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Abstract

The paper provides a brief description of the
modern methods for investigation of non-linear
problems in flight dynamics. A study is pre-
sented of aircraft high angles of attack dynamic.
Results from dynamical systems theory are used
to predict the nature of the instabilities caused
by bifurcations and the response of the aircraft
after a bifurcation is studied. A non-linear dy-
namic model is considered which enables to
determine the aircraft’s motion. The aerody-
namic model used includes nonlinearities, hys-
teresis of aerodynamic coefficients (unsteady
aerodynamics), and dynamic stall effect. Aero-
dynamic model includes also a region of higher
angles-of-attack including deep stall phenom-
ena. In the paper continuation method is used to
determine the steady states of the MiG-29
fighter aircraft as functions of the elevator de-
flections, and bifurcations of these steady states
are encountered. Bifurcations of the steady
states are used to predict the onset of wing rock,
and ““Cobra” manoeuvres. Dynamics of spatial
motion of a supersonic combat aircraft with a
straked wing is considered for post stall ma-
noeuvres, and observations of chaotic motion in
post stall manoeuvres are guided.

1 Introduction

An aircraft is the inherently non-linear
and time varying system. Non-linear dynamics
is central to several important aircraft motions,
including roll-coupling and stall/spin phenom-
ena. Linearized equations of motion can not be
used to analyse these phenomena. Indeed, roll-
coupling instabilities were first discovered in
flight, often with fatal results, because the line-

arized equations of motion used for analysis at
that time did not contain the instability [1].

There are many problems associated
with flight dynamics for modern and advanced
aircraft, which are not solved (or solved rather
unsatisfactory) with traditional tools. A list of
such problems includes among others flight
control for agile and post-stall aircraft. The
post-stall manoeuvrability has become one of
the important aspects of military aircraft devel-
opment. Such manoeuvres are jointed with a
number of singularities, including “unexpected”
aircraft motion. As the result of them, there is
dangerous of faulty pilot’s actions. Therefore, it
is need to investigate aircraft flight phenomena
at high- and very-high angles of attack.

The appearance of a highly augmented
aircraft required a study of its high angle of at-
tack dynamics The primary aim of the paper is
to discuss capabilities of dynamical system the-
ory methods as the tools for to analyse such
phenomena.

Dynamical system theory has provided a
powerful tool for analysis of non-linear phe-
nomena of aircraft behaviour. In the application
of this theory, numerical continuation methods
and bifurcation theory have been used to study
roll-coupling instabilities and stall/spin phe-
nomena of a number of aircraft models. Results
of great interest have been reported in several
papers (it can be mentioned papers by Jahnke
and Culick [1], Carroll and Mehra [2],
Guicheteau [3], or Avanzini and de Matteis [4]).
Continuation methods are numerical techniques
for calculating the steady states of systems of
ordinary differential equations and can be used
to study roll coupling instabilities and high-
angle of attack instabilities.
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Carroll and Mehra [2] were the first to
use a continuation technique to calculate the
steady states of aircraft. They determined the
steady states of a variable sweep aircraft and the
F-4 fighter aircraft. By studying the steady
states of these two aircraft they explained that
wing rock appears near the stall angle of attack
due a Hopf bifurcation of the trim steady state.
They also calculated the steady spin modes for
the aircraft and predicted the control surface de-
flections at which the aircraft would undergo
stall/spin divergence. They have calculated the
resulting steady state of the aircraft and have
developed recovery techniques using their
knowledge of the steady spin modes for the air-
craft. Guicheteau [3] has used continuation
methods and bifurcation theory in analysis of
the non-linear dynamics of aircraft model that
includes unsteady aerodynamic coefficients. He
has analysed the effects of a lateral offset of the
c.g. and the influence of gyroscopic momentum
of rotating engine’s masses on spin entry recov-
ery. Jahnke and Culick [1] have recalled the
theoretical background of dynamical system
theory and bifurcation technique and they have
presented profound review of the relevant in-
vestigations in this field. They have studied the
dynamic of the F-14 fighter aircraft by deter-
mining the steady states of the equations of mo-
tion and seeking bifurcations. And have shown
that continuation method is very useful in analy-
sis of the wing rock instability, spiral diver-
gence instability and spin dynamics. Avanzini
and de Matteis [4] have analysed the dynamics
of a relaxed stability aircraft by dynamical sys-
tem theory. The principal objective of their
study was to assess the practical worth of dy-
namical system theory in simulations where the
dynamics of aircraft are tailored by the full-
authority control system according to different
mission tasks. They have remarked that the use
of manoeuvre demand control in high-
performance aircraft somehow limits the capa-
bility of dynamical system theory to provide
global stability information in as much as tran-
sient motions cannot be predicted or quantified
by bifurcation theory (compare with results ob-
tained by Carol and Mehra [2]). Avanzini and
de Matteis [4] have proved, that certain addi-
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tional problems have been faced with the mod-
elling of the stability and control augmentation
system with the related high number of addi-
tional states and the handling of the so-called
breakpoint nonlinearities coming from control
system elements.

