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Abstract

The flow control problem is considered using
microjet actuators and an optimization
algorithm applied for a cost function defined as
a boundary integral on the reference shape
surface. The numerical approach is based on an
unsteady optimization process involving a RANS
flow solver, a numerical model for the actuators
and a global unsteady optimization algorithm,
based on the BFGS. The actuators are
controlled as to minimize the cost function using
gradients provided by the use of an automatic
differentiation tool applied to the source code of
the flow solver.

Results are presented for the numerical
simulation of the actuator and the flow around
the circular cylinder using one apriori given
control law and for active flow control using
synthetic jet actuators.

1  Introduction

Actuators like synthetic jets have the potential
to change flow characteristics for some practical
configurations. They can be very easily used for
lift control or stall delay, and this can even be
done without using active control laws [4][5][6].
For such applications, when the global effect is
obvious from the beginning, from the
mathematical point of view we can consider that
we have a flow control problem with a given
apriori law.

For more general and complex cases, the
use of the jet actuators for active flow control on
complex geometries may be considered as a
mathematical optimization problem,
reformulated as unsteady minimization of a cost
function. The resulting control laws may be

derived from a gradient based optimization
algorithm, using mainly information on a
reference surface in order to define an
appropriate cost function [10][16]. As an
example, we will use the case of the viscous
flow over a circular cylinder [8], well known to
produce a Karman vortex alley and strong
oscillations both in lift and drag.

The numerical simulations in this paper are
based on CFD techniques using a RANS 2D
code with a modified k - ε turbulence model. A
time averaged drag formulation is considered as
a cost function to be minimized using control
theory and an gradient based algorithm for
active flow control. Gradients will be generated
using automatic differentiation of the solver
using several assumption made on the
dependence of the cost function on the state
(flow variables) [7].

2  The Unsteady Flow Control Problem

The potential of the SJ actuators for fluid
control was investigated in various conditions in
a previous work [17]. We will consider the
problem of the circular cylinder as an unsteady
optimization problem for the cost function
which will be drag. The controls are
numerically simulated by their external
characteristics (frequency and top
blowing/suction speed) at their location
represented on the surface of the cylinder. The
optimization algorithm will provide the
optimum control laws for the actuators and the
corresponding value of the minimum cost
function using a gradient based method where
the gradient is to be evaluated using automatic
differentiation of the flow solver.
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2.1 The Optimization Problem for Flow
Control

We consider that the flow around the cylinder at
any moment being cvasiperiodic, with a period
independent of the controls . Also, because we
expect that the controls influence to be
computed using a time marching technique, we
expect several time periods to be the
representative time interval. This means that the
controls are supposed to have littl e influence on
the global motion and that the final motion is
supposed to be also cvasiperiodical.

The optimization problem under these
assumption will be to minimize the drag
coefficient Cd using a set of controls on the
boundary :
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T is the time period of the cvasiperiodic
flow solution for the case with no controls, and
Cd is computed from a boundary integral on the
cylinder surface. The controls are individually
defined by 2 control values (frequency and top
speed) which are bounded by imposed
technological restrictions.

The time period is numerically computed
using the same infinity boundary conditions and
grid (after all regular precaution in CFD for
grid-independent flow solutions) as for the
controlled case, and ideally this time period
should be related to the Strouhal number
obtained experimentally for this flow at the
same Mach and Reynolds numbers, i.e. St =
0.21 . This value is fixed during the
optimization process, but we use several time
periods for a time-averaged analysis. Since the
flow solver is using a global time step
integration technique(the time step used is the
minimum time step as given by the local time
step of every point in the domain) for the
unsteady flows, the discretisation of the time
dependence of the cost function is made so that
the constant time step used to be lower then the

global time step as resulting from flow
sensitivity.
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The minimization problem in a discrete
formulation, using a constant global time step as
given by (3), will then be ( at a time moment n
):
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which can be formulated as :
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So we have to compute at each time step
the value of  ( )nnCd

nn
ζϕ
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,
  using :

• SJ actuators as controls
• the flow solver
• an appropriate optimization algorithm

2.2 The controlling devices

For the active flow control problem, we use
controls for the minimization of the unsteady
cost function drag. The controls used are
synthetic jet (SJ) devices that have individual
characteristics for the frequency and velocity
profile.

