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Abstract 
 

Helicopters have six degrees of freedom, so 
for the simplification it is assumed that motion 
can be separated into longitudinal and lateral 
motion and that they can be investigated 
independently. It is noted that the mathematical 
model of the helicopter is regarded to helicopter 
forward motion at velocity W. A mathematical 
model that would incorporate all helicopter 
motion, all together with takeoff and landing, 
would be far complicated. Influence of 
resonance and vibration is also ignored. The 
blade through back is also ignored in this 
paper, because otherwise the blade angle 
velocity in the plane of rotation would no longer 
be constant. Separate study of individual 
motions of blades is a great simplification, 
because there is an interdependency of all blade 
motions. If the motions are not separated, then 
it is necessary to analyze the stability of all the 
motions of the blade. 

The choice of the coordinate origin in the 
center of inertia enables elimination of certain 
moments of inertia so the Euler equations can 
be simplified. Viewing the rotor as a whole 
eliminates the need for investigating individual 
blade motion. A great assistance to this is 
introducing the rotor disc axis and the control 
axis. 

Determination of aerodynamic derivatives 
is related to series of approximations. It should 
be noted that, besides assumptions in modeling, 
also mathematical simplifications were made 
(for example, omittance of higher order small 
values in equations) which couldn’t have been 
derived in the form of an assumption due to 

their meaning which is tightly related to a 
specific equation. 
 It is possible to determine projections of 
position vector with respect to the Earth bound 
coordinate system instead of using projections 
of helicopter velocity with respect to the 
moveable coordinate system as the output 
characteristics. Projecting the helicopter 
velocity onto an Earth bound coordinate system 
and then integrating velocity projections by time 
with initial conditions may solve this problem. 

 A further analysis of the mathematical 
model can be made in order to investigate the 
dynamic and static properties, and to determine 
control that would guaranty the object 
execution of the required dynamic behavior. 

This model has been used for the 
calculations of the Mi-8 helicopter with the new 
composite main rotor blades (designed at 
Belgrade Faculty of  Mechanical Engineering), 
also with the new airfoils optimized for high 
subsonic speeds at the blade tips. 
 
1. Motion of supporting rotor blades 
 

To understand the flight dynamics of 
helicopters and determine dynamic moments 
and forces that act upon the helicopter, it is 
necessary to preinvestigate the motion of 
supporting rotor blades. From a vast number of 
different types of helicopters, the single rotor 
helicopter has been chosen, with blades coupled 
with the main rotor by hinges about which they 
can freely move. It should be noted that there 
are also rotors that have blades with rigid 
connection to the hub. 
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1.1  Equations of blade fluttering 
 

Rotor blades are regarded as rigid bodies. 
The horizontal hinges are placed at length eR 
from the rotation axes. The shaft rotates at 
angular velocity Ω=const, and the blade flutters 
at angular speed dβ/dt. The blade axis is parallel 
to it's axis of inertia and passes through the 
hinge (Fig. 1). 

 
 

Fig. 1. Blade fluttering 
 

In Figure 1, R represents the length of the 
blade and β is the flutter angle of the blade. 
After a rather complex calculus, the equations 
for blade fluttering are obtained in the form: 
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1.2 Equations of blade throwback 
 

It is assumed that β=0 and that the blade is 
moving forward in relation to the vertical hinge 
by the throwback angle amount ξ. The vertical 
hinge is placed at distance eR from the shaft 
axis. The coordinate system is placed as in the 
previous case. Figure 2 presents a simplified 
scheme for determining the blade throwback. 

 
Fig. 2. Blade throwback 

From this follows the equation for blade throw-
back: 
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If the azimuth angle is described as ψ=Ωt, then: 

(1.5)               
J
M

d
d 2 

d
d

2
z

z
2

2

Ω
=

ψ
β

β−ξε+
ψ

ξ  

1.3 Equations of blade climb 
 
It is assumed that flutter and throwback angles 
are equal zero. The blade pitch is the angle 
between the blade cross section chord and the 
plane of the hub, designated as θk. Figure 3 
shows the coordinate system attached to the 
blade. 
 

 
 
Fig. 3. Coordinate system linked to blade cross 

section 
 
Equations of blade motion about longitudinal 
axis are: 
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2. Rotor forces 
 

To resolve total forces into components, the 
following mayor axes can be used: 
• The control axis, 
• The rotor disc axis, which is normal to the 

rotor plane, i.e. the plane defined by blade 
tips trajectory, and 

• The shaft axis. 
 Once the mayor axis is chosen, the 
remaining axis of the coordinate system will be 
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normal to it and pointed lateral and towards the 
tail of the helicopter. Customarily, the force 
component along the chosen axis is called the 
tow force, the force component pointed towards 
the tail is the H force, and the force component 
pointed lateral called the Y force. If the force 
components are designated without subscripts, it 
is assumed they are determined relative to 
control axis, whereas subscripts “D” and “S” are 
used when relating to rotor axis and the shaft 
axis. 