The present paper is continuation of the
previous works of the author [5], [6], [7]. After
a brief description of the methodology and asso-
ciated procedures, Cobra maneuver and associ-
ated wing-rock oscillations are studied by
means of checking the stability characteristics
related to unstable equilibria. Numerical simu-
lations are used to verify the predictions. High
angle of attack maneuvers were studied to ob-
serve chaos phenomenon in post stall motion.
Unsteady aerodynamics for prediction of airfoil
loads is included, and the ONERA type stall
model is used [8], [9], [10].

2 Theoretical background

2.1 Dynamical systems theory
In this paper we will study equations of the fol-
lowing form

x=f(xt1) @
and

X g(x1) )
with O x W R"@ R',andid V ORP",
where U and V are open sets in R" and RP, re-
spectively. We view the variables u as parame-
ters. We refer to (1) as a vector field or ordinary
differential equation and to (2) as a map or dif-
ference equation. Both will be termed dynami-
cal systems.

By a solution of Eq. (1) we mean a map,

X, from some interval | 0 R*into R", which we
represent as follows

x:1 - R,
t - X(t) ®)
such that x(t) satisfies (1), i.e.,
x(t) = f(x().t;1) (4)

Dynamical systems theory (DST) provides a
methodology for studying systems of ordinary
differential equations. The most important ideas
of DST used in the paper will be introduced in
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the following sections. More information on
DST can be found in the book of Wiggins [11].

The first step in the DST approach is to
calculate the steady states of the system and
their stability. Steady states can be found by
setting all time derivatives equal to zero and
solving the resulting set of algebraic equations.
The Hartman-Grobman theorem proves that the
local stability of a steady state can be deter-
mined by linearizing the equations of motion
about the steady state and calculating the eigen-
values [12], [13], [14], [15].

The implicit function theorem (loos and
Joseph [16]) proves that the steady states of a
system are continuous function of the parame-
ters of the system at all steady states where the
linearized system is non-singular. Thus, the
steady states of the equations of motion for an
aircraft are continuous functions of the control
surface deflections. Stability changes can occur
as the parameters of the system are varied in
such a way that the real parts of one or more
eigenvalues of the linearized system change
sign. Changes in the stability of a steady state
lead to qualitatively different responses for the
system and are called bifurcations. Stability
boundaries can be determined by searching for
steady states, which have one or more eigenval-
ues with zero real parts. There are many types
of bifurcations and each has different effects on
the aircraft response. Qualitative changes in the
response of the aircraft can be predicted by de-
termining how many and what types of eigen-
values have zero real parts at the bifurcations
point. Bifurcations for which one real eigen-
value is zero lead to the creation or destruction
of two or more steady states. Bifurcations for
which one pair of complex eigenvalues has zero
real parts can lead to the creation or destruction
of periodic motion. Bifurcations for which more
than one real eigenvalue or more than one pair
of complex eigenvalues has zero real parts lead
to very complicated behaviour

2.2 Bifurcation Theory

For steady states of aircraft motion, very inter-
esting phenomena appear when even if one
negative real eigenvalue crosses the imaginary
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axis when control vector varies. Two cases can
be considered [16].

» The steady state is regular, i.e. when the im-
plicit function theorem works and the equilib-
rium curve goes through a limit point. It should
be noted that a limit point is structurally stable
under uncertainties of the differential system
studied.

» The steady state is singular. Several equilib-
rium curves cross a pitchfork bifurcation point,
and bifurcation point is structurally unstable.

