we obtain

Jn∆W n �7	 H
�
W n �8� (30)

We solve the above linear problem using a pre-
conditioned GMRES method such that� B � 1 �

Jn∆W n � H
�
W n ��� 2 9 ε � H

�
W n ��� 2 � (31)

where ε : 0 is the linear tolerance and the opera-
tor B � 1 preconditiones the action of Jn.

3.3 Explicit Jacobian

For a full potential-Euler coupled solver we write

Jn � D
∆t

� ∂Ψ
�
U �

∂U
� ∂Ψ

�
U �

∂Φ
� ∂ϒ

�
Φ �

∂U
� ∂ϒ

�
Φ �

∂Φ
�

(32)
where D is the diagonal matrix of cell volumes
and ∆t is the time step. We have discussed in
Section 2.2.4 how to approximate ∂ϒ

�
Φ � � ∂Φ. In

addition, the term ∂Ψ
�
U � � ∂U is obtained from a

classical approximation [7]. Note that Ψ
�
U � and
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ϒ
�
Φ � exist only in their respective domains and

that the resulting Jacobian matrix is of the form:;
∂Ψ � U �

∂U
∂Ψ � U �

∂Φ
∂ϒ � Φ �

∂U
∂ϒ � Φ �

∂Φ < � (33)

The calculation of ∂Ψ
�
U � � ∂Φ is somewhat less

standard. As before, we use a finite–difference
approximation to calculate this term in the Jaco-
bian. Our approximation becomes

∂Ψi
�
U �

∂Φ j 4 Ψi
�
U � δΦ j �5	 Ψi

�
U �

δΦ j
� (34)

Here again, we transfer δΦ to δU using the above
described procedure to calculate the Euler fluxes,
Ψ. Similarly, the following approximation is
used

∂
�
ϒ j

�
Φ �
�

∂Ui 4 ϒ j
�
Φ � δUi �5	 ϒ j

�
Φ �

δUi
� (35)

The calculation of ϒi ( j is performed by modifying
the value of node i with δUi. Subsequently, the
resulting mass flux is added to ϒ j, associated with
τΦ

j .
We have omited on purpose the description

of the upwinding for the full potential solver be-
cause it is not needed in our approach as we re-
strict the full potential domain to subsonic re-
gions. Recall that in the Euler domain, the up-
winding is intrinsic to the Roe’s scheme.

3.4 ILU preconditioner

The incomplete LU factorization technique (ILU)
is used to construct the preconditioner. An
ILU(0) is a Gaussian elimination procedure in
which fill-ins, i.e., locations originally occupied
by zero values, are dropped. A more accurate
factorization, where up to level k fill-ins are kept,
are denoted by ILU(k).

The principal new ingredient in this implicit
scheme is the calculation and investigation of the
ILU preconditiones for Jacobian Jn on a multi-
domain. The use of this preconditioner solves the
slow convergence problem reported in [10].

(3D)  6 Jun 2002 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Z

0
0.05

0.1

X

-0.500.51
Y

XY

Z

FULL

POTENTIAL

DOMAIN

EULER

DOMAIN

Interface for
transonic

case

Interface for
subsonic

case

(3D)  6 Jun 2002 

Fig. 4 Computational mesh and partition for the
domain.

4 Numerical results

In this section we test our scheme for a two-
dimensional flow over a NACA0012 airfoil in a
three-dimensional computational domain. Only
half of the geometry is required for this symmet-
ric flow. The computational domain is such that
Ω is a rectangle domain of size 0 � 1 = 1 � 5 = 1 � 5,
where an upper surface of a NACA0012 is lo-
cated on the bottom face as in Figure 4. The grid
used here has 25,410 nodes. The boundary con-
ditions of this problem are as follows: on the top,
left and right boundaries we impose farfield con-
ditions; on the side and the bottom we impose
the nonpenetration condition for symmetry and
on the airfoil we impose the solid wall condition.

