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Abstract

The aim of this paper is to develop an axysim-
metric numerical procedure, easily extendible to
3-D configurations, based on the Reynolds av-
eraged Navier-Stokes equations coupled with a
turbulence model to compute the external flow
of a plug nozzle. The governing equations are
discretized in the physical domain according a
finite-volume technique with second order accu-
racy. The turbulence equation written in integral
form is solved together with the flow equations.
Complex shock-slip surfaces, shock-boundary-
layer interactions appear in the flowfield and all
the flow discontinuities will be numerically cap-
tured.

1 Introduction

Since the direct numerical simulation of turbu-
lence is not possible for practical flow prob-
lems due to computer limitations, and as large-
eddy simulation has not yet become a practi-
cal tool in aerodynamics, the only way to simu-
late high speed and high Reynolds-number flows
is to solve the Reynolds-averaged Navier-Stokes
(RANS) equations together with a turbulence
model. Turbulence modeling has become one
of the key problems in CFD. In aerodynamics,
simple algebraic turbulence models have been
widely used with fair success. However, the alge-
braic model are not suitable for handling complex
flow situations including flow separation, mul-
tiple surfaces with turbulent regions near each

other, or wakes etc. Therefore, the development
of turbulence models has been most intensive in
the area of transport equation models. The model
development has gone towards physically more
realistic models on the one hand, to increasing
complexity on the other hand.

In practical aerodynamics, a gap has appeared
between simple algebraic models with many re-
strictions and complex transport equation models
with difficulty of use and many anomalies. The
idea behind the Spalart-Allmaras model [11] is
to fill this gap by creating a "local” type trans-
port equation model, which is more sophisticated
than algebraic models, but more robust and eas-
ier to use than traditional two-equation, or higher
degree model. Here the term “local” means that
the equation at one point does not depend on the
solution at the other points. A typical example of
non locality is found in the algebraic Baldwin-
Lomax model, where the maximum value of a
certain function is found by traversing through
the boundary layer and this maximum value is
then used as a model parameter. The search
for the maximum is typically performed along
grid lines perpendicular to the boundary layer.
Therefore, these kinds of models are only suited
to structured and sufficiently orthogonal grids,
and to rather simple boundary-layer-type flows.
A local-type model does not suffer from such
a restriction and is thus much better suited to
handling complex flow problems, where multi-
ple surfaces, multiple boundary layers, separated
flow regions, free shear layers or wakes occur.



This paper discusses the implementation of
the Spalart-Allmaras turbulence model to a nu-
merical methodology developed to solve com-
plex two-dimensional or axisymmetric flows
configurations, [6]. The numerical approach pre-
sented is based on a time-dependent integration
of the full Navier-Stokes equations where the
physical domain is discretized according to a
finite volume technique. The convective part
of the equations (inviscid fluxes) is treated fol-
lowing a flux difference splitting method with
an approximate solution of a Riemann problem
at each cell interface [8], [5]. The diffusive
terms (viscous fluxes) are calculated using a cen-
tered scheme. Second order accuracy is achieved
following the guidelines of the essentially non-
oscillatory schemes (ENO) [2], with linear recon-
struction of the solution inside each cell and at
each step of integration. Complex shock-shock
and shock-slip surface interactions appear in the
flow fields. In our methodology all the shocks
and the slip surfaces are numerically captured.

To validate the functionality of the Spalart-
Allmaras model the numerical method has been
used to solve the turbulent flat plate boundary
layer and to solve the turbulent flow over a
backward-facing step [7].

All the numerical results carried-out have
been compared with theoretical, experimental
and direct numerical simulations (DNS) data.
The performances of the model in complex flow
situations involving shear layer, shock-boundary
layer interactions and recirculating flows will be
tested by studying the geometry proposed by ON-
ERA [10] for turbulent flows validation where the
experimental data are available for comparison.

