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Abstract

The optimization problem of complex
configurations is solved in the framework of the
linear theory. Such variations of local incline
angles of surface's elements are determined
which lead to reduction of wave drag coefficient
but keep the given magnitude of lift and pitching
moment coefficients and also wing volume or
areas of the wing cross-sections. For solving the
problem of optimization the variation method is
used. The Reverse Flow Theorem is lied in its
base. The results showing the necessity to
consider the optimization problem not only for
wing separately, but also for complete
configuration containing all lifting surfaces and
fuselage are presented. The numerical analysis
of thick wing-body configuration confirmed the
correctness in the estimations of the induced-
wave drag reduction, which was obtained by the
linear theory. Also it confirmed the opportunity
to determine an optimum fuselage axis
deformation on the basis of the linear theory.

Nomenclature

ϕ - velocity potential
V∞ - freestream velocity
M - Mach number

β = 2M 1∞ −

LC - lift coefficient

DC - induced-wave drag coefficient

mC - pitching moment coefficient

pC - upper surface pressure coefficient

pC ∗ - upper surface pressure coefficient
(reverse flow)

Λ - Lagrangian

1λ , 2λ - Lagrange multipliers

iµ - step size at i-th iteration
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relative reduction of induced-wave
drag coefficient

LEΛ - leading-edge sweep angle
c - local wing chord
b - wing span
x, y, z - Cartesian coordinates
X x / c=
Y y / c =
Z z / b=
α - local angle between meanline and

x-axis

FAφ - incidence angle of fuselage axis
φ - twist
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- relative changing of wing cross-
section area

Si - area of i-th wing cross-section

Superscripts

0 - initial geometry conditions
opt - final design conditions

OPTIMIZATION OF A GIVEN-PLANFORM LIFTING
SYSTEM AT SUPERSONIC SPEED

Vladimir A. Silantiev, Anna V. Ignatieva
Federal State Unitary Enterprise "Siberian Aeronautical Research Institute",

SibNIA, No 21, Polzunova Str., Novosibirsk, 630051, Russia.

Keywords: supersonic, linear theory, optimization task, variation method, lift coefficient,
volume, induced-wave drag, lift-zero drag, middle surface, cross-section shape, fuselage axis.



Vladimir A. Silantiev,  Anna V. Ignatieva

216.2

Introduction

The reduction of wave drag is one of the most
important problems for modern aircraft with
supersonic cruise speed. The streamlining
conditions of the supersonic passenger aircraft
in cruising mode ( M ∼ 2 , LC 0.1∼ ) allow to
use widely of the linear theory.

As a rule, gradient and variation methods
are used great number of varying parameters
(incidence angles of surface's elements) in the
wing optimization [1], [2]. They can be easily
adapted to optimization problems for complex
configurations and allow taking into account
different restrictions. It should be noted that in
spite of success achieved during the
development of optimization methods on the
basis of Euler equations, this problem makes
high requirements to computer capabilities [3],
[4]. So, the paper [4] shows that solution
depends on dimension of calculation grid, even
for a wing-alone configuration. The assessments
demonstrated a great role of fuselage axis
deformation in optimization problems. But even
while estimating simple wing–body and wing–
canard configuration the number of estimated
cells increases in several times, thus these
procedures can't be widely used in practice.

Due to this at present time, the
development of high-operative optimization
methods based on the linear theory is still an
actual task. The most perfect of them is the
version of the variation method based on
consequence of the Reverse Flow Theorem [1].
Use of the mentioned method allows to do mass
parametric calculations not only for wing
separately but for complex configurations:
wing-canard, wing-fuselage, wing-canard–
fuselage and so on. Similar algorithms and
programs permit to solve problems of
aerodynamic designing quickly and can be
easily included to CAD system.

Optimization problem

The supersonic flow over a thin wing is
considered within the framework of the linear
theory based on the linear equation of velocity
potential:
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The velocity potential on the upper wing
surface, which is in XOZ plane, is determined
by using the local incidence angles of the

surface 1 1
1 1

( , )
( , )

∞

= − yV x z
x z

V
α  according to

equation:

1 1 1 1

2
S 1 1

V ( x ,z )dx dz
( x,z ) .

( x x ) ( z z )

αϕ
π β

∞= ⋅
− − −∫∫

The following restrictions are considered
during optimization:

a) lift coefficient: LC ,

b) pitching moment coefficient: mC ,

c) limitation of the value of local
incidence angles: |α|<αmax,

d) volume or wing cross-section areas,
e) limitation of the wing cross-section

thickness.
As the flow is governed by the linear

potential equation the optimization problem can
be subdivided into two tasks: optimization of
the middle surface of aircraft configuration and
optimization of the wing cross-section shape.

Optimization of middle surface

The first task (the task of middle surface
optimization) is formulated in the following
manner: to find local incidence angles of middle
surface's elements for a given-planform lifting
system, which has minimum of induced-wave
drag with restrictions: LC , mC , αmax.

To solve this task the method of
Lagrangian multipliers is used. Its solution is
reduced to finding of Lagrangian minimum:

D 1 L 2 mC C C= + λ + λ⋅ ⋅L . (1)

Using consequence of the Reverse Flow
Theorem [1], variation of the objective function
L  can be written as:
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And then, the local incidence angle
variation leading to reduction of Lagrangian and
hence reduction of the induced-wave drag
coefficient will be:
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So, with small 0µ > , such changing in α
provides the reduction of induced-wave drag
coefficient DC  without changing of the

coefficients LC  and mC . Value optµ  providing

maximal reduction of the induced-wave drag is

determined by the condition: ( ) 0δ =
µ
∂

∂
L .