If a pair of complex eigenvalues cross
the imaginary axis, when control vector varies,
Hopf bifurcation appears [13], [14], [16], [17],
[18]. Hopf bifurcation is another interesting bi-
furcation point. After crossing this point, a peri-
odic orbit appears. Depending of the nature of
nonlinearities, this bifurcation may be sub-
critical or supercritical. In the first case, the sta-
ble periodic orbit appears (even for large
changes of the control vector). In the second
case the amplitude of the orbit grows in portion
to the changes of the control vector.

2.3 Continuation technique and methodology
scheme

Continuation methods are a direct result of the
implicit function theorem, which proves that the
steady states of a system are continuous func-
tions of the parameters of the system al all
steady states except for steady states at which
the linearized system is singular. The general
technique is to fix all parameters except one and
trace the steady states of system as a function of
this parameter. If one steady state of the system
is known, a new steady state can be approxi-
mated by linear extrapolation from the known
steady state [12], [14], [15], [19]. The slope of
the curve at the steady state can be determined
by taking the derivative of the equation given by
setting all time derivatives equal to zero. If two
steady states are known, a new steady state can
be approximated by linear extrapolation through
the two known steady states. The stability of
each steady state can be determined by calcu-
lating the eigenvalues of the linearized system.
Any changes in stability from one steady state
to the next will signify a bifurcation.
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Taking into account experience of many
researches, one can formulate the following
tree-step methodology scheme (being based on
bifurcation analysis and continuation technique)
for the investigation of non-linear aircraft be-
haviour [7], [15], [19]:

» During the first step it is supposed that all
parameters are fixed. The main aim is to search
for all possible equilibria and closed orbits, and
to analyze their local stability. This study should
be as thorough as possible. The global structure
of the state space (or phase portrait) can be re-
vealed after determining the asymptotic stability
regions for all discovered attractors (stable
equilibria and closed orbits). An approximate
graphic representation plays an important role in
the treating of the calculated results.

» During the second step the system behaviour
is predicted using the information about the
evolution of the portrait with the parameters
variations. The knowledge about the type of en-
countered bifurcation and current position with
respect to the stability regions of other steady
motions are helpful for the prediction of further
motion of the aircraft. The rates of parameters
variations are also important for such a forecast.
The faster the parameter change, the more the
difference between steady state solution and
transient motion can be observed.

» Last, the numerical simulation is used for
checking the obtained predictions and obtaining
transient characteristics of system dynamics for
large amplitude state variable disturbances and
parameter variations.

3. Mathematical model of aircraft motion

Non-linear equations of motion of the
aeroplane and the kinematic relations will be
expressed by using moving co-ordinate systems,
the common origin of which is located at the
centre of mass of the aeroplane (Figs.1 and 2). It
is used [10]:

— asystem of co-ordinates Oxyz attached to
the aircraft (the Oxz plane coinciding with the
symmetry plane of the aircraft);

— a system of co-ordinates attached to the
air flow Oxayaza in which the Ox, axis is di-
rected along the flight velocity vector V and the

Krzysztof Sibilski

Oz, axis lies in the symmetry plane of the air-
craft and is directed downwards.

horizontal plane x, y,

of N/
yk/"’ \«//_/\\ ~ ¥
X, Jo

symmetry
plane xz ,

Fig. 1 System of co-ordinates attached to aircraft

The relative position of the vertical system
OxgYgZg and the system Oxyz, attached to the
aircraft is described by Euler angles ©, ®and W
(Fig. 1), while the relative position of the sys-
tem Oxyz and the system Ox,Yaz, attached to the
airflow - by the angle of attack a and slip angle

B (Fig.2).

symmetry
plane xz / \
Ny
27
\a’/ Z,

~—
/

/

Fig. 2. System of co-ordinates attached to airflow

Usually aircraft is considered as a rigid body
with moving elements of control surfaces. Gy-
roscopic moment of rotating masses of the en-
gines is included. Total system of equations
should be completed with the following expres-
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sions: kinematic relations, kinematics of an ar-
bitrary control system and the control laws.
The mathematical model of aircraft can be for-
mulated in the following form [10], [20], [21]:

x =f(x(t),u(t)), X(0) = x, (5)
where:
- state vector

x =[V,a,B8,p,q,r,®,0,¥,x,,y,,2,]" (6)
- control vector
u:[azH’éHléA’év,éF]T (1)
and:

f, =l[F cos(a +¢,) - an]—
m

—g[cos Osin ®sin B -
- (sin ©cosa —cos @cosPsina)cos B ]
f, =q —(pcosa +rsina)tanf -
1
mV cos 8
—mg(sin Osina +cos ©cos Pcosa) + P, ]

