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Abstract

Large amplitude vibration tests of thin-walled
aluminum cylindrical shells were performed to
validate results of theoretical analysis. The tests
were carried out on four shells with practically
clamped-clamped boundary conditions, two of
them were perfect and the other two with built-
in imperfections. The vibration behaviors of
shell responses at large amplitudes of interest
are the dependence of resonant frequency on the
response levels and the possibility of response
in the form of traveling waves. Parameters of
the study were axial loads, geometric imper-
fections of the shell, excitation levels and direct-
ion of excitation frequency sweep. Comparison
between the experimental and the theoretical
results showed good agreements qualitatively.

1 Introduction

Cylindrical shells are widdly applied in modern
aircraft and space vehicle structures because of
their high strength-to-weight ratio. The dynamic
environment in which the vehicles usualy
operate may impose severe loads on the vehicle
structure, especially at increased vehicle speeds.
Under severe dynamic loads the cylindrical
shell often vibrates at a large amplitude. This
condition implies a nonlinear relationship
between the displacement and the strain due to
the curved geometry of the cylindrical shell.

This nonlinearity appears in  two
phenomena. Firstly, the resonant frequency
becomes dependent on the amplitude of the
vibration. Secondly, the response to dynamic
forces may take the form of traveling waves
although according to linear theory only a
standing wave response is possible.

At the Delft University of Technology an
intensive program is carried out in which
buckling and vibrations of thin cylindrical shells
under compressive loads and with imperfections
are being studied by theoretica analysis.
Despite the progress made, not many vibration
experiments have been done as yet [8]. To
validate the theoretica analysis of nonlinear
vibrations of cylindrical shells [7,9], experi-
ments on isotropic shell vibrations were carried
out. This paper presents and discusses the
results of the experiments and the comparison of
the results with the calculated ones.

2 Analyses Review

2.1 The Governing Equations

Assuming that the radia displacement is
positive inward (Fig.1) and introducing an Airy
stress function F, related to the usual stress
resultants by Ny=F yy, Ny=F x and Ny=-F ,, the
Donnel type non-linear imperfect cylindrical

shell equations for an isotropic material are:
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where W is the initia geometric imperfections,
p is the excitation force per unit area, p is the
specific mass, t denotes time, E is Young's
modulus, v is Poisson's ratio and 0* is the two-
dimensional biharmonic operator.

Under axial compressive load, W and F can be
expressed as superpositions of two independent
states of displacement and stress:

W =W +W (3)
F=F+F 4
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Figure 1 Shell geometry, coordinate system and boundary
conditions

where W and F are the dsatic radial
displacement and stress function of the static
state while w and F are the displacement and
the stress function of the dynamic state. By
substituting Eq. 3 and 4 to Eg. 1 and 2, then
equations governing the nonlinear static state
and nonlinear dynamic state can be obtained [3].

2.2 Modeling of the Response
The analysis was carried out by introducing

displacement functions in the governing
eguations.
W = A®t) hsin < cosY + Bty hsin X sin Y+
L R L R (5)
C(t) hsin? kT”X

where k and | are respectively the axia half-
waves and circumferential full waves numbers
and h isthe shell thickness.

This response function has two asymmetric
modes, the driven mode with amplitude A(t)
which is excited directly by the externa
excitation and the companion mode with
amplitude B(t) which is excited by the driven
mode at certain frequency range. These
asymmetric modes are accompanied with an
axisymmetric mode with amplitude C(t).

2.3 Solution Methods

Two methods were avallable to solve the
governing equations, the averaging method [9]
and the numerical integration method [7]. In the
first method the amplitudes of the axisymmetric
modes is related to the asymmetric modes and
the vibrations are assumed periodic. The
averaging procedure is applied in solving the
PDE’s and the results are presented in the form
of time-averaged vibration amplitudes. In the
second method the axisymmetric mode remains
as an independent coordinate. The PDE’s is
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solved by using numerical integration in time.
The response calculation of the second method
provided a more direct comparison with
experimental data as it could simulate both
periodic and instationary vibrations.

Both methods essentialy produced the
same results[6]. Hence the validation was
performed by using the second method.

