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Abstract

A new adaptive Finite Element (FE) framework
for Fatigue Crack Propagation (FCP) analysis is
proposed. This framework combines the sim-
plicity of standard industrial FCP analysis with
the generality and accuracy of a full FE analy-
sis and can be implemented by combining stan-
dard existing computational tools. In this way
it constitutes an attractive alternative to existing
approaches. Some novel features are introduced
in several of the steps of the proposed scheme in
order to make it efficient and at the same time
reasonably accurate. A two-dimensional numeri-
cal example involving FCP in a thin sheet under
plane-stress conditions is presented to demon-
strate the scheme’s performance. The numerical
results are compared to those of laboratory exper-
iments.

1 Introduction

Fatigue Crack Propagation (FCP) analysis has
become essential and standard in the design and
safety assessment of aircraft structures. In most
cases, the analysis performed in industrial ap-
plications involves a number of simplifying as-
sumptions and relies mainly on simple analyti-
cal or semi-analytical tools and on accumulated
experimental data. One assumption that is com-
monly made in this type of analysis is that the
geometry and loading are sufficiently simple so
that an analytical or empirical expression for the

Stress Intensity Factor (SIF) is available. Another
frequent assumption is that the given geometry
and loading give rise to a pure-mode problem,
i.e., Mode I or II or III, or at least to a prob-
lem dominated by one of these modes. A third
assumption is the propagation of the crack being
self-similar, e.g., in the Mode-I-dominated case
it elongates in a straight line perpendicular to the
tensile load applied in the far field.

Under such simplifying assumptions it is pos-
sible to apply the analytical-empirical methods
of classical linear fracture mechanics, described,
e.g., in [1]–[3]. Some very useful software prod-
ucts, such as FM [4], are based on these methods
and are used constantly in the aerospace industry
for damage tolerance analysis. This type of anal-
ysis is simple and robust and can be performed
even on a personal computer. Its deficiency is that
it is limited to cases with simple geometry and
load, or, if applied to more complicated cases, it
provides only a rough approximation.

On the other end of the spectrum, a detailed
two- or three-dimensional Finite Element (FE)
simulation is sometimes performed. Due to the
complexity of such analysis, it is used today
mainly in academic research, or in special and
critical cases where high accuracy is needed, like
the investigation of a specific failure. The dif-
ficulties in this type of analysis are that it usu-
ally requires a large computational effort, that it
is composed of several stages which are not au-
tomatically interconnected, and that it requires a
very highly-skilled user. Typical examples for
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detailed three-dimensional FCP analysis include
[5]–[7]. The general case is that of mixed-mode
crack behavior [8] and of non-similar growth,
namely propagation along a path which is not
predetermined.

The purpose of the present paper is to pro-
pose an adaptive FE framework for FCP analy-
sis which is based on linear elastic theory and
employs standard FE and mesh generation tools.
This framework combines the simplicity of the
standard industrial FCP analysis with the gener-
ality and accuracy of the full FE analysis. In this
way it constitutes an attractive and balanced alter-
native to the existing approaches. The framework
is fully automatic and is constructed in a modular
way. Some novel features are introduced within
some of its steps in order to obtain an efficient
scheme which is at the same time also reasonably
accurate. These include a non-standard calcula-
tion of the crack opening force, and an approx-
imate implementation of the maximal tangential
stress criterion that requires no stress calculation.

2 The FCP-FE Framework

2.1 General Structure of the Framework

The FCP-FE framework employs the following
two standard computational tools:

� A mesh generator, also capable of refining
the mesh in a specified region.

� An FE stress analysis code.

To these existing tools, a short “driver” code must
be added, that iteratively invokes these two tools
and performs the simple calculations indicated
below.

The framework consists of the following
main steps:

1. Mesh generation of the crack-less model.

2. FE analysis of the crack-less model; stor-
ing the nodal stresses σ0

i j.

3. Introduction of initial crack in the model.

4. Update of geometrical model.

5. Mesh generation; refining around the
crack-tip.

6. FE analysis.

7. Calculation of crack driving force G.

8. Calculation of SIF.

9. Unstable fracture occurs or crack reaches
boundary? If yes, stop.

10. Crack arrests? If yes, stop.

11. Calculation of crack propagation rate
da=dN.

12. Calculation of crack propagation direction.

13. Final number of cycles reached? If yes,
stop.

14. Return to Step 4.

Now some more details are given on each of
these steps.