[Fsin@ +¢.)+P, +

f, = psina —rcosa -
10
— [ [Fcosla +o, )+
v L [F cos(a +9.)
—mg(sin Ocosa —cos ©cos Psina) ]sin B -

0
—-mgcos©cosPcosB-PR, [
0

£, 0 00 -r qOf
Df D_J_ll:(l\/l +M )—Dr 0o - S]D
Os0™ o - F) T P 5
HeB 0 Ha p 0Hf
Of,0 @ sin®dtg® cosdtg® [Ip0]
%BB:%) cos @ -sin® %B
H.H B sin ®sec® cos®secOFFH
DflOD AR,

O_ AT |
T B=ATA, BE
H., B =)=
where:

Pxa, Pva, Pza - aerodynamic forces,

A and A, - matrixes of transformations. Ele-
ments of those matrixes can be found for exam-
ple in [10];

J - matrix of inertia;

Ma=[L.M,N]" - vector of aerodynamic moment;
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Mg - vector of momentum of aircraft engine:
Mg =S M7 =5 (1 xF, +3, @ x0) ®)

where:
r. - vectors determining the distance of the

engines thrust from the pole of the system of
co-ordinates;
F. - vector of the thrust;

J; - the polar moments of inertia of the engine

rotor;
o, - vector of angular velocity of a rotor;

O=[p,q,r]"- vector of angular velocity of air-
craft.

Equations of motion of aircraft should be
completed with equations of engine dynamics
[10]:

- equation of engine rotation.

TN +(T, +7,)0 =K[Q, (t=7,) = Q| (9)
where:
n - angular velocity of a rotor,
1,,7,,T, - time-constants,
K - amplification factor,
Qp - discharge of fuel for actual engine’s angu-
lar velocity and for actual aircraft’s altitude and
airspeed,
Qpo - discharge of fuel, calculated for sea level
conditions and when V=0,

Time-constants are non-linear functions
of engine’s angular velocity, aircraft’s altitude,
air density, pressure and temperature on fight
altitude. Discharge of fuel is following function:

Q, () =f.(5: (1) (10)
where:

Or - displacement of cockpit power lever
- equation of thrust

T :To(n)Epﬁg (K0 +K,Ma + KZMaZ) (11)

The engine model should be adapted from the
code, data, and flow charts provided by the en-
gine manufacturer.

3.1 Modelling of aerodynamic loads

The adequacy of mathematical model-
ling of high AoA (Angle of Attack) dynamics is
strictly dependent on the adequacy of the aero-
dynamic model at these regions. There is non-
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trivial problem due to the very complicated na-
ture of the separated and vortex flow in un-
steady regime [22]. Precise describing of aero-
dynamic forces and moments found in equations
of motion is fundamental source of difficulties.
In each phase of flight dynamics and aerody-
namics influence each other, which disturbs the
precise mathematical description of those proc-
esses. The requirements for method on aerody-
namic load calculations stem both from flow
environment and from algorithms used in analy-
sis of helicopter flight. The airframe model con-
sists of the fuselage, horizontal tail, vertical tail,
and wing. The fuselage model is based on wind
tunnel test data (as function of angle of attack a
and slip angle B). The horizontal tail and verti-
cal tail are treated as aerodynamic lifting sur-
faces with lift and drag coefficients computed
from data tables as functions of angle of attack
a and slip angle S.

For linear extent of lifting force, an
aeroplane’s aerodynamic loads can be defined
on the basis of algorithms, relations, diagrams
and formulas shown, for example, in DATA
SHEETS or in The USAF Stability and Control
DATCOM [23]. However, there is no efficient
method to calculate aerodynamic loads for high
angles of attack. Results of investigating aero-
plane’s models are not always available and
complete. Usually, there are no reliable aero-
plane’s aerodynamic characteristics, obtained by
identification method, on the basis of measure-
ments during a flight. Panel methods are appro-
priate to define aerodynamic loads for small and
moderate angles of attack. Numerical study of
spin and other manoeuvres performed on over-
critical angles of attack, as well as simulation of
acrobatic figures characteristic for so-called su-
permanoeuvre planes (for instance, Cobra or
Kublit manoeuvres) requires data concerning
aerodynamic characteristics for angles of attack
practically from —180° to +180°. Therefore, to
define aerodynamic loads in the possibly broad-
est extent of angles of attack, an attempt to
broaden the strip theory has been made. In
modification of this theory, presented below,
following assumptions have been made:
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— in given section of a force, aerodynamic
moments depend on a local angle of attack

— the area of a flowfield is disturbed by
adding to a vector of speed appropriate compo-
nents resulting from plane’s rotation with an-
gular speeds p, g, r.

