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Abstract

This paper investigates incompressible,
unsteady flow over 3-dimensional cavities.
Previous research in incompressible flow with
cavities has included flow inside and over a 2-
dimensional cavity, and flow inside a 3-
dimensional cavity, driven by a moving lid. The
present research is focused on incompressible
flow over 3-dimensional open shallow cavities.
This involves the complex interaction between
the external flow and the re-circulating flow
inside the cavity. A computational fluid
dynamics approach, based on the unsteady
Navier-Stokes equations, is used in the study.

Typical results of computation with the
Reynolds number equaling 3000 are presented.
Unsteady vortical structures and shear-layer
oscillations are observed within and around the
cavities.

1 Introduction

Several aerodynamic configurations include
cavities as an integral part of design,
manufacture, and performance. Flow over a
cavity is often characterized by unsteady
velocity and density, and furthermore by
unsteady pressure fluctuation [1]. Surface
defects such as cavities increase the skin
friction of a surface (e.g. wing) and affect the
operation cost. Development of control
techniques to reduce the drag and to alleviate
the pressure fluctuation produced by a cavity
requires a fundamental understanding of
aerodynamics of complex flow over such a
geometry [2]. Cavity flow is also a topic
relevant to aero-acoustics and transition
studies.

During the past years, both experimental
and computational studies have been conducted
into the cavity flow structures. However, these
studies were mainly focused on compressible,
particularly supersonic flows [3][4]. Although
there have been some studies considering
incompressible cavity flow, these were mainly
focused on flow inside or around 2-dimensional
cavity (e.g. [5]-[9]), or flow inside 3-
dimesional cavity known as lid-driven cavity
(e.g. [10]-[12]).  Lid-driven cavity flow does
not take into consideration the interaction
between the external flow and the re-circulating
flow inside the cavity. This interaction can be
observed for the flows passing over the cavity.
A shear layer forms between the external flow
and re-circulating internal flow. This shear
layer is inherently unstable, which may flow
over or bridge a cavity (i.e. open cavity), or
deflect inwards with a possible impingement on
the floor (i.e. closed cavity). Open-cavity flow
fields are remarkably complicated, with the
internal and external regions that are coupled
via self-sustained shear layer oscillations. In
order to understand this complex flow
structure, numerical studies were performed on
3-dimensional cavities, assuming a rectangular
geometry.

Open cavities are commonly classified
into ‘shallow’ or ‘deep’, according to the
depth-to-length (D/L) ratio. Following [13],
cavities with D/L less than one are described as
‘shallow cavities’, while cavities with D/L
greater than one are considered to be ‘deep
cavities’. The present research is an extension
of the authors’ previous work [14] from 3-
dimensional deep open cavity to 3-dimensional
shallow open cavity. Flow over shallow, open
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cavities exhibits constant amplitude shear-layer
oscillations. A CFD approach is used in this
study.

2 Methodology

The flows to be modelled are assumed to be 3-
dimensional, incompressible and unsteady. In
addition, they are also assumed to be laminar.

2.1 Governing equations

The governing equations are based on the 3-
dimensional, unsteady, incompressible Navier-
Stokes equations. In Cartesian coordinates,
these equations can be written, in a
dimensionless form, as
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νLURe ∞=  is the Reynolds number, with

∞U  being the free stream velocity, L
being the length of the cavity and v
being the kinematic viscosity.

One of the primary difficulties for solving
Equations (1) and (2) is to couple changes in
the velocity field with changes in the pressure
field while satisfying the continuity condition,
Equation (1). To overcome this difficulty, a
pressure Poisson equation has been established
to obtain the pressure field [15]. This equation
is jointly solved with Equation (2) to obtain the
solutions to both the pressure and velocity. The
obtained velocity solution can satisfy the
required continuity condition. In this method,
the velocity and pressure are indirectly
coupled.

The pressure Poisson equation can be
obtained by taking the divergence of Equation
(2). This gives
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Equations (1)-(3) constitute the mathematical
model used in the computation.

2.2 Numerical method

The numerical scheme used was the second-
order implicit Crank-Nicolson finite difference
scheme, with second-order accuracy in both
time and space. At each time step the
computation involves the solution of a linear
algebraic system with a tri-diagonal matrix.
This can be efficiently solved using the
alternating direction implicit (ADI) method,
which is the method employed in present
computation.