3 Experiment

3.1 Test Setup

To verify the results of the numerical analysis,
the conditions assumed must be realized in the
test setup. Figure 2 shows the schematic view of
the instrumentation. Two acoustic drivers provi-
ded acoustic waves which were projected at two
circumferential places. Capacitive displacement
transducers are used to measure the shell
response. The contactless excitation and measu-
rement systems were used to avoid disturbing
changes of the vibration characteristics of the
shells [2,6]. The parameters of the experiment
were the excitation levels, the axial compressive
loads, and the initial geometric imperfections.

3.2 Test Objects and Boundary Conditions
The test objects were four thin-walled
cylindrical shells made by machining a seamless
aluminum tube to specified dimensions. Two of
the shells were perfect and the other two with
axisymmetric imperfections. During test, each
shell was clamped at both ends with end rings.

The wall thickness and the geometric
imperfections of the shells were measured prior
to the experiments. Table 1 shows the averaged
wall thickness and the imperfections of the
shells, which significantly characterize the
shells [4,5]. The axial imperfections is modeled
with the following form:

W =9, coszTnx (6)

4. Small Amplitude Response M easurements

The mode shapes and the corresponding natural
frequencies at small amplitude were needed to
facilitate the choice of mode shapes to be
considered in the large amplitude vibration tests.
These were achieved by measuring the
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No Description No Description

1 Generator Controller 6.1,2 Microphone 1, 2

2 Wave Generator 7 Mic. Preamplifier

3 Exciter Synchronizer 81,2 Displ. Transducer 1, 2
4 Power Amplifier 9 Signal Conditioner
5.1,2 | Acoustic Exciter 1, 2 10 FFT Analyzer

Figure 2 Schematic View of the Instrumentation

frequency response function (FRF) of the
response with respect to the excitation.

4.1 Test Procedure
One acoustic driver was used to generate the
small amplitude vibrations of the shell. The
excitation signal was a fast sine sweep which
was fed directly to the power amplifier and then
to the acoustic driver. The frequency range of
interest was between 400-1500 Hz which was
divided into three smaller ranges, 400-800 Hz,
750-1150 Hz, and 1100-1500 Hz.

The FRF measurements were carried out at
51 points equaly spaced over half the shell
circumference at an axial position of 200 mm
and 11 points in longitudinal direction. The
62 FRFs of each shell were curve-fitted ssimul-
taneoudly. Prior to the measurement, the linear-
ity of the response was checked by comparing
the FRFs of apoint at three excitation levels.

4.2 M easurement Results

Figure 4 shows the FRFs of al shells in the
frequency range between 400-800Hz. The
natural frequencies and the corresponding
measured mode shapes are presented in Fig.5 as
a plot between the natura frequencies and the
number of circumferential waves |. Results of
shell Liuip02 were not plotted because they are
amost the same as thdse of LiuipOl. In Fig.5
the measured natural frequencies are compared
to their analytical counterparts calculated for

end ring

_ cerrobend

Detail A
« shell
A

Figure 3 Sectional view of the shell

clamped with
Shell Wall thickness (hin mm) Imperfections (81)
Liupfol 0.253 -0.04
Liupf02 0.267 -0.01
Liuip01 0.273 -0.34
Liuip02 0.277 -0.34

Table 1 Shell dimensions and i mperfections amplitude

shells with the same nominal geometry with
SS3-SS3 and C4-C4 boundary conditions.

4.3 Factor s Affecting the M easured Natur al
Frequencies

The influence of severa parameters to the
measured natural frequencies were tried to be
kept as constant as possible. The measurements
were performed at aimost the same ambient
temperature, 20°C. The clamping conditions
appeared to be consistent as repeatable natural
frequencies were measured when the shell was
several times assembled to the end rings [6].

4.4 Small Amplitude Characteristics of the
Shells

From the results of the measurement at small
amplitude levels presented in Fig.5 some
observation were taken:

The lowest natural frequency of each shell
does not correspond to a mode with the lowest
wave number, as commonly found in the case of
abeam structure. Thisis explained in Ref.[10].

The real boundary conditions are closest to
a C4-C4 condition.

The effect of wall thickness can be
observed by comparing the results of shell
LiupfOl1 to those of Liupf02. For low | values
they are amost the same but for high | they
have significant difference. Thisisin agreement
the explanation given in Ref.[10, 11].