2 Numerical Method

2.1 Governing Equations

Compressible viscous flows are governed by the
Navier-Stokes equations and in particular by
the Reynolds-Averaged Navier-Stokes (RANS)
equations coupled with the one-equation turbu-
lent equation. All this set of equations may be
written in a compact integral conservative form
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as:
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where v represents an arbitrary volume en-
closed in a surface s. System (1) can be re-
duced to non-dimensional form with the help of
the following reference values: L for length, p.
for density, T.. for temperature, +/RT.. for veloc-
ity, RT.. for energy per unit mass and L. for vis-
cosity. Therefore, from now the flowfield vari-
ables should be considered as non-dimensional.
In particular, W is the hyper-vector of conser-
vative variables, tensor F; contains the inviscid
fluxes, tensor By contains the viscous fluxes and
tensor H contains the non-homogeneous part of
the equations due to the turbulent model:

= {p.paq.E,¥7}"

{ pl +pd®d,<E+ pa.ra)
%,—KVT—%-G,—“%V\?T}T

E'Il

3 qi . . - 2) T

0,0,0,Cp1Svr + % (VVT)Z — Cw fw (%) }
(2)

Quantities p, p and d = {u,v,w}T are the lo-

cal density, pressure and velocity, respectively; E
represents the total energy per unit volume:

E=p (e+ q;) 3)

where e is the internal energy per unit mass, M..
and Re.. are the freestream Mach number and the
Reynolds number, vy is the ratio of the specific
heats, V1 is the modified eddy viscosity and fi-
nally I is the unit matrix. The viscous stresses T
are contained in tensor , given by:

F—

—N—

oq; i 2
Tij=H a—xiﬂL?—g(V'q)Sij PQ.q/,' (4)
The Reynolds-stresses —pq; q’l’ are mod-

eled according to the Boussinesq approximation,
which allows one to take the Reynolds-stresses
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into account simply by modifying the viscosity.
Thus, the viscous stresses can be written as:

a . .
Tij = (Mt ) [a_><i+a_><j —g(v‘q)ﬁ”] ©)

where pr = pvT is a turbulent viscosity co-
efficient obtained from fir = pvt. The thermal
conductivity K is calculated in non-dimensional

form as
Y O O
K_y—l(Pr+PrT) ©)

where Pr and Pry are the laminar and turbu-
lent Prandtl numbers. The laminar viscosity W is
computed via Sutherland’s law

1+ Tret
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Finally, the perfect gas relationship p=pT com-
pletes the set of equations.

2.2 Convective and Diffusive Fluxes

The collapse of such a discontinuity generates in
time a pattern of waves along which signals prop-
agate. The waves split the domain in the vicin-
ity of the discontinuity in a set of uniform re-
gions where the values of the flowfield variables
are to be computed. Inviscid fluxes F are eval-
uated defining and solving an appropriate Rie-
mann problem across each lateral surface. The
definition of the Riemann problem consists, at
first, in fixing a direction a direction X joining
the centroids of the two finite volume that are
connected by the considered lateral surface (see
Fig.1, left). Then, the variation of the flowfield
variables along X is to be considered. Due to the
discretization, two piecewise constant (first order
accuracy Fig.1, right up) or piecewise linear (sec-
ond order accuracy, Fig.1, right down) distribu-
tions of the flow field variables are present be-
tween cells A and B, separated by a discontinuity
in correspondence with lateral surface.
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Fig. 1 Riemann problem

The collapse of such a discontinuity gener-
ates in time a pattern of waves along which sig-
nals propagate. The waves split the domain in
the vicinity of the discontinuity in a set of uni-
form regions where the values of the flowfield
variables are to be found, generating in this way
a Riemann problem. To obtain waves directions
and corresponding signals, the equations govern-
ing the inviscid part of the flowfield are written
in quasi-linear form in a new local frame of ref-
erence constituted by direction & and m, which
are normal and tangent to the considered lateral
surface, respectively. Here an approximated so-
lution of the Riemann problem [8] is sought for,
where the shocks which could be generated by
the collapse of the initial discontinuities are ap-
proximated by compression waves, but the con-
servative form of the equations ensures that the
correct jump and entropy conditions are satis-
fied. Moreover, the Riemann problem is solved
for simplicity in one spatial dimension rather than
two, so that only temporal variations of the flow-
field variables along the & direction are consid-
ered. Velocity and temperature gradients needed
to evaluate viscous fluxes Ry in correspondence
with lateral surface are computed through a stan-
dard technique that uses central differences and
applies the Gauss’s Theorem.