4.1 Subsonic flow

We investigate a subsonic flow around the
NACA0012 wing at M∞ = 0.5. The domain par-
titioning of this mesh into the Euler domain and
the full potential domain is shown in Figure 4:
the right domain is the Euler domain and the left
is the full potential domain, both of which con-
tain the same 12,810 nodes. The Mach number
iso-contours for the Euler and the full potential
models are shown in Figure 5 and in Figure 6,
respectively. The Mach number contours for the
coupled model are presented in Figure 7. Note
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Fig. 5 Mach number contours of the full potential
model solution at M∞ = 0.5 .
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Fig. 6 Mach number contours of the Euler model
solution at M∞ = 0.5 .
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Fig. 7 Mach number contours for the solution of
the coupled model at M∞ = 0.5 .

the smooth transition of the iso-contours between
the Euler and full potential domains. Comparing
the solution in Figure 5 and 7, we can say that
the solution of the coupled model is better than
the Euler and almost the same as the full poten-
tial models. Clearly, for subsonic flows, the full
potential solution is more accurate because the
flow obeys the full potential assumption. For a
coarse mesh, the Euler model generates artificial
entropy at the leading edge which significantly
decreases the accuracy of the solution. In our
case, the mesh is indeed coarse and the artificial
entropy can be noticed near the airfoil surface and
in the wake, Figure 6. In the coupled model, the
leading edge is part of the full potential domain,
therefore minimizing the artificial entropy gener-
ated by the Euler model.

Figure 8 compares the nonlinear iterations of
the Euler model, the coupled model and the cou-
pled model with ILU(0) and ILU(1). Clearly we
can see that the incomplete LU preconditioner
dramatically speeds up the convergence of the
coupled model. Comparing higher level ILU with
ILU(0), higher level fill-in does not really im-
prove the speed of convergence. Note that the
full potential solver is very faster. The solution
is obtained in 32 iterations with a residual less
than 10 � 8. However, when this solver is coupled
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Fig. 8 Convergence iteration history for subsonic
flow around the NACA0012 wing.

with the Euler solver, the number of iterations in-
creased to 1537. This is far more than the 211
pseudo time iterations needed in the Euler model.
With the ILU(0) or the ILU(1) applied to precon-
dition the flux coupled Jacobian, the nonlinear it-
eration decreased to 355 and 326, respectively.

4.2 Transonic flow

To illustrate the multi-model formulation for
transonic problems, we investigate a flow around
the NACA0012 wing at M∞ � 0 � 8. The domain
is partitioned along a constant y plane located at
y � 0 � 5. The Euler domain (right) and the full
potential domain (left) each contain 19,110 and
6510 nodes, respectively. In Figures 9 and 10,
we show the Mach number iso-contours for val-
ues of 0.3 to 1.26 with an increment of 0.03, for
the Euler solution and the coupled solution, re-
spectively. Note the smooth transition of the iso-
contours between the Euler and full potential do-
mains in the latter.

The performance of the coupled nonlinear
solver, in terms of the number of nonlinear it-
erations, is presented in Figure 11. The Eu-
ler solution is obtained in 184 iterations with a
residual less than 10 � 8. The Euler solver uses
a maximum number of 30 linear iteration in the
GMRES solver. A convergence study revealed
that the same number of nonlinear iterations was
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Fig. 9 Mach number contours for the Euler
model solution at M∞ = 0.8 .
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Fig. 10 Mach number contours for the coupled
model solution at M∞ = 0.8 .
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Fig. 11 Convergence iteration history for tran-
sonic flow around the NACA0012 wing.

required with or without ILU preconditioners.
This can be explained by the use of the inex-
act Newton method. However, when the coupled
solver is used without preconditioners, the num-
ber of iterations increased to 853. The ILU(0) or
ILU(1) preconditioners accelerate convergence.
The number of iterations decreased to 280 for
ILU(0) and 278 for ILU(1).
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