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Abstract

Bifurcation tailoring is a technique that uses bi-
furcation analysis to create feedforward control
signals in order to change the bifurcation dia-
gram of a system to some given desired one.
In it’s original feedforward alone implementation
bifurcation tailoring had no guarantee of stabil-
ity or uniqueness of the new bifurcation diagram.
The addition of a feedback control loop, in this
case an adaptive reference model strategy known
as the Minimal Control Synthesis (MCS), solves
these problems. This paper covers the back-
ground theory to bifurcation tailoring and gives
as examples the application of the technique to
2nd order highly manoeuvrable nonlinear flight
dynamics.

1 Introduction

The use of bifurcation theory is becoming
widespread in the analysis of nonlinear dynam-
ics and control strategies. References [29, 27]
provide a good introduction to the area of non-
linear dynamics. Bifurcation theory provides the
natural environment in which to study nonlinear
aircraft dynamics in terms of state versus param-
eter behaviour [28]. Particularly with the advent
of better aircraft modelling and the availability
of cheap computing power the use of numeri-
cal applications has allowed dynamicists to in-
vestigate beyond the linearised trim solutions and
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delve into the complex mechanics of flight. Bi-
furcation analysis has been applied in many sit-
uations to flight dynamics, for example: in the
sense of producing bifurcation diagrams for the
aircraft under the variation of one or two param-
eters (e.g. elevator) [31, 20, 18, 13, 11]; or, sta-
bility and boundary of attraction analysis of equi-
librium values [6, 23, 14]. Bifurcation control in
aerospace applications has mainly been restricted
to individual points in the state phase space [22],
or around a region of a Hopf point [1]. Reference
[28] contains a good review of nonlinear analysis
in the aerospace industry.

Bifurcation tailoring is a novel technique that
allows the aircraft dynamicist to control the air-
craft throughout its flight regime by altering the
system’s entire bifurcation diagram. This is
achieved by appropriately varying other system
parameters (e.g. control surfaces or thrust vec-
tor angle) in addition to the bifurcation param-
eter (say, elevator or stick position). In this
sense bifurcation tailoring is a considerable de-
parture from the idea of stabilising small areas
of the bifurcation diagram. In bifurcation tai-
loring the aim is to use the available parameters
to change and stabilise the whole bifurcation di-
agram, using fully the modern numerical tools
available. Bifurcation tailoring has been success-
fully applied to flight models in an open loop
sense, i.e. in an entirely scheduled feedforward
control guise, where the feedforward signal was
created in an off-line continuation program [19].
However, in this feedforward only configuration
the stability or uniqueness of solution cannot be
guaranteed. Reference [21] proposed using the
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bifurcation tailoring to schedule the gains in a
feedback controller throughout the flight regime:
an improvement over the standard approach of in-
terpolating between several calculated gain val-
ues at individual points in the flight regime.

The problems associated with the feedfor-
ward scheduled bifurcation tailoring as described
above can be overcome by the use of a feed-
back control strategy in addition to the feedfor-
ward schedule [3]. There is a rich area of re-
search concerned with the control of nonlinear
systems and bifurcations. These include using
normal forms [15, 16], harmonic balances [9],
or wash out filters [30, 2]. References [5, 4] are
good reviews of the area of bifurcation and chaos
control. In this paper we have selected a control
strategy using an adaptive model reference con-
troller known as the Minimal Control Synthesis
(MCS) [24, 25]. This has already been applied
in many engineering situations including the con-
trol of chaotic systems [26]. MCS will ensure the
stability and uniqueness throughout the desired
bifurcation diagram, and provide the control de-
signer with an opportunity to control the dynamic
response of the aircraft through the eigenvalues
of the reference model chosen in the MCS con-
troller.

This paper aims to demonstrate the method
of application of the bifurcation tailoring tech-
nique to flight dynamics. Background is first
given in section 2. In this paper we have chosen
to present in detail the work carried out on the
simpler 2nd order flight dynamics. This still con-
stitutes a complex nonlinear model, with compre-
hensive aerodynamic information. The purpose
is to demonstrate the principles of bifurcation tai-
loring and the additional feedback control, and
although recent work has shown the technique to
be successful when used on higher order systems,
this is easier to perform with the 2nd order model.
Bifurcation tailoring applied to the second order
aircraft model in order to produce an arbitrary bi-
furcation diagram is presented in section 3. Sec-
tion 4 contains some further results from bifur-
cation tailoring applied to the second order flight
dynamics model, using the pilot stick position as
a bifurcation parameter. Conclusions from these

results are drawn in section 5.