2.2 Step 1: Mesh Generation of the Crack-
less Model

In this first step, the initial geometry of the model
is read, and an FE mesh is generated according to
the user specifications. The crack-less model is
needed for later FCP calculations.

2.3 Step 2: FE Analysis of the Crack-less
Model

Standard FE stress analysis is performed for the
crack-less model. In particular, the averaged
stress values at the nodes σ0

i j are stored for later
use. All the other results (deformation, stresses at
Gauss points, etc.) of this analysis are discarded.

2.4 Step 3: Introduction of Initial Crack

The initial crack may be introduced either ac-
cording to the user’s specifications or according
to some crack initiation criterion. In the former
case, the user must specify the location of the
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crack root, its initial size and its initial direc-
tion. In the latter case, the location and direc-
tion are determined by the crack initiation crite-
rion (e.g., according to the location and direction
of the maximum principal stress in the crack-less
model), and the user only specifies the initial size.

2.5 Step 4: Update of Geometrical Model

The geometrical model consists of the coordi-
nates and connectivity of the entire boundary of
the elastic body under consideration. After an
initial crack is introduced, and also after the crack
is elongated in each iteration, the previous co-
ordinates and connectivity must be appropriately
modified to accommodate the two newly added
crack surfaces.

2.6 Step 5: Mesh Generation and Refine-
ment

The new domain including the crack is meshed.
This is done either by generating a totally new
mesh, or by locally modifying the previous mesh
(depending on the capabilities of the mesh gener-
ator at hand). A small region around the crack-tip
should be refined. Usually a light refinement is
sufficient, since the FCP calculations that follow
rely essentially on the crack displacements and
not on the stresses (see Step 7 below), and thus an
accurate determination of the stress field around
the crack-tip is not needed. This refinement may
be relaxed or even totally avoided if singular
quadratic elements are used near the crack-tip,
with midside nodes relocated at quarter-distance
locations. The use of such elements (or other
appropriate singular elements) is recommended;
however non-singular (say, standard linear) ele-
ments are usable too as long as the mesh is ap-
propriately refined.

2.7 Step 6: FE Analysis

Standard FE analysis is performed. Although the
given fatigue loading is cyclic, the FE analysis
is static, using a representative loading parameter
λ = λ0 (e.g., unity). Due to the linearity of the
elasticity problem, such a representative load is

sufficient to scale the entire response of the struc-
ture to the cyclic loading (see Step 11 below).

The only results which are needed for later
FCP calculations are the displacements at all the
nodes along the two crack surfaces (for Step 7)
and the principal directions of the stresses at the
crack-tip (for Step 12). The other results of this
analysis may be retained for display but they are
not needed for the FCP analysis.

2.8 Step 7: Calculation of Crack Driving
Force

By definition, the crack driving force (also called
the energy release rate) is

G =� ∂Πc(a)
∂a

; (1)

where Πc is the potential energy associated with
the crack (or, more precisely, the difference be-
tween the potential energy in the body with and
without a crack), and a is the crack length. There
are several indirect ways to calculate G (e.g., us-
ing the J-integral); however, here G is calculated
directly by using the finite difference approxima-
tion of (1),

G(a) =� Πc(a)�Πc(a�∆a)
∆a

; (2)

where ∆a is the crack increment.
A standard formula for G, based on deriv-

ing a simplified expression for the difference
Πc(a)�Πc(a�∆a), is (see, e.g., [2], p. 162, with
a slightly different notation):

G(a) =
1

2∆a

Z a

a�∆a
δua

i (s)σ
a�∆a
i j (s)n j(s)ds : (3)

Here s is the coordinate along the crack, and ua
i (s)

is the displacement in the i direction, at loca-
tion s along the crack, computed for the model
with crack-length a. Similarly, σa�∆a

i j (s) is the i j-
stress component at location s, computed for the
model with crack-length a�∆a. The quantity δui

is the distance (in the i direction) between the two
crack surfaces due to the deformation (positive if
the crack “opens”), and n j is the j component of
the unit vectorn normal to the crack surface. The
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difficulty with the formula (3) is that it involves
the singular stresses σa�∆a

i j which are unbounded
at the crack-tip s = a�∆a. To avoid this diffi-
culty, (3) is replaced by the following formula for
Πc(a):

Πc(a) =�1
2

Z a

0
δua

i (s)σ
0
i j(s)n j(s)ds : (4)

This formula is used, in a recursive manner, to-
gether with (2) to compute G(a). The integral
appearing in (4) is completely regular, since σ0

i j
is the stress for the crack-less model and is thus
bounded everywhere. It can be shown that (2)
and (4) are indeed equivalent to (3).