Synthetic jets (SJ) result from an
oscillating diaphragm in an enclosed space,
having small orifices at the top. They can be
controlled electrostatically or using
piezoelectric materials with frequencies in the
range of 0.5 – 20 kHz. Because air is drawn into
the cavity by the low-level suction pressure
created by the diaphragm and then is expelled
by the same diaphragm, such devices are
considered to produce a zero-mass jet. The peak
velocity speed and the frequency are defining
parameters. For practical devices with orifice
diameters like 200 µm, peak velocity may be up
to 20m/s, as reported in several experiments
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[3][4]. Such actuators were previously
investigated for flow control on various
configurations and the results are very
promising [2] [5]. Several numerical studies for
the actuator simulation using CFD analysis were
performed in order to asses the effect of their
operational characteristics [6][8].

Figure 1 - SJ external flow F+=10

Figure 2– SJ cavity flow

From these results, for a complex analysis
of their influence on a body, only the top speed
and the frequency for a sinusoidal operating
mode were selected in this analysis. Other
characteristics of the velocity profile at the SJ
exit (i.e. the influence of the external flow

conditions or the geometry of the nozzle) were
neglected in this phase (Figure 1, Figure 2).

Actuators are identified by the locations of
the vertices on the surface and they are working
in the direction given by the local normal to the
surface. Such actuators are located on the
surface in distinct regions. In every region, an
array of actuators is operating in identical
conditions. This makes an array of SJ to act like
an individual actuator. If individual actuators in
the same region are considered to operate at
different conditions (for the top speed and
frequency), then this increases the number of
controls on the surface, but still uses only 2
variables for every control. Spatial definition of
the velocity profile can be defined in this way
for a wider actuator, using apriori given laws
(7),(8) or imposing some constraints.

Figure 3 – SJ velocity profile

Several types of simulation were made. For
the case of only external influence, the exit flow
profile used was of polynomial type. The
general blowing law used was :

( ) ( )





















+= ∞+

∞
ref

ref
b L

tV
FccV

H

L
xVtv πµµ 2sin

2

(7)

where :

( ) ( )[ ]
( )[ ]{ }








+⋅⋅
+⋅⋅=

20

0

0

5.0sin

5.0sin

xV

xV

V

xV

b

b

b

b

π
π

(8)

and global parameters given by :
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In Figure 3 we present a comparison
between a simple blowing/suction law as
described by (7) and results obtained from a
complex simulation of an actuator [17]. The
results prove that a simple constant velocity
profile is valid for around 50% of the nozzle in
blowing and for more than 70% in suction
phase. Effects like the reverse flow for the edges
of the nozzle will be neglected in this phase.

2.3 The flow solver

The code used is of 2D RANS type, based on a
modified k - ε turbulence model [1]. Some
modifications of the initial version were made,
in order to allow a better integration of SJ
specific boundary conditions. The code is based
on a combination of finite-volume and finite–
element method, using general unstructured
meshes and a choice of Roe or Osher schemes
for the convective part of the system. The
viscous part is solved using a typical centered
finite element Galerkin technique. The global
formulation used by the solver is:
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and :
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with :
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The steady state solution is obtained using
an iterative time marching scheme. The
algorithm is either explicit in time or implicit
using a GMRES and a ILU preconditioner. For
unsteady flows we will use the explicit in time
formulation. It was found that a four stage
Runge-Kutta scheme is the best choice for the
explicit solver like:
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where αk coefficients have been optimized for
maximum accuracy and convergence speed [1].

An important feature is the time step
strategy. The general formula (3), for both
inviscid or viscous flows was used in order to
compute the local time step at a given node . For
steady state computation, a local time step
strategy is commonly used. For unsteady cases,
the global time step was used, as the minimum
time step of all local computed time steps using
the formula above. This gives up to one order of
magnitude lower time step for viscous cases, so
higher computational times are required [1][5].