2 Background

2.1 Bifurcation Tailoring

Consider a continuous time dynamical system
described by

ẋ � f � x � p � q � (1)

where x � ℜn is the state of the system, p � ℜ
we assume to be a slow varying system param-
eter (bifurcation parameter) and q � ℜm is the
vector of all the other system parameters. The
bifurcation tailoring problem is to design a con-
trol law q such that the controlled system has the
desired dynamical behaviour as the parameter p
varies from pa to pb.

Consider the bifurcation tailoring problem
where the desired objective for the controlled
system is to exhibit a branch of equilibria such
that, as the parameter p is varied,

xId � g � p � (2)

where

x � �
xI
xII � , xI � �	
 x1

...
xm

��� , xII � �	
 xm � 1
...

xn

���
Defining the auxiliary vector as:

z � �
xII
q � (3)

we have that for any given p ��� pa � pb � the system
must satisfy the equation:

f � g � p ��� xII � p � q ��� f̃ � g � p ��� p � z ��� 0 (4)

The Implicit Function Theorem [10] states
that if the Jacobian of f w.r.t. z is invertible, then
(4) implicitly defines z as a function of p i.e.

z � zd � p ��� �
xIId � p �
qd � p � � (5)

which means that

x � �
xId
xIId � (6)
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is an equilibrium point of the feedforward open
loop system

ẋ � f � x � p � qd � p ��� (7)

Hence the desired equilibria defined by (2) is
a set of equilibria in the feedforward system (7).
Figure 1 shows the block diagram for this tech-
nique.

Fig. 1 Block diagram for the scheduled feedfor-
ward control system ("open loop" bifurcation tai-
loring)

2.2 Constructing the feedforward schedule

Typically it is not a viable option to find the
feedforward schedule analytically using eqn (4).
Thus, the schedule is created numerically to ob-
tain a set of tabulated data. This process can be
carried out using a bifurcation continuation pro-
gram such as AUTO [7]. This software would
usually be used to solve for the state, x, whilst
varying one parameter, p. We can invert the pro-
cess to solve eqn (4), i.e. solve for z � p � given the
function g � p � and varying one parameter, p.

2.3 Feedforward Bifurcation Tailoring Lim-
itations

1. The AUTO continuation program requires
a full, accurate mathematical model to cre-
ate the correct qd .

2. Undesired equilibria may be created in ad-
dition to the desired equilibria.

3. The stability of the equilibria is not as-
sured.

4. The equilibrium xd may not exist for some
value of p � pe, in which case there is no
solution for qd � pe � .

Problems 2 and 3 suggest that some sort of
feedback mechanism would be beneficial. This
would also overcome some inaccuracies in the
mathematical model used to create the feedfor-
ward signal (problem 1). Problem 4 is a problem
for any controller using the same control input,
q, and may for example, be seen as control actu-
ator saturation. The technique of bifurcation tai-
loring can, in fact, bring these limitations to the
attention of the control designer very early in the
design process.

2.4 Feedback Stabilisation

For the bifurcation tailoring applications in this
paper an adaptive model reference controller
known as Minimal Control Synthesis (MCS) was
used. This is an appropriate solution as the con-
troller automatically tunes the gains as the plant
changes throughout the range of p. The control
input is given by:

q � t ��� qd � t ��� ∆q � t � (8)

where qd � t � is the schedule (derived from tabu-
lated data from AUTO) and ∆q � t � is the stabilisa-
tion control from the MCS equations:

∆q � t ��� K � t � x � t ��� KR � t � xd � t �
K � t ��� αM � ye � τ � xT � τ � dτ � βMye � t � xT � t �

KR � t ��� αM � ye � τ � xT
d � τ � dτ � βMye � t � xT

d � t �
ye � t ��� Cexe � t ��� Ce � xm � x �

where αM � ℜ, βM � ℜ and Ce � ℜm  n are con-
stants, and where the linear reference model is
given by the standard linear state space model:

ẋm � Amxm � Bmxd (9)

The MCS controller is so useful in this appli-
cation as not only can the stability of the desired
solution be assured [24, 25], but the dynamic re-
sponse of the aircraft can be controlled in the re-
gion around the desired solution through the lin-
ear reference model [17]. If we set Bm � � Am we
ensure that xm � xd at equilibrium. Bearing this
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Fig. 2 Block diagram for the MCS feedback stabilised feedforward scheduled system

in mind, inspection of the MCS equations reveals
that, providing the eigenvalues of Am have nega-
tive real parts, at equilibrium x � xd . The MCS
controller will ensure that the system tracks the
reference model in the region around the equi-
librium value, allowing the control designer to
place the eigenvalues of the system throughout
the range of p. Figure 2 shows the block di-
agram for the feedforward MCS feedback sta-
bilised control.