The influence of axisymmetric imperfect-
ions can be observed by comparing the results
for shell LiupfO2 and LiuipOl. At low | values
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Figure 4 FRF of all four shells between 400--800 Hz with
values (k,n) between parentheses

the frequencies of shell LiuipO1 are dlightly
lower than those of shell LiupfO2. This is in
agreement with Ref.[9] which suggested that the
axisymmetric imperfections, up to a certain
amplitude, reduce the natura frequencies. At
high | values the natural frequencies of LiuipOl
are larger than those of Liupf02 since the wall
thickness of shell LiuipOl is dightly thicker
than that of shell Liupf02.

4.5 Vibration Modesfor the Large Amplitude
Test

The choice of vibration modes which would be
suitable for the large amplitude vibration tests
was based on the principal requirement of
sufficient frequency separation of these modes
from the frequencies of their neighboring
modes. The adequate power of the excitation
forces to obtain nonlinear vibration conditions
was aso considered which limited the choice to
vibration modes with low axia half-wave
number. Another requirement taken into
account was the absence of any spatid
preference of the vibration modes which have
been observed for several modes. The best
candidates for the large amplitude tests were:

= Mode (1,11) for shell LiupfOl1 and LiupfO2.

= Mode (1,9) for shell LiuipO1 and Liuip02.

5. Large Amplitude Response M easur ements

5.1 Excitation Points

To obtain large response levels, two exciters
were used as shown in Fig.2. They were placed
opposite to each other while their excitation
forces were controlled to be out of phase as the

Natural frequency, Hz
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Figure 5 Natural fregs. vs circumferential wave number

modes of interest have odd number of
circumferential waves.

5.2 Observation Points

The two displacement transducers were used to
measure the driven and companion mode
simultaneously. One transducer was positioned
inside the shell exactly opposite to acoustic
driver no.1 to measure the driven mode, as at
that place aways the antinode of the driven
mode could be expected. The other one was
placed at the node of the driven mode to
measure the companion mode [2].

5.3 Test Procedure and Data Processing

In the vibration measurements stepped sine
excitation forces were applied. To generate
them, the wave generator supplied harmonic
signals with a frequency sweep which varied
from low to high values or vice versa. At preset
frequencies the generator interrupted the sweep
for a certain period and simultaneously sent a
pulse signal to the FFT Anayzer. The anayzer
after a certain time delay made records of the
pressure and the response signals. This ensured
that the shell reached steady state vibrations.

At each preset frequency the signals from
the two microphones and the capacitive
transducers were recorded and transformed into
the frequency domain. Hence, at the end of the
measurement 4xN FFT spectra were obtained, N
being the number of excitation frequencies. In
reducing the data first a database was assembled
that would facilitate further processing. This
included for each group of N spectra the
selection of pressure or displacement harmonics
with the same frequency as the excitation
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Figure 6 Measured response of mode (1,11) of shell
LiupfO1 for excitation pressure 1066 Pawith axial load
2 kN, a) driven mode, b) companion mode and ¢) phase

difference. Conditions with arrow refer to Fig.7

frequency. The results were the first harmonic
amplitudes of the pressures or the responses for
each excitation frequency.

The measurement of response distributions
was performed at each frequency of interest. At
that frequency both transducer signals were
recorded, the signa of transducer no.2 being
recorded at several circumferential positions,
and transformed into the frequency domain. At
the end of the measurement 2xN spectra were
obtained, N being the number of positions of
transducer no.2. The data reduction was carried
out as explained previoudly, except that the se-
lection was now made of displacement harmo-
nics with the same frequency as the excitation
frequency which was constant. At some
measurement results, the contractive motion
was identified by selecting the amplitude with
frequency of twice the excitation frequency.

The nonlinear vibration tests were
performed on the four shells for several axial

loads. For each axia load the responses at
severd excitation levels were measured.