Since flutter and mount angles are usually 
small (amounts greater than 10° are considered 
extreme), the relation between these compo-
nents can be obtained as: 
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2.1 Longitudinal equilibrium of forces 
 

 
 

Fig. 4. Drawing for determining longitudinal 
equilibrium of forces 

 
Angle B1 is the longitudinal amplitude of a 

cyclic change of the blade pitch; angle a1s is the 
angle between shaft and axis of rotor disc. After 
extensive calculus the expression for longitu-
dinal amplitude of cyclic change in blade step is 
obtained as: 
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For e=0, it can be adopted that Ms=0 and Mf=0, 
and since T=G, follows: 
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Equation (2.2) has a simple physical inter-

pretation: the amplitude of the longitudinal cyc-
lic control must have such a value in order to 
position the direction of the resultant rotor force 
through the center of mass. 
 
2.2 Lateral equilibrium of forces 
 

 
 

Fig. 5. Drawing for determining lateral 
equilibrium of forces 

 
Angle A1 presents the amplitude of lateral 

cyclic change in blade step of the supporting 
helicopter rotor: 
 

(2.4)             
MhRG

RhTbMRfG-A
S

tt1S1
1 +⋅

⋅+⋅+⋅
=  

 
By replacing value A1 into corresponding 

equations, we obtain the value of angle φ, which 
determines the position of the fuselage. 
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If MS = 0 and ht = h, which can often be 
assumed, then: 

,
h
f1≈φ  

which means the rotor hub is positioned 
vertically above the center of mass. All values 
of these determined angles are the so called 
trimmed values. 
 
3. Non-linear mathematical model of flight 

dynamics 
 

Mathematical modeling of helicopter motion 
is a very complex task and, therefore, it is 
necessary to introduce series of assumptions and 
approximations. Knowledge of motion of 
individual helicopter blades is not necessary for 
investigating dynamic characteristics of the 
helicopter, except in a special case, but rather 
for defining forces and moments in a disturbed 
flight it is sufficient enough to view the rotor as 
whole. Because of a great number of different 
helicopters, in this paper a single rotor 
helicopter was studied, that has its blades 
connected to the hub by hinges. As mentioned 
before, the helicopter can perform different 

motions and it would be very difficult to make a 
mathematical model that would combine all 
those motions. It is assumed the helicopter is 
airborne and in straightforward flight. It is 
required that the helicopter, at straight forward 
flight, has following velocity components: Wx, 
Wy, and Wz, at nominal values, and angle of 
turn ψ, angle of roll φ, angle of climb θ, as long 
as the intensity of disturbance is in permitted 
limits. Figure 6 presents a general block 
diagram of the helicopter with moving 
coordinate system tied to its center of mass. 

 

 
Fig. 6. General block diagram of helicopter 

 
After introducing a series of assumptions 

we come to a non-linear mathematical model by 
deviations in the form: 
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where: 

• U1=∆B1 – is the amplitude of cyclic change 
in pitch in the longitudinal direction 
(regarding to longitudinal motion), 

• U2=∆θ0 – is the change of collective pitch of 
the helicopter rotor blade (regarding to 
longitudinal motion), 

• U3=∆A1 – is the amplitude of cyclic change 
in pitch in the lateral direction (regarding to 
lateral motion), and 

• U4=∆θt – is the change of collective pitch of 
the tail rotor (regarding to lateral motion). 

Block diagrams are presented in figures 7 and 8. 
 

 

 
Fig. 7. Block diagram for longitudinal motion 

 

 
Fig. 8. Block diagram for lateral motion 
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4. Linearized mathematical model of flight 
dynamics 

 
In technical applications it has been shown 

that, with an acceptable accuracy, linearized 
mathematical models may be used under the 
condition that deviations of physical quantities 
from their nominal values are small. Non-linear 
mathematical model of helicopter flight 
dynamics is inadequate for finding general 
solutions in an analytical form, even though the 
problem is solved in aid of modern computer 
technology. 
 The outcome of adopted presumptions is 
that the output values, input values, and the 

vector of state for both longitudinal and lateral 
motion will be: 
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The matrix equation of state for the 

linearized mathematical model with non-
dimensional quantities, deviations and quantities 
of state is shown by 4.2. The 4.3. presents the 
equation at exit. 
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Beside the way this is presented, in a form 
of common matrix, also should be noted that 
longitudinal and lateral motions are separated, 
because this was the condition for deriving this 
mathematical model. In equations 4.2 and 4.3, 

equations for longitudinal motion are presented 
within the first for rows of the matrices, while 
the remaining five rows present the equation of 
state and equation of lateral motion. 
Designations used in 4.2 are: 
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Figures 9 and 10 represent the block diagrams of linearized mathematical models of longitudinal 

and lateral motions. 
 