3 Bifurcation Tailoring Applied to the Sec-
ond Order Model

3.1 Second Order HHIRM Aircraft Model

The aircraft model used in this paper is a highly
manoeuvrable non-linear model called the Hypo-
thetical High angle of Incidence Research Model
(HHIRM) [12], provided by QinetiQ. For this re-
port it is used in a second order form that de-
scribes the fast longitudinal dynamics of the air-
craft [8]:!

α̇ � q � q̄S " Cz cosα # Cx sinα $
mVT

� gcos " α $
VT

q̇ � q̄ScCm
Iy

(10)

where α is the angle of attack, q is the pitch
rate, Cz � fz � α � δel � δt p � is the coefficient of the

force in the z direction, Cx � fx � α � δel � δt p � is
the coefficient of the thrust in the x direction,
Cm � fm � α � δel � δt p � is coefficient of the pitch-
ing moment, δel is the elevator angle, δt p is the
thrust vectoring angle in the pitching sense, q̄ is
the dynamic pressure (assumed constant due to
constant velocity and height), other constants are:
S, the total wing area; m, the mass; VT , the air-
speed; g, the acceleration due to gravity; c, the
chord length; Iy, the moment of inertia about the
pitching axis. We can write (10) more generally
as �

α̇
q̇ � � f � α � q � δel � δt p � (11)

We are going to take δel as the bifurcation
(or continuation) parameter. Hence we use δt p as
a further control parameter to allow feedforward
control (figure 3). Since there is only one control
input (q � δt p), i.e. m � 1, there can only be one
pre-defined desired state in xI in equation (2).

Figure 4 shows the bifurcation surface for the
HHIRM model. The initial bifurcation analysis
is crucial, so as to be able to define possible de-
sired bifurcation diagrams and understand what
the limits of control saturation may be. Figure 5
shows the limits of the surface, i.e. bifurcation
diagrams created at the limits of δt p. Nominally
the limits are δt p �&% 90 ' . Although this is en-
tirely unrealistic, this is good practice to ensure
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Fig. 3 Block diagram for the feedforward sched-
uled (only) HHIRM model
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Fig. 4 Bifurcation surface for the 2nd or-
der HHIRM model (created using AUTO). Blue
lines=stable, Red lines=unstable

all branches within the physically limited param-
eter space are investigated. Knowing the bifurca-
tion surface will also help aid the understanding
of the closed loop control dynamics.

Figure 6 shows the original bifurcation plot
for α vs δel for the HHIRM model (with δt p � 0).
Figure 7 shows the HHIRM simulation response
under the same conditions (δt p � 0). When a
gradual decrease in the elevator angle from zero
to � 25 ' was applied to the HHIRM model simu-
lation the angle of attack gradually increased up
to � 19 ( 5 ' � α � 0 ( 59 rad � 33 ( 8 ' ) where there
was a catastrophic ‘drop’ from the edge of the
fold in figure 6 up to the higher α branch.

3.2 Feedforward scheduling

Figure 8 shows the user-defined desired bifurca-
tion diagram for α. This arbitrary shape was cho-
sen because of its simplicity and for its smooth
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Fig. 5 Bifurcation diagrams plotted at the limits
of δt p. Solid lines = stable, dotted lines = unstable
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Fig. 6 Bifurcation plot for the 2nd order HHIRM
model with δt p � 0 (created using AUTO). Solid
lines=stable, dotted lines=unstable.

qualities, hence it can easily be applied to a bi-
furcation continuation program or numerical sim-
ulation. Figure 9 shows the ideal schedule for
δt p created via AUTO, that when applied to the
HHIRM model ensured that the desired equilib-
ria existed.