5.4.1 Vibrations of Perfect Shells

Basic behavior

The response characteristics of shell LiupfOl1 for
mode (1,11) for an excitation pressure of
1066 Pa and axial load of 2 kN are considered
here as a generic case. The characteristics are
shown in Fig.6 in which (a) is the driven mode,
(b) is the companion mode response and (c) is
their phase difference. Both the responses for
the upward and downward frequency sweeps
are indicated. A softening behavior was found.
A jump up at a frequency of 522 Hz occurred
during the upward sweep, which was
accompanied with a jump of the companion
mode from zero, thus transforming the single
mode response into a coupled mode response.
After a further increase of the excitation
frequency another jump occurred for both
modes athough not as large as before. The
phase difference between the companion and the
driven mode which was about 30 deg at the first
jump gradually shifted to larger values and at
the second jump the phase jumped to about
90 deg.

A further increase of the excitation
frequency reduced the response and at 531 Hz
the companion mode practically disappeared.
The downward sweep response followed the
same path as the upward sweep response until at
523 Hz a small jump down occurred dlightly left
of the secondary jump up. This jump down was
also accompanied by the phase jump from
amost 90deg to 40deg. Decreasing the
excitation frequency further increased the level
of the driven mode response but decreased the
level of the companion mode response. The
phase difference gradually decreased. Between
520 to 515Hz a beating of the response
occurred as shown in Fig.6. The beating was
such that when the driven mode was in its
maximum the companion mode was in its
minimum. Below 515 Hz the driven mode still
increased while the companion mode decreased.
At 512 Hz the driven mode jumped down to a
single mode response, accompanied by the
sudden vanishing of the companion mode. The
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Figure 7 Time history of the response of mode (1,11) for
excitation pressure 1066~Pa with axial load 2~kN during
downward sweep for driven mode (left) and companion
mode (right) at (a)~534~Hz, (b)~525~Hz, (¢)~517~Hz
and (d)~512.5~Hz

downward sweep responses between 515 and
512 Hz were conditionally stable as a dlight
disturbance to the shell could make the
responses to jump to the single mode response.
Figure 7 shows the time responses of the
driven and the companion mode recorded
during the downward sweep at 534 Hz (a),
525 Hz (b), 517 Hz (c) and 512.5 Hz (d). Above
the (linear) resonant frequency which was about
531 Hz, a steady state single mode response
occurs. Slightly below the natural frequency the
companion mode participates in a steady state
coupled mode response. Below the small jump
the companion mode decreases with decreasing
frequency. In this region a nonstationary
responses in the form of beating was observed.
The phase and amplitude relation between the
driven and the companion mode can be seen in
Lissgous figures of the driven vs the companion
mode, Fig.8. The plots indicate that the phase
difference is not exactly 90 deg and that higher
harmonics exist in the response. At 525 Hz a
more or less circular response is shown, i.e. the
driven and companion mode have almost equal
amplitudes. Below the small jump, 517 Hz, the
response is highly nonstationary due to beating.
To analyze the beating, the response between
0.15 s to 0.244 s was selected, which shows the
driven mode changing from a maximum to a
minimum and the companion mode from
minimum to maximum. The Lissgjous plots of
four smaller intervals were made, as shown in
Fig.9. It can be seen that the beating response
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Figure 8 Lissagjous figure of the driven and the companion
mode at @) 534 Hz, b) 525 Hz, ¢) 517 Hz and d) 512.5 Hz
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Figure 9 Lissgjous figure of the driven and the companion
mode at 517 Hz between @) 0.150 s—0.173 s, b) 0.173 s—
0.197 s, ¢) 0.197 s—0.220 sand d) 0.220 s—0.244 s
indicates a regular change of single to coupled
mode response. This was also suggested by Ref.

[1].

Figure 6 aso shows that the slope of the
driven mode response curve does not show a
distinct change when the response changes from
a single mode to a coupled mode response
during an upward or downward sweep near
531 Hz. This means that no pronounced
bifurcation point was observed there, whereas
Ref.[9] predicted a distinct bifurcation point.

Further, the time phase difference between
the driven and companion mode varied from
about 0 to 90deg during an upward sweep
excitation and vice versa. This is in agreement
with the assumption taken in Ref.[9] that the
phase difference does not need to be 90 deg.
The varying phase difference between the
driven and companion modes implies that the
companion mode response can be split up into a
part being in phase and a part with 90 deg phase
difference with the driven mode. Consequently
the part of the companion mode which is in
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Figure 10 Response of shell LiupfO1 with 1 kN axial load
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Figure 11 Response of shell LiupfO1 with 2 kN axial load

phase with the driven mode enforces a
circumferential drift of the response, implying
that the maximum of the response is not at the
excitation point. The part of the companion
mode which has a time phase difference of
90 deg causes a response in the form of a
traveling wave.