The turbulence model used is based on the
k-ε model. Due to the large amount of turbulent
kinetic energy that is dissipated on the SJ sides
edges, some important features were used in the
solution approach. The grid used was designed
for a y+ < 1 criteria. Also, a two layer
formulation was used, with a fixed distance for
the low Reynolds model at y+ = 200. This
approach was tested and compared to the use of
the wall laws technique for the low local
Reynolds region. For a reasonable accurate and
smooth discretisation of the sensible areas, the
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two layer approach was consider to give better
results than the classical wall laws model [1][5].

The boundary conditions used are based on
the characteristics method for the external flow.
On the cylinder, the SJ conditions were imposed
for the normal velocity. Pressure and density in
the SJ region was interpolated from adjacent
points. Viscous conditions at the free external
boundaries were fixed at a value of 10-5 for k
and ε. Same values were used for the location of
the SJ on the body.

2.4 The mesh

Due to the difficulty in obtaining reliable
unstructured meshes by the Delaunay-Voronoi
method (in the actuators region we request that
the first grid points off the reference to be
located at 10-5), some local algebraic grids were
used close to the surface, converted to a
triangular mesh by natural triangularization. The
outside region was triangulated using a
Delaunay mesh generator (Figure 4). This was
the initial mesh.

Figure 4 - Initial mesh and control location

On a such a mesh, using a first computed
viscous solution for the uncontrolled case, a
mesh adaptation was performed, using a mixed
flow momentum and k indicator for adaptation
[9]. The metric for adaptation was constructed
using 4 solutions for the periodic flow. The
resulting mesh (around 50.000 points, 100.000
triangles and 150.000 edges, with a smallest

edge of order of 10-6), was used for final viscous
unsteady solution (Figure 5).

Figure 5 - Global mesh

This mesh will be used for all simulations,
and initial control locations are repositioned on
this new geometry. Because of the requirements
of the turbulence model used, this mesh was
also tested for a y+ < 1 criteria in the range of
the flow solutions. A detail of the final mesh in
the controls area is presented in Figure 6.

Figure 6 - Mesh detail

2.5 The Optimization Loop

The optimization algorithm used in the
numerical simulations is :

1. Initial control with ( ) ( )00 ,, ζϕζϕ =

2. RANS state S0 flow solution
3. Loop start
4. Computation of the new state Sn

using the updated values for the controls;
5. Gradient computation nJ∇  ;

Controls
30 – 40 deg
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6. Projection step 
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8. Time incrementation ttt ∆+=
9. Loop end

We use L-BFGS-B, a limited memory
algorithm for solving nonlinear optimization
problems subject to simple bounds on the
variables [13]. It is intended for problems in
which information on the Hessian matrix is
difficult to obtain[14].

3  Control Theory for Flow Control

A modern approach to solve the flow control is
to formulate the problem in the framework of
the mathematical theory for the control of
systems governed by partial differential
equations [15]. We can imagine the flow around
a surface as the result of the action made by the
surface that produces lift and drag by
controlling the external flow. The surface design
problems can now be seen as a problem in the
optimal control of the flow equations using
variations in the boundary conditions.

If the boundary conditions are of general
type and cannot be defined by a finite number
(small) of control parameters, then, for any cost
function defined using information on the
boundary, the Frechet derivative of the cost with
respect to a function must be used. It is obvious
that classical techniques using finite differences
for cost derivatives with respect to control
parameters are no longer possible, due to the
large dimension of the problem. The control
theory techniques, solving an adjoint equation
with coefficients defined by the solution of the
flow equations, gives the value of the gradient
with a computational cost comparable to that of
solving the flow equations. This means that we
might expect to be able to have the gradient and
the flow solution for the cost of two flow
solutions, independently of the number of the
control parameters.

If we define the cost function J as a
function of the state flow variables W (flow

parameters in the conservative form) and some
physical boundary conditions, generically
represented by F , then :
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If we have governing flow equation which
expresses the dependence of W and F inside the
flow region in a generic form like (for the
unsteady problem) :
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If we define a Lagrange multiplier by Λ  and we
multiply this equation and subtract it from the
variation of Jδ  we finally find that if we choose
Λ  to satisfy the adjoint equation like :
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then the first term (the state dependency) is
eliminated and we find that :
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The advantage of this equation is that it is
independent of the state variables perturbation.
This means that the gradient of the cost function
J with respect to an arbitrary number of controls
can be determined without the need of
additional flow-field evaluations.