Second order accuracy in space and time is
achieved following the guideline of the Essen-
tially Non Oscillatory schemes for shock cap-
turing technique [2]. No slip and isothermal
or adiabatic conditions are applied to the wall.
Freestream conditions are enforced at the inlet,
while zero-gradient assumed at the exit boundary
for conservative variables.



The eddy viscosity vt is obtained from the
modified eddy viscosity v, which is solved by
the last of the system (1). This equation which is
here called the turbulence equation, is basically
of similar form to the equations for basic flow
variable: mass, momentum and total energy. The
only major difference is that the turbulence equa-
tion also contains a source term Q inside the vec-
tor H. The basic source term without transition
terms is

.. Mo Y
Q=CpSvt — \/R?em Cw1 fw <FT> +
Moo ~ N2
e (V1)

(9)

where the first term represents production and
the second term represents destruction of vt .
The third term is called the first-order diffusion
term. The modified magnitude of vorticity is

5 VIMe VT
S=S+ “Re. 202 fu2 (10)

where Sis the magnitude of vorticity
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ox oy

(11)

and d is the distance to the nearest wall. The
function:

3

1B+

f = fp=1— —X (12)

1+cufun

where x = V/v. In the distruction term, fy is
defined as:

L

1+cSs |
fu=g| (13)
0°+Cy3
where
g="r+cw(r®—r), (14)
with
VM. VT
" Re.. Sk2d2 (15)
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The model coefficients are:
Cp1 = 0.1355, cpp = 0.6222,

c=2/3, x=041,
Gt = G /K + (14 Cr2) /0, G =7.1, (16)
cw2=03, ocw=20

The eddy viscosity, or turbulent viscosity, needed
in the viscous stress tensor (5) is obtained from

ur = pfuvr (17)

As boundary conditions free-stream eddy viscos-
ity is specified by setting a value for y at the free-
stream boundaries. Usually it can be set to zero.
The eddy viscosity is equal to zero on the sur-
faces, so its inviscid flux is also zero on the walls.

3 Model validation

3.1 Boundary layer flow

The first test case, used for validation, corre-
sponds to a M., = 0.3 flow over an insulated flate
plate. In table 1 the freestream conditions for the
flow parameters for this case are reported.

M. 03

T 300 K
Re/m 10° 1/m

R 287 JI(Kg K)

Y 14
Pr 0.72
Prr 0.90

The viscosity is assumed constant in the flow
field and its value has been computed with the
Sutherland’s law at 300K. In these conditions the
unit Reynolds number is about 10%/m. The com-
putational domain is a rectangular area where
the length is 5m whereas the width is 0.2m (see
Fig.2)

The dimension of the computational domain
is such as to assure a negligible influence on the
boundary layer computation. The numerical so-
lution has been computed on a 100 x 50 grid. The
mesh is characterized by a wall stretching defined

by

1_iah

ell="hn) -1
i=h|1+3—7M—— 18
y] ( Bea(leh)+l) ( )
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Fig. 2 Flat plate computational grid

where

h B+1
Ah_ny, a= Iog(B_1> (19)
j being the node index, h the domain width,
ny the total number of cells in y-direction, B
a stretching parameter whose value has to be
greather than 1. In the present test case the
stretching parameter value is set at 1.0001. This
value assures that the y* value at the first grid
point near the wall is approximately 1. Since
for this test case the freestream Mach number
is very low, the compressibility effects are neg-
ligible. For this reason it is possible to compare
the numerical results with incompressible bound-
ary layer data. In Fig. 3 the c¢ distribution is
shown as a function of the Reynolds number Rey
based on the properties at the edge of the bound-
ary layer and the distance from the leading ledge.
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Fig. 3 Turbulent susbsonic boundary layer