2.9 Step 8: Calculation of Stress Intensity
Factor

The effective mixed-mode SIF K is calculated
from the crack driving force G using a well-
known relation. Under plane stress conditions
this relation is

K =

p
EG ; (5)

where E is the material Young modulus.

2.10 Step 9: Checking Unstable Fracture
and Crack Reaching the Boundary

The SIF K is compared to the material fracture
toughness Kc to determine whether unstable frac-
ture occurs with the current geometry and load-
ing. It should be noted that K is the effective
Mode-I SIF (i.e., KI) and similarly Kc = KIc, in
accordance with the notion that even in a mixed-
mode situation the crack is propagated in an ef-
fective Mode-I manner [1].

In addition, if the crack reaches or crosses
any boundary of the geometrical model then the
analysis is stopped. On the continuous level the
SIF always increases beyond the critical value be-
fore the crack reaches the boundary; however this
is not always the case on the discrete level, es-
pecially if the SIF experiences a rapid growth.
Also, the analyzer may wish to follow the prob-
able crack path beyond the onset of fracture, and
thus would set Kc to an artificially high value.

2.11 Step 10: Checking Crack Arrest

Two criteria are used to determine crack arrest.
First, crack propagation stops if the driving force
G becomes non-positive. Second, crack closure
occurs when the maximal principal stress at the
crack-tip is non-positive, namely when the nor-
mal stresses around the crack-tip are all compres-
sive.

2.12 Step 11: Calculation of Crack Propaga-
tion Rate

Calculation of the current FCP rate is performed
using the empirical Paris law:

da
dN

=C(∆K)
m : (6)

Here N is the number of cycles, and C and m are
material constants. The quantity ∆K is defined
as ∆K = Kmax�Kmin, where Kmin and Kmax are
the two extreme values of K corresponding to the
two extreme values of the cyclic loading param-
eter, λmin and λmax. Owing to the linearity of the
elasticity problem and the fact that a loading pa-
rameter λ0 has been used in the FE analysis (Step
6 above), it is easy to see that

∆K =
λmax�λmin

λ0
K : (7)

The Paris law (6) may be used in two forms.
If the number of loading cycles ∆N in each iter-
ation is fixed, then the current crack increment is
calculated via

∆a = ∆N C(∆K)
m : (8)

On the other hand, if the crack increment ∆a is
set to be fixed, then the number of loading cycles
needed for this increment is

∆N = ∆a= [C(∆K)
m
] : (9)

The latter mode of calculation should usually be
preferred, since in this mode the computational
parameters are easier to control.
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2.13 Step 12: Calculation of Crack Propaga-
tion Direction

Three criteria for determining the current crack
propagation direction [8] are implemented:

� Maximum tangential stress criterion. The
crack propagates in the direction perpen-
dicular to the principal direction corre-
sponding to the maximal tensile stress at
the crack-tip. In two dimensions the prin-
cipal direction θP, relative to the global
system of coordinates (x;y), is found by
tan2θP = 2σxy=(σxx�σyy); thus only this
ratio of stresses at the crack-tip need to
be found and not the values σi j separately,
which are theoretically infinite. Numeri-
cal experiments show that even if the FE
analysis does not treat the singularity at the
crack-tip properly, the stress ratio obtained
is sufficiently accurate to determine the ap-
proximate crack direction.

� Maximum tangential stress criterion,
asymptotic calculation. In order to
avoid altogether the need to calculate
stresses around the crack-tip, one may
proceed as follows. According to the
asymptotic formulae for the stress field
around the crack-tip [1, 2] the normal
opening displacement δuN is proportional
to KI

p
r whereas the tangential sliding

displacement δuT is proportional to KII
p

r,
with the same constant of proportionality
that depends on the material properties.
Here r is the radial distance from the
crack-tip. Thus, δuT =δuN = KII=KI for
r ! 0. In practice, the ratio KII=KI is
calculated based on the displacement at
the node adjacent to the crack-tip. In
turn, the desired maximum principal
direction is immediately determined by
this ratio [1, 8]:

tan
θm

2
=

1
4

KI

KII
� 1

4

s�
KI

KII

�2

+8 : (10)

Note that two approximations are involved
in this calculation: (a) the use of the

asymptotic expressions for the near stress
field; and (b) the calculation of the dis-
placement ratio at a finite distance from the
crack-tip. On the other hand, the advan-
tage of this criterion is that it is based on
displacements only.