 

 
 

Fig. 9. Block diagram of the linearized mathematical model of longitudinal motion 
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Fig. 10. Block diagram of the linearized mathematical model of lateral motion 

 
5. Program results 
 

The program was tested on the example of a 
single rotor helicopter which main rotor blades 
are tied to the hub over hinges. The helicopter is 
described by the following input data: 
Helicopter weight G=45000N, Rotor abundance 
degree s=0.058, Rotor radius R=8m, Hub height 
coefficient h=0.25, Drag coefficient δ=0.013, 
Number of blades of the main rotor b=4, Blade 
mass m=74.7kg, Rotor operate mode coefficient 
µ=0.3, Gradient of lift a=5.7, Velocity of blade 
top ΩR=208m/s, Distance of blade mass center 
coefficient xg=0.45, Distance of hinge from 
shaft eR=0,04R, and Air density at flight 
altitude (100m) ρ=1.215 kg/m3. 

This program took into account, to the 
highest allowable extent, the benefits of the 
usage of the three airfoils deigned at Belgrade 
Faculty of Mechanical Engineering, for 
advanced helicopter rotor blades. The 12% thick 
R12M reaches up to 0.70R, while the thickness 
progressively drops to 9% at 0.85R (R9M) and 
6% (R6M) at the tip (Fig. 11). 

 
IVA R12M

(mm)

(mm)

 
 

IVA R9M

(mm)

(mm)

 
 

IVA R6M

(mm)

(mm)

 
 

Fig. 11.  Helicopter rotor blade airfoils 
 

Some of their aerodynamic characteristics 
are shown in Fig.'s 12. (a) - (c). 
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Fig. 12. (a) 
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Fig. 12. (b) 
 
 

M
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Fig. 12. (c) Some aerodynamic characteristics of 

the airfoils 
 

The airfoils were designed by inverse 
approach, satisfying the requirements of close-
to-zero moment coefficients, low profile and 
transonic drag and satisfactory lifting 
characteristics. Details of this process are out of 
the scope of this paper. 
 For longitudinal motion the mathematical 
model in matrix form is: 
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It is obvious that matrix A is singular. From 
the point of automation control this means the 
system has unlimited number of equilibrium 
states. 
 
6. Conclusion 
 

The flight dynamics mathematical model of 
a helicopter, which would be strictly 
determined, would comprise of a system of non-
linear, non-stationary, partial differential 
equations. To simplify these equations, we 
introduce a number of assumptions. Ignored are 
the elastic characteristics of the helicopter so the 
helicopter can be thought as a rigid body and, in 
that way, the dispersal of parameters is 

eliminated. Also, fuel consumption is 
disregarded and so the unsteadiness due to 
temporal change in helicopter mass is 
eliminated. 

Because the helicopter has six degrees of 
freedom, for simplification it is assumed the 
motion can be separated into longitudinal and 
lateral motion and that they can be investigated 
independently. It is noted that the mathematical 
model of the helicopter is regarded to helicopter 
forward motion at velocity W. A mathematical 
model that would incorporate all helicopter 
motions, including take-off and landing, would 
be very complicated. Influence of resonance and 
vibration is also ignored. The blade throughback 
is also ignored in this paper, because if that 
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wasn’t the case the blade angle velocity in the 
plane of rotation would no longer be constant. 
Separate study of individual motions of blades 
is a great simplification, because there is an 
interdependency of all blade motions. If the 
motions are not separated, then it is necessary to 
analyze the stability of all the motions of the 
blade. 
 The choice of the coordinate origin in the 
center of inertia enables elimination of certain 
moments of inertia so the Euler equations can 
be simplified. Viewing the rotor as a whole 
eliminates the need for investigating individual 
blade motion. A great assistance to this is 
introducing the rotor disc axis and the control 
axis. 
 Determination of aerodynamic derivatives is 
related to series of approximations. It should be 
noted that, besides assumptions in modeling, 
also were made mathematical simplifications 
(for example, omittance of small values in 
equations) which couldn’t have been derived in 
the form of an assumption due to their meaning 
which is tightly related to a specific equation. 
 It is possible to determine projections of 
position vector with respect to the non-
moveable coordinate system tied to Earth 
instead of using projections of helicopter 
velocity in respect to the moveable coordinate 
system as the exit characteristics. Projecting the 
helicopter velocity onto a non-moveable 
coordinate system and then integrating velocity 
projections by time with initial conditions may 
solve this problem. 
 A further analysis of the mathematical 
model can be made in order to investigate the 
dynamic and static properties, and to determine 
control that would guaranty the object execution 
of the required dynamic behavior. 
 
Subscripts 
 
In this paper the following subscripts were used, 
where the first letter stands for: 

• X – derivative of force function Fx, 
• Y – derivative of force function Fy, 
• Z – derivative of force function Fz, 
• L – derivative of moment Mx, 

• M – derivative of moment My, 
• N – derivative of moment Mz. 

If these letters are lower case, which means the 
considered derivative is non-dimensional. 
Lower case letters, besides these designations, 
characterize variables by which deriving was 
performed: 

• u – by velocity Wx, 
• v – by velocity Wy, 
• w – by velocity Wz, 
• p – by angular velocity, 
• q – by angular velocity, 
• r – by angular velocity, 
• θ0 – by collective step, 
• B1 – by angle B1, 
• A1 – by angle A1, and 
• θ0t – by collective step of the tail rotor. 
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