The results computed by the code are com-
pared with the analytical skin friction coefficient

law for the incompressible turbulent boundary

layer flow:
~0.0592

Ct = (Ry)02 (20)
and the experimental ¢ distribution measured by
Wieghardt and Tilmann [12]. It is clear that the
results are in good agreement with the reference
data. In Figs. 4 and 5 the u/U.. and u™ profiles
corresponding to the test section at x = 0.4mare
shown. As reference data have been considered
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Fig. 4 \Velocity profile at x = 0.4m

the analytical sublayer law
ut=y* (21)

and the log layer law:

1
ut = EIog(y*) +5 (22)
and the u™ profile computed by Wieghardt and
Tielmann’s experimental data [1]. The data
agreement is excellent.

3.2 Turbulent flow over a backward-facing
step

Separation and reattachment of turbulent flows
occur in many practical engineering application,
both in internal flow systems such as diffusers,
combustors and channels with sudden expansions
and external flows like those around airfoils and
buildings. In these situations, the flow experi-
ences an adverse pressure gradient, the pressure
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increase in the direction of the flow, which causes
the boundary layer to separate from solid sur-
face. The flow subsequently reattaches down-
stream forming a recirculation bubble. Among
the flow geometries used for the studies of sep-
arated flows, the most frequently selected is the
backward/facing step. Considerable work has
been carried out on this flow due to its geomet-
rical simplicity. For such a reason we used this
geometry to validate our numerical methodology.
Figure 6 shows a schematic view of the flow do-
main used in this computation.

U
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77777
=
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Fig. 6 Backward-facing step configuration

For semplicity, we used a rectangular compu-
tational domain starting at the edge of the step
(x=0). The coordinate system is placed at the
lower step corner as shown in Fig. 6. The
mean inflow velocity profile u(y), imposed at the
left boundary (x = 0) is a computed flat-plate
boundary layer profile. To validate the computa-
tional results the numerical simulations were car-
ried out for Reynolds number (Re, = 5100) and
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compared with the experimental and DNS results
[9], [7], [4]. A stretched computational grid in
both x and y directions was used. The computed
mean reattachment length is X, = 6.0h compa-
rable with the experimental X; = 5.39h, and the
DNS, X; = 6.28h, X; = 6.0h. The reattachment
length was demonstrated by Kuen [3] to increase
as the expansion ratio increases.

In Fig. 7, the average Cs is compared with
DNS and experimental data. Good agreement is
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Fig. 7 Comparison between computation DNS
and experimental

obtained between computational and experimen-
tal data. A striking from previous measurements
and the DNS is the large peak of negative skin
friction in the recirculation region see in both in
our computation and DNS experiment. The Peak
negative Cs obtained with our method is about
2 times larger than other results. The secondary
vortex in the recirculation bubble is smallest. In
fact the Spalart-Allmaras model tends to over es-
timate the skin friction coefficient when there is a
lack of points close to the walls. Figure 8 presents
the comparison between computational results,
experimental and DNS data. The comparison is
made st four representative locations in the re-
circulation (a), reattachment (b) and recovery re-
gions (c) and (d). Figure 9 compares the com-
putational results with the DNS measurements at
x/h=19.0. All profiles are below the universal
log-law even at 20h downstream of the step. Pre-
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Fig. 8 Mean streamwise velocity profile

vious experimental studies reported a recovery of
the log-law profile as early as 6 step heights after
the reattachment. The good agreement between
the computation and DNS profile at x/h = 19.0
confirms that the deviation from the univeral log-
law is a real effect in this flow. The apparent dis-
crepancy between the present near wall profiles
and the experiments is attributed to the method
of obtaining the wall-shear velocity uy.