The bifurcation diagram created using AUTO
for the 2nd order HHIRM model using the feed-
forward schedule alone is shown in figure 10.
The desired equilibria have been created in the
system but there are also unwanted equilibria so-
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Fig. 7 Simulation of the HHIRM model with
δt p � 0 and δ̇el � � 0 ( 001 '*) s
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Fig. 8 Desired bifurcation function for the 2nd
order HHIRM model

lutions and regions of instability. The additional
unwanted equilibria can be understood by look-
ing at the bifurcation surface shown in figure 4.
A bifurcation diagram is typically made with all
but one of the parameters fixed. Looking at the
surface, the original bifurcation diagram (figure
6) would therefore be simply a straight ‘slice’
through the surface with δt p � 0. The addition
of the feedforward schedule makes the ‘slice’
through the surface follow a curved path, as δt p
follows the schedule. This will result in the de-
sired equilibria as plotted against δel but as there
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Fig. 9 The ideal schedule that when applied to
the HHIRM model results in the desired equilib-
ria (figure 8)
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Fig. 10 The bifurcation diagram created using
the ideal feedforward schedule (figure 9).

may be more than one equilibrium point at each
(δel � δt p) point along the schedule, other unde-
sired equilibria may be picked out. In the case of
the 2nd order HHIRM surface we have unwanted
equilibria in the folded region where there are
three equilibria points for each (δel � δt p) point.

Figure 11 shows the simulation response
when the feedforward schedule alone is applied
to the 2nd order HHIRM model. The elevator is
moved slowly (δ̇el � � 0 ( 001 ' ) s) in order to ver-
ify the bifurcation diagram created using AUTO.
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Fig. 11 The simulation response for the feed-
forward scheduled (alone) 2nd order HHIRM
model. δ̇el � � 0 ( 001 '�) s
They match well, with the simulation following
the lower stable equilibria as expected when the
elevator angle is decreased from 0 to –25 ' .
3.3 Feedback Stabilisation

Figure 12 shows the block diagram for the feed-
back stabilised HHIRM model. The feedback
stabilisation was provided by the MCS algorithm
(see section 2.4) in order to stabilise the desired α
vs δel equilibria in the δel � � 16 ' to δel � � 17 '
region (see figures 10 and 11). Figure 13 shows
the response of the HHIRM model after the ad-
dition of the feedback stabilisation. The small
control effort required by the MCS controller can
be seen in figure 14.

Fig. 12 Block diagram showing the feedforward
scheduled HHIRM model plus feedback stabili-
sation
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Fig. 13 Simulation of the HHIRM with feedfor-
ward scheduling and MCS feedback stabilisation.
δ̇el � � 0 ( 001 '�) s
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Fig. 14 Simulation of the HHIRM with feedfor-
ward scheduling and MCS feedback stabilisation.
δ̇el � � 0 ( 001 '�) s

The entire range of elevator is now stable and
produces a unique (desired) equilibrium. As δel
reduces (the aircraft moves in a nose up sense),
the response is now to move in a smooth path
from the ‘lower’ branch to the ‘upper’ branch, in-
stead of the abrupt change in α seen in figures 7
and 11. Moreover, it can be noted that the refer-
ence model in the MCS algorithm (equation 9) al-
lows the control designer to control some aspects
of the response of the aircraft in the neighbour-
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hood of the equilibria. In effect the eigenvalues
of the controlled system are set via the reference
model over the desired bifurcation diagram equi-
libria.
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Fig. 15 The variation in Cm, the pitching moment
coefficient, due to variations in kcm, the pitching
moment coefficient tolerance.

The purpose of the MCS stabilisation is also
to ensure the correct bifurcation branch with the
addition of unknowns in the system. This could
be in the form of noise on the output signals,
but in this case model variation was included
by changing the variation in the pitching mo-
ment coefficient over the range of α. Figure 15
shows the effect of varying the tolerance term,
kcm, has on the pitching moment. For these tests
kcm � 0 ( 1. Figure 16 shows that the desired re-
sponse is still achieved under these conditions.
Figure 17 shows that the MCS controller has to
put in more effort in order to counter the changes
in the plant.