Influence of Excitation Levels and Axial Loads
The measurements with shell LiupfO1 for mode
(1,11) were carried out for four axial load values
and at each axia load for four excitation levels.
The results are shown in Figs.10 to 13. The
followings are observed:

» The driven mode response curves show that
the nonlinearity at a response level of 1.5
times the wall thickness is of a softening
type.

= Higher response levels (due to higher
excitation forces) widen the frequency range
of the coupled mode response. For each
axial load case the upper frequency limit of
the range is not significantly altered and the
lower frequency limit shifts to a lower
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Figure 12 Response of shell LiupfOl1 with 4 kN axial load
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Figure 13 Response of shell LiupfO1 with 6 kN axial load

frequency as the response level increases.

= Higher response levels also make the jump
phenomenon and the peak of the coupled
mode response to become more pronounced.

= By comparing Figs.10 to 13 it can be
observed that the axial load reduces the
natural frequency of the shell but do not
significantly widen the frequency range of
the resonance region at the same excitation
level.

The measurements were aso performed on

vibration modes (2,13) with axial load of 2 kN.

The results confirmed the nonlinear vibrations

behavior previously mentioned [6].

5.4.2 Nonlinear Vibrations of Axially Imperfect
Shells

Basic Behavior

The behavior of the nonlinear vibrations of shell
LiuipOl1 and Liuip02 are qualitatively the same
as those of the perfect shell. Theoretically the
influence of the imperfections is marked by the
disappearance of the coupled mode response at

Note: In Fig.12 during the downward sweep at freq. lower than 508 Hz some malfunctions of the measurement system
occurred and no data were recorded. From observation, the response was in the form of beating which then at
amplitude of about 1.2 times wall thickness iumped to lower branch.

4111.7



] T T )t T T
Liiptt, 1 oUpradsip iugdt, 14 oUpradsiep
9 09
Dot swegp Dowmviad sweep
ybesing 0 Kbesting

1 18P
2 26Pa
3 58P
1066Pa

1 18P
2 6P
3 58P
4 1066Pa

Companion Mode, B

. . . . £
L] % L) % 50 i) % L) 3 50
Frapency, He Py, He
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Figure 15 Response of shell Liuip01 with 2 kN axial load

i

low frequencies [9]. In the experiment this was
observed as well. The results for the imperfect
shells are shown in Figs.14 to 17 for shell
LiuipOl. The type of nonlinearity at a response
level of 1.5times wall thickness is of a
softening type, as expected.

Influence of Excitation Level and Axial Load
The axisymmetric imperfections do not change
the behavior of the response of shells at
different excitation level and axia load. Higher
response levels widen the frequency range of
the coupled mode response of which the upper
frequency limit does not shift. They also cause
the jump phenomenon and the peak of the
coupled mode response to become more
pronounced. The axial load lowers the natural
frequency.

5.4.3 Measurement of Contractive Motion

In a few cases, the contractive motion which
plays an important role in the nonlinear vibra-
tion characteristics of the shell was measured. A
result which indicated the motion was measu-
red. It was, however, less convincing as it might
be interfered with the distortion of the excitation
force and the nonlinearity of the transducer [6].
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6. Comparisonswith Calculated Results

6.1 Validation of Numerical Methods

To validate the theoretical analyses a large
amplitudes and various conditions of excitation
level, axial load and axisymmetric imperfection,
the criteria used are:

1. Thefreq. range of the companion mode

2. The shape of the driven and the companion
mode responses

3. The presence of nonstationary responses.

The calculated response of shell LiupfOl with
simply supported boundary conditions is shown
in Fig.18. The excitation level corresponded to a
sound pressure of 1066 Pa, the axial load was
2kN and the damping level was determined
from the measured damping at low response
level ((=0.2%). The companion mode appears
in a frequency range centered at the natural
frequency of the shell with amplitudes
comparable to those of the driven mode. In a
small region, between 496 Hz and 497 Hz, a
modulated coupled mode response occurs,
similar to the response shown in Fig.7.c. For
comparison, the measured response of shell
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Figure 18 Calculated response of shell LiupfOl with an
axial load of 2 kN and an excitation force equal to
sound pressure of 1066 Pa
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Figure 19 Response of shell LiupfO1 with an
axial load of 2 kN and an excitation force
equal to sound pressure of 533 Pa

LiupfOl at the same axia load and excitation
force can be found in Fig.11 for clamped-
clamped boundary conditions. Both figures
show some quantitative differences, namely the
natural frequency and the response level. The
difference in natural frequency is attributed to
the different boundary conditions of the shellsin
the experiment and analysis.