Lagrangian multipliers are found from equations

L mC C 0δ = δ =  with 0α = δα + α , where 0α  is

previous incidence angle distribution of the
surface.

The optimum incidence angles distribution
of the surface is determined by the iterative
procedure. Values iµ , 1λ , 2λ  are determined at

the each iteration step then variation iδα  is
found according to the formula (3), so

i 1 i iα δα α+ = + is known.
40-50 iterations are enough in order to

obtain convergence solution even for complex
configurations. Primary magnitudes of the lift
and pitching moment coefficients are keeping
during the iterative procedure. So, the initial
geometry of wing middle surface, which
provides the given magnitudes of coefficients

LC  and mC , must be determined before the

iterative procedure.

Optimization of the wing cross-section shape

The second task of the optimization is
formulated in the following manner: to
determine the cross-section shape of the wing,

which has minimum of zero-lift drag with
restriction of the wing volume (or restrictions of
the wing cross-section areas).

The number of limitations for the task of
the wing cross-section shape optimization is
increased. Additional restrictions are required in
order to obtain an airfoil which is reasonably
thick and closed at the trailing edge.

The cross-section shape optimization task
is solved with the same variation method, which
was taken for solving the middle surface
optimization. Lagrangian multipliers are found
from equations system. In spite of a lot of
additional restrictions, there aren't difficulties in
its solving. Since the matrix of the system has
arrow–form (restriction of the wing volume) or
is easily transformed to linearly independent
(2x2) matrixes (as for restriction of the cross-
section area).

Numerical procedure

In order to obtain of the discrete equations,
integrated area is divided into a finite number of
elements with equal intervals. Grid lines are
parallel to Mach lines. It is assumed that
α(x,z) = α*ij is constant for each element.
Fractional elements are considered while the
influence of elements belonging to leading and
trailing edges are calculated. The form of these
elements corresponds to actual geometry. In the
case of the subsonic edge (the task of the middle
surface optimization) fractional elements aren't
used.

Results

Results obtained for the wing-fuselage
configuration and supersonic passenger aircraft
configuration are presented to show the
contribution of fuselage axis deformation in the
induced-wave drag reduction. The optimization
problem of the wing separately is also solved.

The lift, pitching moment and induced-
wave drag coefficients are obtained for
simplified configuration while the fuselage and
the wing are approximated with thin curved
surfaces.
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The plate middle surface was chosen as an
initial geometry.

The general view of configuration is shown
in upper part of fig. 1. Optimization mode:
M = 1.8 , restriction of the lift coefficient -

LC 0.1=
The induced-wave drag reduction is

estimated as δ
0 opt
D D

0
D

C C
(%)

C
= −

.

In fig. 1, we can see the computed results
of the basic trapezoidal wing with supersonic
leading edge ( LEΛ  = 45°, M = 1.8 ). The
reduction of the induced-wave drag for such
wing shape is low (δ =2.6%).

But in the case of the wing-fuselage
configuration (fig.2), the induced-wave drag
reduction increases up to 26%. Considerable
induced-wave drag reduction is due to changing
the flow pattern over the wing with the optimum
fuselage axis deformation.

To verify the obtained results marked
induced-wave drag reduction was calculated
ones more but taking into account of the thick
fuselage. The discrepancy between obtained
estimations was less than 1%.

The second configuration is presented in
figs. 3 and 4. Optimization mode: M = 2.0 ,
restriction of the lift coefficient LC 0.1= . In the
lower part of fig. 3 we can see the parameters of
the wing middle surface, which obtained for
separate wing. The induced-wave drag
reduction is equal to 16%.

As for configuration with optimized wing
and uncurved fuselage, the optimization effect is
reduced. Computed parameters δ  for this
example are given in the table.

FAφ δ (%)

0 3.3
1.3° 7.1
2.4° 9.2
3.3° 9.3
3.7° 9.2
4.1° 9.0
4.8° 8.1

Maximum of the induced-wave drag
reduction (δ =9.3%) was obtained when
incidence angle of the fuselage axis was less
than incidence angle of the optimal wing board
section. So, maximum reduction of induced–
wave drag for wing-fuselage configuration
should be less than for the wing separately.

In the case of wing-fuselage configuration
δ  increases up to 24% (1.5 times more than for
the wing separately). In fig. 4 the geometrical
parameters of the wing middle surface and
fuselage axis shape are given. In the central
part, the wing section deformation increases in
comparison with the deformation were obtained
for the separate wing. The section shape
changes less on the outer-part of the wing.
Incidence angles of sections changed
insignificantly.

In fig. 5 it’s shown the results of the cross-
section shape optimization for separate wing in
the second configuration. Optimization mode:
M = 2.0 , restriction of the wing volume. The
parabolic profile with the 50%-chord maximum
thickness position and 4% thickness was chosen
as an initial shape. Additional restrictions for
the thickness were introduced. It shouldn’t be
more than 6% and less than 2%. The reduction
of the lift-zero wave drag is 26%. In upper part
of fig.5, wing span distribution of relative
changing of the wing cross-section area is
presented.

The wing cross-section shapes obtained
during the optimization with the cross-section
area restrictions are shown in fig.6. Initial
geometry and additional restrictions of thickness
of the cross-section shape were the same as in
the first variant of optimization. The wave drag
reduction was 8 %.

Number of grid elements in these
calculations was 1500÷3000.

Conclusions

Variation method, based on the Reverse Flow
Theorem and the linear theory, allows to solve
quite effectively the optimization problems of
the middle surface of lifting elements in
complex configurations, to determine shape of
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the fuselage axis and cross-section shape of the
wing.

The estimations of the induced-wave drag
reduction determined by the linear theory which
taking into account of the thick fuselage
demonstrated the negligible discrepancy with
suggested method.
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