— mutual relation between flows of neigh-
bouring strips was taken into account by adding
the speed induced by flowing down whirlpools

— dynamics of whirlpool structures, in-
cluding whirlpools’ break-up, was taken into
account

— unsteadiness of a flowfield (aerodynamic
hysteresis) was taken into account, phenomenon
of deep aerodynamic stall was modelled using
algorithm worked out in ONERA [8], [9].

The algorithm of calculations allows de-
fining loads of wings of any shape. In case of
modern fighter aeroplanes, with strongly cou-
pled aerodynamic configuration, it was assumed
that lifting fuselage of these planes is a centre
wing section, that is - in algorithms, forces and
aerodynamic moments generated by lifting parts
of fuselage were taken into account. The modi-
fied strip theory is interesting also because it is
relatively easy to consider a phenomenon of
non-symmetrical break-up of whirlpools in its
algorithms (using, for example method pro-
posed in work [10]). A wing of a plane is di-
vided with planes parallel to the fuselage’s
plane of symmetry to a number of elements
(strips). For each strip we define a local angle of
attack and a value of total vector of speed. Then,
from aerodynamic characteristics of the profile,
we define aerodynamic coefficients of: lifting
force, resistance force and pitching moment.
Integration defined in this way forces and mo-
ments along wing span allows defining the
aerodynamic loads of a plane. For purpose of
numerical analysis, functions C,(a) and Cy(q)
were approximated with trigonometric polyno-
mials:

C,(a)= Z[ak cos(ka) +b, sin(ka)]
) 12)
C.(a)= ;[Ck cos(ka) +d, sin(ka)]
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Where coefficients ax by cx and dix were calcu-
lated from Runge’s scheme. Values of these co-
efficients are shown in work [10].

The angle of attack of - elementary
strip of a wing depends on: the aeroplane’s an-
gle of attack, an angle of attack induced by
whirlpools flowing down a wing and an angle of
attack caused by appearance of angular speeds
(pitching, rolling, and yawing). The induced an-
gle of attack can be calculated from the relation:

a, =arctan ﬁ//\/o ﬁ (13)

The induced speed can be calculated from Biot-
Savart’s law:

Vi (y) =—Z(n{)(cos¢1 +c0sg,) -

1

(14)
T (cosg, +cosg,)
4rm,

Where r; and r, — correspondingly, a distance
from left and right bound vortex from point A
(in which induced speed is calculated).
Distribution of circulation along wing span is
given with following differential-integral equa-
tion:

aC
~C0s XC, (Y)

_Vo oa

r =2 X

O W )
X[, (y) -+ (@) dé

4nVO£ dé (z-¢)
2

Equation (15) can be solved with ap-
proximate methods (for instance, approximation
of trigonometric series). Distribution of circula-
tion along wing span can also be calculated with
engineer methods (for example, classic Mult-
hopp’s method) or evaluated with help of
known (for example from examining a plane in
aerodynamic tunnel) distribution of pressures
along wing span. On the basis of known distri-
bution of circulation we can define distribution
of induced angles of attack along wing span
(and therefore for each wing’s section).

The bifurcation approach is very fruitful
when the sources and nature of aerodynamic
phenomena are considered. Special techniques
were proposed to represent the aerodynamic
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characteristics taking into account the dynamics
effects of the separated flow [10].

Now, it must be pointed up that dynamic
system theory provides a methodology for
studying of such complicated ordinary differen-
tial equations (ODE). In addition, recent devel-
opment in the area of numerical analysis of non-
linear equations created a class of computer al-
gorithms known as continuation method [15],
[19] The set of ordinary differential equations
can be solved using the continuation and bifur-
cation software AUTO97 available at address:
ftp://ftp.cs.concordia.ca/pub/doedel/auto.

This very useful freeware gives all desired bi-
furcation points for different values of control
vector components.