� Crack-tip displacement criterion. The
crack propagates in the direction perpen-
dicular to the limiting direction of the dis-
placement vector δu(s) (see Step 7 above)
as s approaches the crack-tip. In practice,
the displacement vector at the node adja-
cent to the crack-tip is used to this end.

For each of these three criteria, a certain
amount of random deviation in the crack prop-
agation direction may be added if desired.

2.14 Steps 13 and 14: Closing the Loop

At the end of each iteration, the current accumu-
lated number of cycles N is compared to a given
bound; if N is larger than this bound then the pro-
cess is stopped. Otherwise, one proceeds to the
next iteration.

3 Numerical Examples

The computational framework is applied to a
problem which is also investigated experimen-
tally in the laboratory. All the specimens used
here are thin rectangular sheets, with thickness
3.28mm, made of Aluminum 6061-T6. A “crack
gage” is attached to each specimen, which elec-
tronically measures, during the entire duration of
the experiment, the projected length of the crack
in the initial crack direction. In addition, an at-
tached millimetric grid is used to read the same
projected length visually. Tensile loads are ap-
plied to the specimens by using an MTS loading
rig.

First a calibration experiment is performed
in order to determine the Paris constants C and
m (see (6)) for the material at hand. This ex-
periment was done under pure Mode I condi-
tions, and yielded the values m = 4:02 and C =

6:2 � 10�14 in MPa and m units. These mate-
rial constants, as well as the known mechanical
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properties of aluminum, i.e., Young’s modulus
E = 7:3 � 104 MPa and Poisson’s ratio ν = 0:3,
are used in all the simulations that follow.

Now the specimen described in Fig. 1 is con-
sidered. An initial crack of size 6mm is intro-

Fig. 1 The FCP specimen

duced in a sheet of dimensions 10cm�8cm, that
contains an off-centered hole. The specimen is
loaded in tension in two small regions near its
lower and upper ends, as illustrated in the figure.
It should be remarked that the loading on the up-
per end of the sheet has little effect on the stress
field and deformation in the regions of interest,
and has been applied in the experiment for tech-
nical reasons related to the loading surfaces of the
MTS machine. The overall tensile force is os-
cillating between a very small value, which may
be regarded as zero, and a maximum value of
1500Kgf. The initial loading frequency was ini-
tially set to 10 cyc/sec, but as the crack started to
propagate more rapidly the frequency was gradu-
ally reduced down to a value of 1 cyc/sec.

As expected, in the laboratory experiment the
crack propagated self-similarly up to a certain
point, and then bent and approached the hole.
The propagation rate increased gradually dur-
ing the growth until the crack reached the hole
boundary, but no unstable fracture was observed.
The experiment was repeated twice. Thus four
crack paths have been measured, namely the
paths at both sides of the two sheets. Due to the
relative large thickness of the sheet and the fact
that the crack is slanted in a 45 degree position,

the paths obtained on both sides were not identi-
cal.

This experiment is now compared to the re-
sults of the computation. In the latter, linear tri-
angular finite elements are used throughout. In
the analysis described here, a constant crack in-
crement of ∆a = 5mm per iteration is given, and
∆N is computed according to (9). Also, the max-
imum tangential stress criterion (with no random
deviation) is used to determine the crack direc-
tion. Two discretized models have been used: a
full-length model, and a “reduced model,” which
is truncated on the right, left and upper part, so
that the dimensions of the sheet are 5cm�8cm.
Whereas numerical experiments show that the re-
sults of the two models are quite similar, the latter
requires much less computational effort.

Fig. 2 describes the reduced sheet model with
the initial crack, and the corresponding finite el-
ement mesh. Fig. 3 shows the deformed model

Fig. 2 The computational FCP model: initial
crack and mesh

with the final crack path and mesh, as obtained
after 8 iterations. In Fig. 4, five crack paths are
compared: the four experimental paths and the
computational path. Taking into account the large
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Fig. 3 The computational FCP model: final crack
path and mesh in deformed configuration

distribution exhibited in the experimental results,
the agreement between computation and experi-
ment is quite satisfactory.

Fig. 4 Experimental and computational Crack
paths

The experimental and computational FCP
rates were also compared and were found to be
in good agreement in average. Again the ex-
perimental propagation rates obtained in the two
experiments deviated significantly. One effect
which causes such a deviation is the sensitivity of
the results to the initial amount of cycles needed

to initiate the crack growth, which depends on the
surface quality and exact geometry of the initial
crack.
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