4 Bifurcation Tailoring using two parame-
ters

The previous sections have dealt with demon-
strating the concept of bifurcation tailoring by
applying it to second order nonlinear flight dy-
namics. So far we have dealt with tailoring one
particular state by changing one additional pa-
rameter as the bifurcation parameter varies, but
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Fig. 16 Simulation of the HHIRM (including
variations from the nominal model) with feedfor-
ward scheduling and MCS feedback stabilisation.
δ̇el � � 0 ( 001 ' ) s
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Fig. 17 Simulation of the HHIRM (including
variations from the nominal model) with feedfor-
ward scheduling and MCS feedback stabilisation.
δ̇el � � 0 ( 001 '�) s
it is apparent that the technique should be able
to be applied to more than one state. Looking at
the aircraft dynamics from a more practical point
of view, the pilot in a control augmented aircraft
does not have a direct link between the stick and,
say, elevator. That means that we may not want a
particular bifurcation diagram with respect to ele-
vator, but with respect to stick position (SP). This
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corresponds to a manoeuvre demand system and
allows us to have two additional parameters avail-
able for bifurcation tailoring. The theory laid out
in section 2.1 shows that we can therefore cre-
ate schedules to achieve a desired bifurcation di-
agram for two states. Effectively we are allowing
the parameters to ‘roam’ over the surface to fol-
low the desired bifurcation equilibria as the stick
position varies.
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Fig. 18 Schedule created for δel and δt p us-
ing AUTO plotted over the α bifurcation surface.
Blue are stable equilibria, Red are unstable. The
schedule is shown in black.

The process is the same as for the previous
sections, but now xd � ℜ2, and hence we will
create a schedule, qd � ℜ2. In this instance, we
select a linear relationship between the stick po-
sition and both α and q. Figures 18 and 19 show
the schedules created for δel and δt p plotted over
the bifurcation surfaces for α and q. As before
the equilibria traced out by following the sched-
ule are all embedded in the original system. As a
result of following these schedules, if the bifurca-
tion diagram for the state is plotted against the ar-
bitrary bifurcation parameter, stick position (fig-
ures 20 and 21), we achieve the desired straight
line bifurcation diagrams.

In practice the task of defining two bifurca-
tion diagrams to be picked out of two different
surfaces at the same values of δel and δt p without
reaching the control limits (edges of the surface)
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Fig. 19 Schedule created for δel and δt p us-
ing AUTO plotted over the q bifurcation surface.
Blue are stable equilibria, Red are unstable. The
schedule is shown in black.
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Fig. 20 Bifurcation diagram for α with respect
to the stick position

proved to be difficult. The use of the original bi-
furcation surfaces was essential at this point to
be able to select possible desired bifurcation di-
agrams. There was little difficulty in finding the
schedules using AUTO once this was achieved.
These problems could be addressed using opti-
misation routines to minimise the deviation from
the desired bifurcation diagrams when creating
the schedules, while allowing AUTO some flexi-
bility to continue through difficult regions of the
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bifurcation surfaces.

5 Conclusions

Bifurcation analysis and nonlinear control are be-
ing used more often in practical aerospace appli-
cations. The novel method for controlling non-
linear systems given by the bifurcation tailoring
technique allows the bifurcation diagram of the
controlled system to be changed to a given en-
tirely new one. This process has been demon-
strated to work successfully in tailoring the angle
of attack bifurcation diagram with respect to el-
evator for a second order highly manoeuvrable
flight dynamics model. This was achieved by ap-
propriately varying the thrust vectoring as the el-
evator varies to achieve the desired bifurcation
diagram with respect to elevator. The addition
of the adaptive feedback controller in the guise
of the MCS completes the strategy in terms of
stability and uniqueness of solution and gives the
designer the chance to control the response of the
system around the desired equilibria by select-
ing the reference model in the MCS equations.
Therefore we have removed the fold and unstable
region in the original system bifurcation diagram
and replaced it with a smooth unique set of stable
equilibria.

Although we have applied the bifurcation tai-

loring process to a low order nonlinear system
to create arbitrarily shaped bifurcation diagrams,
the power of the technique is apparent. So long as
the equilibria exist in the original system, we can
create a feedforward schedule and apply a feed-
back control loop to achieve a unique stable set
of desired equilibria.

Furthermore we have demonstrated that by
using the two available control parameters in the
second order flight dynamics model (elevator and
thrust vectoring), we can apply bifurcation tailor-
ing to both angle of attack and pitch rate, with
respect to a new bifurcation parameter, stick po-
sition. On going research is being carried out into
extending these ideas, and furthering the work
carried out on higher order models.
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