Qualitative agreement  between the
measured and calculated response exists for the
upward frequency sweep response. This aso
holds for the downward frequency sweep
response except for a difference between
measurement and calculation existing in the low
frequency parts of the response. In the
experiment the response of this branch could be
measured during the downward frequency
sweep, however, this response was only
conditionally stable.

By decreasing the excitation frequency
through the frequency range where beating
responses were observed, a stable coupled mode
response was obtained again. By further
decreasing the excitation frequency, the coupled
mode response became unstable and it jumped
down to a single mode response. In the
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Frequency, Hz

365 370 375 380 38 390
Frequency, Hz

Figure 20 Response of shell LiupfO1 with an axial
load of 8 kN and an excitation force equal to sound
pressure of 1066 Pa
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Figure 21 Response of shell Liuip0Ol1 with an axial load
of 2 kN and an excitation force equal to sound pressure
of 1066 Pa, with imperfection neglected
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Figure 22 Response of shell Liuip01 with an axial load of
2 kN and an excitation force equal to sound pressure of
1066 Pa and an imperfection with amplitude 6,=—0.35

380 385 390 395 400 405
Frequency, Hz

calculation, as soon as the excitation frequency
reached a frequency at which a stable single
mode response was possible, the beating
response jumped to that stable response. The
branch of the stable coupled mode response at
the left side of the beating frequency range was
never obtained by numerical simulation method.

6.1.1 Influence of Excitation Level

The influence of excitation level can be seen by
comparing Fig.18 and 19. An increase of
excitation level increases the response level and
widens the frequency range of the coupled mode
response. The wider frequency range is caused
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primarily by the lower frequency boundary,
whereas the higher frequency boundary stays
more or less the same. The increased excitation
force makes the coupled mode response peak
also sharper. The experimental results shown in
Fig.10 to 17, in particular Fig.11 for an almost
identical case, reveal similar characteristics.

6.1.2 Influence of Axial Load

An increase of the axial load reduces the natural
frequency and only dightly increases the
response level. This can be seen by comparing
Fig.18 and 20 in which the response of shell
LiupfO1 was calculated for an axial load of
8 kN. The frequency range of the coupled mode
response shifts to lower frequencies with the
right frequency boundary near its resonant fre-
guency. In the experiment, these phenomena are
observed as well by comparing Fig.11 to Fig.13.

6.1.3 Influence of Axisymmetric Imperfection
The influence of axisymmetric imperfections
can be observed by comparing Figs.21 and 22 in
which the response of mode (1,9) of shell
LiuipO1 was calculated for two conditions, with
and without an axial imperfection, respectively.
The amplitude of the axisymmetric imperfection
was 8;=—0.35 (Eq.6), the axial load is 2 kN, and
the excitation level 1066 Pa. The axisymmetric
imperfection dlightly reduces the natura
frequency and shifts the frequency range of the
coupled mode response accordingly, but it does
not change the characteristics of the response of
a perfect shell. In the experiment, this can be
seen by comparing the response shown in
Fig.15 with the responses of the perfect shells
presented in Fig.11.

7. Conclusions

A good qualitative agreement between the
experiment and the numerical integration
method was observed in the experimental
validation of the analysis of nonlinear vibration
of thin walled cylindrical shells.

The theoreticaly predicted characteristics
of nonlinear vibrations of the thin-walled
cylindrical shells at large amplitudes, i.e. the
softening nonlinearity and response in the form
of traveling waves in the frequency range

L.Gunawan, R.J.Zwaan, A.W.H.Klompé

around the resonance were measured in the
experiments.

The influence of several parameters, such
as the axisymmetric imperfection, excitation
level, frequency sweep direction and axial load
were aso validated.
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