4 Plug nozzleresults

The numerical simulations of plug nozzle con-
cern a reference plug geometries based on dif-
ferent characteristics of the flow exhausting on
the plug wall. The FLOWNET Test-Case P02,
proposed by ONERA for CFD validation [10]
(P02) has been used. The P02 geometry shown
in Fig.10 has been computed with the following

25
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. I
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Fig. 9 Mean streamwise velocity profiles in wall
coordinates at x/h = 19.0

flow conditions, which correspond to the experi-
mental ones: for the external flow we have M., =

76

P

Mj3 nozzle

Fig. 10 Flownet Test-Case P02

1.95, stagnation pressure P° = 1 x 10° Pa and
stagnation temperature of 295K; in the jet flow
the total pressure is 5 x 10° Pa and the stagna-
tion temperature is 297 K. The Reynolds number
is 12.27 x 108, referenced to the external plug-
diameter (40mm). All the computations have
been carried out working with cold air (y = 1.4).
Laminar and turbulent Prandtl number are 0.72
and 0.9 respectively. Adiabatic wall boundary
condition has been assumed for the temperature.
In Fig.11 the computed Mach number contour-
lines are shown. The visualization shows a shock
interacting with the external boundary-layer de-



veloping on the boattail. Figure 12 shows the
streamlines patterns. After flow separations, oc-
curring near the end of the boattail for the ex-
ternal stream and the nozzle lip for the jet, the
flow frontiers envelop a dead water region be-
fore co-flowing. The confluence process starts
the development of a wake that ensures the mu-
tual adaptation of the flow. In the nozzle exit re-
gion, we distinguish the expansion fan centered
near the nozzle lip. It is followed by a wave fo-
calization process that creates the classical bar-
rel shock structure of an underexpanded jet. A
qualitative analysis with the schlieren photograph
taken from Ref.[10] shows a good agreement on
the wave behavior. Figure 13 shows a general
view of the coumputed velocity vector field close
to the boat-tail region. It is possible to observe
the main flow deviation induced by the crossing
of either the outer confluence shock or the barrel
shock and the progressive mutual adaption of the
co-flowing streams along a wake region and the
development of the mixing layer.

Y/D

Fig. 11 Mach Number

The comparisons between experimental and
numerical data are shown in Figs. 14, 15, 16
and 17. Figures 14 and 15 refer to the compar-
ison of the computed turbulent streamwise veloc-
ity (straight lines) and the experimental mean ve-
locity (squares) [10] at stations x/d = 0.05 and
x/d = 0.1. The numerical data for the turbulent
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Fig. 12 Streamlines

case agrees very well with the experimental ones
and the recirculating bubble close to the boattail
is captured correctly. Figure 16 shows also the
comparisons in terms of the radial velocity com-
ponent at the station x/d = 0.05 .

Figure 17 presents a comparison between the
wall computed and the experimental pressure on
the boattail, and normalized by the upstream
static pressure p.. The aspect of the pressure dis-
tribution on the same generating line is typical
of an interaction between the external boundary
layer and a shock. At first, the approach static
pressure is nearly constant and close to 1. The
flow expansion induced by the boattail makes the
static pressure decrease. Then, at certain location
Xo between —6 and —10mm, the pressure goes
up rapidly when the boundary layer crosses a nar-
row compression wave system located at the foot
of the shock. Figure 18 shows a 3-D sketch of
the flow pattern. system located at the foot of the
shock.

5 Conclusion

A numerical method based on the integration of
the unsteady Reynolds Averaged Navier-Stokes
Equation has shown to be a suitable tool for plug
nozzle analysis and for investigation of the super-
sonic flow past an axisymmetric afterbody.

The numerical solution of a full length plug
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NN

Fig. 13 Computed vector field

nozzle flow field has been investigated and suc-
cessfully compared to experimental data. The
one-equation model of Spalart and Allmaras has
shown to capture correctly the flow phenomenol-
ogy even in the complex flow configurations here
presented.
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Fig. 18 3-D flow configuration
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