Fig. 1 shows the geometric configuration
of the rectangular cavity, with a length L, width
W and depth D, used for computation. It is
assumed that the flow is symmetric with
respect to the longitudinal center plane,
therefore only a half span of the cavity is
chosen to be the computational domain.

Fig. 1 Geometry of the rectangular half-span
cavity used for computation
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A uniform in-flow ∞U  is assumed so that a
thin laminar boundary layer is developed at the
lip of the cavity. The out-flow is specified by
zero’th-order extrapolation from the computa-
tion zone. The entire flow field above the
cavity is initialized with the in-flow condition,
and the flow field within the cavity is
initialized to zero. The initial pressure is set to
its free stream value. No-slip boundary
condition is used on solid surfaces, where the
pressure is obtained by an extrapolation of the
interior point values of the pressure in the
direction normal to the wall. At the upstream
boundary, the y and z component velocities, v
and w, are assumed to be zero. The flow
variables at the downstream boundary are also
obtained based on zero’th-order extrapolation.

Three-dimensional Cartesian non-uniform
Cartesian grids are generated with clustering of
nodes near walls and in the shear layer region.
These clustered nodes account for greater
gradients in velocity and pressure in these
regions.

2.3 Code Validation

The code has been examined using both
analytical and numerical examples given in
[11]; the numerical examples used for the
validation include both 2-dimensional and 3-
dimensional cavity flow fields. A detailed
description of these validation studies can be
found in [14]. Both the analytical and
numerical case studies have validated the code.

3 Typical Results and Discussion

This section describes the results of
computation of incompressible flow over 3-
dimensional rectangular open shallow cavities.
In particular, two depth-to-length ratios are
considered, which are 5.0/ =LD  and

25.0/ =LD , respectively; in both cases, the
width-to-length ratio is 3/ =LW . The
following presents the results obtained with the
Reynolds number 3000=eR , chosen based on

the length of the cavity.

3.1 Case 1

In case 1, the cavity with a depth-to-length
ratio 5.0/ =LD  is simulated. Fig. 2 shows the
cavity flow fields of the longitudinal (i.e. x)
direction, at the 0=y  (i.e. symmetry) plane
and at the dimensionless time 204=t .
Specifically, Fig. 2(a) indicates the velocity
vectors; Fig. 2(b) is a blow-up of the velocity
vectors inside the cavity; and Fig. 2(c) shows
the instantaneous vorticity contours. Fig. 2(b)
shows the primary vortex, and a secondary
vortex upstream. In addition, a tertiary vortex is
formed in the front of the cavity below the free
shear layer. Since the tertiary and the primary
vortices rotate in a clockwise direction, a
saddle point exists in the flow field between
their cores. These vortex phenomena have also
been found in 2-dimensional open shallow
cavities [6]. Fig. 2(c) clearly shows the free
shear layer oscillations above the cavity and in
the downstream boundary layer.

Away from the symmetry plane, Fig. 3
and Fig. 4 show the cavity flow fields of the x
direction at the 9.0=y  and 2.1=y  planes,
respectively, at 204=t . Compared to Fig. 2(b),
in Fig. 3(b) (i.e. the 9.0=y  plane) the primary
vortex becomes larger, the secondary and
tertiary vortices become weaker, and a vortex is
found at the lower corner downstream. It seems
that the tertiary vortex is merged into the
primary vortex in Fig. 3(b). However, in Fig.
4(a), i.e. the 2.1=y  plane, a similar flow
structure is found to that for the symmetry
plane. These clearly indicate the 3-dimensional
nature of the flow field. The vorticity contours
included in these figures show the shear layer
oscillations at the corresponding planes,
respectively. For these three planes, the
strongest oscillation is seen at the 9.0=y
plane due to the largest primary vortex.

Fig. 5 to Fig. 7 show the cross flow
velocity vectors and vorticity contours of the
lateral planes at 5.0=x , 7.0=x  and 4.1=x ,
respectively (relative to the front wall of the
cavity). Fig. 5 indicates that the cross flow is
weak in the front end of the cavity, but with
visible shear layer oscillation in the lateral
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direction. In Fig. 6, i.e. the 7.0=x  plane, the
longitudinal vortices are found at the top and
floor of the cavity. These vortices, interacting
with the changing primary vortex along the
lateral direction, cause the oscillation in the
shear layer at the lateral direction. These
oscillations are propagated downstream. This is
evident in Fig. 7, corresponding to the cross
flow at the 4.1=x  plane, which is aft of the
cavity. The longitudinal vortices can be clearly
seen; the vortices in the shear layer are stronger
than at both of the 5.0=x  and 7.0=x  planes.
Based on Fig. 2 to Fig. 7, it is not difficult to
find that the investigated cavity flow field is
unsteady.