Due to the fact that (10) is a partial
differential equation, the adjoint equation (20) is
also a partial differential equation, so it is
subjected to similar treatment for the
appropriate boundary conditions which requires
careful mathematical treatment [11]. In order to
have numerical solutions, both the flow state
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equation and the adjoint have to be discretized
and solved. The control theory is applied to the
set of discrete flow equations resulting from the
numerical approximation using finite volume
(for the Euler part) and finite element (for the
viscous part) procedures. This leads directly to a
set of discrete adjoint equations with a matrix
which is the transpose of the Jacobian matrix of
the full set of discrete nonlinear set of equations.

4  Automatic Differentiation for RANS Code

Automatic differentiation (AD) is a
technique for augmenting computer programs
with derivative computations. It exploits the fact
that every computer program, no matter how
complicated, executes a sequence of elementary
arithmetic operations such as additions or
elementary functions. By applying the chain
rule of derivative calculus repeatedly to these
operations, derivatives of arbitrary order can be
computed .automatically, and accurate to
working precision [7] .

For this work we use Odyssée, a AD tool
developed at INRIA-France [7]. The automatic
differentiation system Odyssée takes as input a
Fortran subroutine or collection of subroutines
and produces the corresponding subroutines
computing the derivatives in different ways:
• Direct mode: Odyssée produces a program

computing the tangent linear application
(the Jacobian matrix times a vector).

• Reverse mode: Odyssée produces a program
computing the cotangent linear (or adjoint)
application (the transposed Jacobian matrix
times a vector).
Both these modes were investigated during

the present work. For large applications, the
reverse mode is used as standard.

5  AD Implementation for Flow Control

The reverse mode of the AD tool is suitable for
the fluid control problem with a large
number(more than 6) of control variables. The
resulting code is able to provide the expected
results for the sensitiviti es with regard to the
state variables. There are however some
problems and conclusions resulting for several

numerical tests performed with the AD tool and
the optimization algorithm. They are related to
the new code that is resulting from the
differentiation of the state solver with respect to
the state variables.

If one applies the AD tool directly, with no
special precautions, the result is a huge code
even in the case of a normal 2D Navier-Stokes
simulation. This is because of the way the
adjoint is generated where full dependencies are
propagated inside the domain, even if for the
particular discretisation scheme used the
dependencies are limited to the neighboring
cells. This makes the resulting code to be so
huge, and a cure for this problem is to rewrite
some of the initial code and to use AD in an
incremental way under global internal loops on
the vertices.

Also, from numerical results on small
domains for some classical aerodynamic
configurations, a well known poor dependency
of the global state with respect to global flow
perturbations was found [8]. This also means
that any global coefficient based on a surface
integral on the shape is littl e influenced by the
flow variations induced by the controls in the
whole domain. This is materialized in a week
dependence of the gradient with the state
[8][16]. This means that for quick aerodynamic
optimizations, one may neglect the state
derivative in the gradient, so only derivatives
with respect to the controls will be considered.
This gives a reasonable approach for a flow
control problem like the one for the circular
cylinder, if the controls are small . In practical
applications, this assumption means that we
need to implement a nested loop with a global
flow solver (depending on the control variables)
and an estimator for global characteristics and
the cost function (based on a surface integral,
including the control area). The simple approach
means that we have to differentiate only the
estimator, leaving the flow solver unchanged.
The complex case is when we differentiate the
flow solver and the estimator. Also, for a small
number of controls, we can use the forward
mode(i.e. 2 distinct arrays of actuators and a
final 4 control parameters), or the reverse mode,
for a larger number of controls. In this later
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case, the effect of the above observation makes
important time savings.

6  Numerical Simulations and Results

Flow control over the circular cylinder at
Reynolds = 42.000 and Mach = 0.2 is analyzed
using controls like synthetic jet actuators. The
actuators are defined by their operating
frequency and top blowing/suction speed and
are located on the rear surface of the cylinder, in
symmetrical regions, for an arc-length of 10
degrees, around 35 degrees location (Figure 4).
They can be operated individually or as arrays.
This means that the boundary conditions are
expressed for a several number of control points
either using the whole set of controls, or a
limited subset.