3 Results

Figs. 3-8 show the steady states of the
MiG-29 fighter aircraft for longitudinal ma-
noeuvres, which are at middle and high angles
of attack. Steady states represented in those fig-
ures show longitudinal trim conditions and spi-
rally divergent motions. These figures show that
practically for all elevator deflections the air-
craft can achieve stable or unstable trim condi-
tions. The trim conditions for given elevator de-
flection can be determined by drawing the verti-
cal line representing the desired elevator deflec-
tion on each plot; each intersection of this line
with the curve of steady states gives a possible
steady state of the aircraft. For example, a verti-
cal line representing 4° of the elevator deflection
intersects three steady states. Two of them are
stable one is unstable, so the aircraft could ex-
hibit any of these three steady states. One stable
steady state at 4° elevator deflection represents
the horizontal flight trim  configuration
(p=qg=r=0). The other two stable steady states
represent pull-up, or spiral trim conditions.

Continuation methods require a known
steady state as a starting point for the continua-
tion procedure. It is usually easy to determinate
steady states that are at low and moderate values
of angels of attack. Determining the steady
states at high angles of attack is more difficult
task and it is usually not possible to be certain
all the steady states for a particular aircraft have
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been determined. The approach used to find the
modes in this work was to guess an initial high-
angle-of attack mode as a starting point for the
continuation method algorithm, then let the al-
gorithm run until either a true steady state was
determined or the algorithm ran into numerical
problems.
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Fig. 3. Steady states for longitudinal manoeuvres

The segment of unstable steady states
contains the trim conditions between the eleva-
tor deflections at —20.5° and 12.1° because of six
Hopf or saddle-node bifurcations. Those bifur-
cations occur at —20.5° (saddle-node bifurca-
tion), —20.1° (Hopf bifurcation), -8.8° (Hopf bi-
furcation); 7.1° (Hopf bifurcation), 12.1° (sad-
dle-node bifurcation), and 12.1° (Hopf bifurca-
tion).
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Hopf bifurcations can lead to periodic motions,
so it is possible that for elevator deflections
between —20.1° and -8.8° 7.1° and 12.1° the
aircraft will undergo periodic motion (wing-
rock instability). The saddle-node bifurcations
(occurred at the elevator deflections: —20.5° and
12.1°) signify that aircraft loss their longitudinal
stability.
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It can by explain by loosing of effectiveness of
the control surface. The lifting force generated
on the tail control surface depends on the local
angle of attack and is perpendicular to the local
flow direction. As the first approximation it can
be assumed that control pitching moment is
generated by the normal component of the aero-
dynamic tail force only. In the range of AoA up
to 35° the normal component increases ap-
proximately linearly, then stabilises and practi-
cally the tail surface losses its effectiveness.
After the further displacement of the tail control
surface the pitching moment is proportional to
the cosine of the displacement angle. This way,
in the first approximation, one can assume that
control surface is able to work effectively in
range approximately +40°. Those occurred at
high angles of attack longitudinal stability
loosing make it possible to perform the Cobra
manoeuvre. This new manoeuvre had been
shown by W. Pugatchov early in 1994 at the
Abu Dabi Air Show and was called “hook”. The
hook manoeuvre (performed in horizontal
plane) processes real combat significance. Bas-
ing on flight tests (cf. O. Samoylovich [24]) it
was concluded that the dynamic entrance into
the high angles of attack flight could be divided
into four phases as follows:
= first phase, characterised by full deflection
of horizontal tail (for pull-up of the aircraft)
with a maximum speed of the control stick.
The main goal in this stage is to create a big,
positive pitching moment as soon as possi-
ble;
= second phase, when aircraft still increases
angle of attack due its inertia and at last
reaches the maximum angle of attack (at the
end of this phase the pitching moment is
near of its maximum value for diving, pitch
rate is near 0);
= third phase, (recovery from the manoeuvre)
characterised by full deflection of the hori-
zontal tail for diving with the increasing,
negative pitch rate (at the end of this phase
the pitch rate for diving reaches its maxi-
mum, negative value. The angle of attack
approaches its value of the steady flight, but
aircraft still rotates and further decreases the
angle of attack due to its inertia);

BIFURCATION THEORY

= fourth phase, when angles of attack reach
values lower then that of in the steady flight
and the process of balancing at low angles
of attack is going on.