3.2 Case 2

In case 2, the cavity with a depth-to-length
ratio 25.0/ =LD  is simulated. Fig. 8 shows
the flow structure of the longitudinal direction
at the 0=y  and 0.1=y  planes, respectively.
As can be seen, the flow structures at these two
planes are similar. In fact, this similarity is also
found between the flow structures at other
planes for which computation have also been
performed (e.g. 9.0=y , 2.1=y  etc.). Thus,
the size of the primary vortex, located
downstream in the cavity, does not change
significantly with the planes. This may explain
why there is no significant shear layer
oscillation being found in these flow fields.
These are considerably different from the
observations obtained earlier for the cavity with

5.0/ =LD , in Case 1.
Fig. 9 shows the cross flow velocity

vectors of the lateral direction at 5.0=x  and
85.0=x  planes (relative to the front wall of

the cavity). At the 5.0=x  plane (Fig. 9(a)), the
cross flow is so weak that it is difficult to be
seen. A small longitudinal vortex is only found
at the planes closer to the rear wall of the
cavity, at the lower corner of the cavity (e.g.
Fig. 9(b)).

4 Conclusions

This paper investigated the numerical
simulation of incompressible flow over 3-
dimensional open shallow rectangular cavities,
with a Reynolds number of 3000, and a cavity
geometry of 3/ =LW , and 5.0/ =LD  and

25.0/ =LD , respectively. In the case with
5.0/ =LD , the flow exhibits a 3-dimensional

nature, and unsteady vortical structures and
shear-layer oscillations are observed within and
around the cavities. In the case with

25.0/ =LD , it is found that the flow tends to
be stable, and thus exhibits a 2-dimensional
nature. Further studies are being undertaken for
higher Reynolds numbers.
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(a) Velocity vectors

(b) Blow-up of (a) for the velocity vectors
inside the cavity

(c) Vorticity contours of (a)

Fig. 2 Flow fields of x direction at 0=y  plane
Cavity geometry: 5.0/ =LD , 3/ =LW

3000Re = , 204=t

(a) Velocity vectors

(a) Velocity vectors

(b) Blow-up of (a) for the velocity vectors
inside the cavity

(c) Vorticity contours of (a)

Fig. 3 Flow fields of x direction at 9.0=y  plane
Cavity geometry: 5.0/ =LD , 3/ =LW

3000Re = , 204=t

(b) Vorticity contours of (a)

Fig. 4 Flow field of x direction at 2.1=y  plane
Cavity geometry: 5.0/ =LD , 3/ =LW

3000Re = , 204=t
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(a) Cross-flow velocity vectors

(a) Cross-flow velocity vectors

(a) Cross-flow velocity vectors

(b) Cross flow vorticity contours

(b) Cross flow vorticity contours

(b) Cross flow vorticity contours

Fig. 5 Cross-flow field at the lateral 5.0=x plane (relative to the front wall of the cavity)
Cavity geometry: 5.0/ =LD , 3/ =LW

3000Re = , 204=t

Fig. 6 Cross-flow field at the lateral 7.0=x plane (relative to the front wall of the cavity)
Cavity geometry: 5.0/ =LD , 3/ =LW

3000Re = , 204=t

Fig. 7 Cross-flow field at the lateral 4.1=x plane (relative to the front wall of the cavity)
Cavity geometry: 5.0/ =LD , 3/ =LW

3000Re = , 204=t
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(a) Velocity vectors at 0=y  plane

(b) Velocity vectors at 0.1=y

(a) Cross-flow velocity vectors at 5.0=x  plane

Fig. 8 Flow fields of x direction at different y planes
 Cavity geometry: 25.0/ =LD , 3/ =LW , 3000Re =

(b) Cross-flow velocity vectors at 85.0=x  plane

Fig. 9 Cross-flow fields at different lateral x planes (relative to the front wall of the cavity)
Cavity geometry: 25.0/ =LD , 3/ =LW , 3000Re =