During the third and fourth phases it is
necessary to control the aircraft motion in its
recovery from high angles of attack. Slow re-
covery creates the conditions for supplementary
loss of flight speed and increases the probability
of stall. Quick recovery from high angles of at-
tack can be reason to go at angles of attack
lower than 0. Thorough analysis of Cobra ma-
noeuvre dynamics was presented in paper [25].
Exemplary results of those investigations are
shown in Fig. 9.
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Fig. 9 Curves of angle of attack, and pitch angle dur-
ing Cobra manoeuvre (cf. [25])

Based upon investigations carried out in works
[24], [25] one can conclude that the necessary
conditions to perform Cobra manoeuvre are:

= aircraft should be statically unstable in the
range of angles of attack near critical;

= balance should be attainable in the range of
angles of attack greater than critical,

= pitching moment for diving has to have a
margin in the range of angles of attack
al(B0 °, 60°);

= npatural pitching moment for diving should
be big enough in the range of angles of attack
grater than 60°;

= limiter of the extreme flying parameters
should be turned off.

Moreover, the aircraft should be highly insensi-
tive to the spin tendency, especially because of
lack of lateral stability at high angles of attack.
Investigations of Cobra manoeuvre carried out
in work [25] were under assumption, that the
aircraft is highly insensitive to the spin tendency
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and wing rock instability. Unfortunately, at
higher angles of attack real aircraft will undergo
wing-rock oscillations, and has strong tendency
to bank. It is evident, when one considered
steady states at middle and high angles of at-
tack. Occurrences of Hopf and saddle-node bi-
furcations signify radical changes in aircraft re-
sponse after those bifurcations.

Figs. 10-21 show an attempted Cobra manoeu-
vre entry using the elevator deflection. During
the Cobra manoeuvre, all flight parameters in-
crease their values. In terms of continuation
methods, the Cobra is unstable because of Hopf
bifurcation, that occurred at d4=—20.1° and sad-
dle-node bifurcation, that occurred at d=-20.5°.
The Poincare maps of selected state parameters
are shown in Figs. 10-12. It can be stated that
taking into consideration unsteady aerodynamic
model and hysteresis of aerodynamic coeffi-
cients, one counters significant irregularities in
solution of equations of motion, that are char-
acteristic for chaotic motion.
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Fig. 10 Longitudinal manoeuvre performed at high
angles of attack. Poincare map
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Fig. 11 Longitudinal manoeuvre performed at high
angles of attack. Poincare map
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To perform successfully the Cobra manoeuvre,
one should rapidly pull-up the control stick at
the commencement of the manoeuvre, putting
the aircraft in region of unstable steady states.
During those simulations one assumed, that air-
craft has the spin tendency and wing rock insta-
bility, because of lack of lateral stability at high
angles of attack. Occurrences of Hopf and sad-
dle-node bifurcations signify radical changes in
aircraft response after those bifurcations At
higher angles of attack the MiG-29 fighter air-
craft is undergoing wing-rock instability. Figs.
13-21 show time simulation of Cobra manoeu-
vre. The course of change of the angle of attack
a is shown in Fig. 13, the angle of pitch
O - in Fig.20 and the roll and yaw angles - in
Figs.19, and 21. It is seen from these figures
that during that manoeuvre the angles of attack
and pitch increase suddenly. Maximum values
of a, @ reach 100° and 110° respectively. Figs.
13-21 show, additionally developing wing-rock
oscillations witch a period approximately 3.5s.
Note that magnitude and frequency of those os-
cillations are irregular and have chaotic charac-
ter [7], [10]. It can be stated, that during the Co-
bra manoeuvre the pilot must fix his attention
on aircraft control, first of all keeping the air-
craft precisely in the vertical plane. It is not
simple, because the aircraft during this manoeu-
vre has strong tendency to bank. Additionally it
is observed appearance of wing rock oscilla-
tions.

Conclusions

The main aim of the study was to apply
modern methods for investigation of non-linear
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problems in flight dynamics. Based on the in-
vestigation described above, the following con-
clusions can be drawn:

1. The present results show the value of using
continuation and bifurcation methods for ana-
lysing the equations of aircraft motion;

2. The efficiency of the methods makes it pos-
sible to analyse complicated aerodynamic mod-
els using the complete equations of motions for
the whole range of control surface deflections;

3. Knowledge of such deflections, which cause
bifurcation allows us to select the most probable
scenario of occurrences before the accident, and
to escape from risky motions;

4. The need for a precise description of aero-
dynamic loads is a fundamental cause of diffi-
culties;

5. The presented approach can be applied to
the prediction of space behaviour of aircraft.
Therefore, it can be also applied to modification
of aircraft dynamic characteristics.
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