Figure 7 - Reference state ( Iso-Mach lines )

Figure 8 - Reference state detail ( iso-Mach )

Operating frequencies are considered in the
range of 0..2000 Hz and the maximum
blowing/suction top speed is supposed to be in

the range of 0..20 m/s.; nondimensionalizations
were performed for the reduced frequency
[2][4][6][8]. The flow induced by the actuator is
supposed to have a low level of turbulence, so
the same conditions for the viscous variables are
considered as for free stream boundary
conditions (k and ε set at 10-5).

Figure 9 - Constant suction ( Iso-Mach )

Figure 10 - Constant suction detail ( Iso-Mach )

The number of points on the cylinder was
512, equally distributed, which gives a total of
28 points for the control locations, to be
identified as SJ boundary conditions. So the
maximum number of control parameters was 56.
In the case when only arrays of SJ were
considered, the minimum geometry gives 2
arrays with a total minimum controls of 4. In the
case of individual actuators, only simple
sinusoidal individual oscillations can be
considered. For lower identification situations,
when we use individual groups, complex
velocity profiles may be considered as resulting
from (7) or actuator simulations [8][2].



2104.9

ACTIVE FLOW CONTROL OVER A CIRCULAR CYLINDER

Figure 11 - Cost function history - 4 variables

All simulations were started from a
reference state, the solution for the flow with no
controls (Figure 7, Figure 8).

Figure 12 - Optimization process – 4 variables

From this solution, using the optimization
algorithm, a minimization of drag was
performed in a maximum imposed number of 50
loops. The number of cvasiperiods used for
unsteady cost function averaging was 4.

An alternative solution to the problem may
be considered using a different starting point,
for a constant suction case (Figure 9, Figure 10).
This case is using a constant suction velocity Vb
= 0.1 for all controls located on both upper and
lower area. This case will be referred as the
controlled case using an apriori given law.

Figure 13 - Optimal state ( Iso-Mach)

Figure 14 - Optimal state detail ( Iso-Mach )

All simulations were considered up to a
minimization of the residual in the RANS code
on the order of 10-5. For the gradient
computations, a sensitivity of 10-3 was
considered, for a global machine precision of
10-16. An explicit integration of the solver was
used based on global time step strategy and a 4
order RK scheme. The average time step
resulting from the code was 1.45x10-6 .

The optimization process is presented for
the cost function history Figure 11. The figure
presents time history for the reference state (no
controls), a controlled state using an apriori
given suction law and the optimal controlled
state. The optimization algorithm for the
optimal case is presented in Figure 12.

The final optimal state for the 4 variable
control case is presented in Figure 13, Figure
14. A comparison between 3 instantaneous
states for the pressure coefficient Cp on the
cylinder are presented in Figure 15.
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7  Conclusions

A first conclusion of the simulations was that it
is possible to ignore the gradient dependence to
the derivative with regard to the state. This is an
important finding which makes a big difference
in computational time. This conclusion has to be
validated in further studies.

Figure 15 - Cp for instantaneous states

The algorithm is providing optimal control
values for a state which is not dependent of the
starting point. From the numerical results, it
seams that the controls have very little different
values for the resulting state, for the two starting
points considered. This finding is in good
agreement with the previous conclusion
(independence of the state derivative for the
gradient).

The reference value for the drag was Cd =
1.12 with a fluctuation of ∆Cd = 0.12 . From the
optimum obtained , we have a Cd = 0.81 and a
fluctuation of ∆Cd = 0.05 , for a symmetrical
actuators control law using the top allowed
blowing speed of 20 m/s and a frequency of
1272 Hz.

From these first experiments, it seams that
the higher the top actuator speed is, the better
the stabilization effect is obtained. Frequency is
somehow to the middle allowed domain, and
further analysis is indicated in order to validate
these results. The control algorithm gives an

optimum control law which is symmetrical,
possibly because of the geometry symmetry.

Also, from the final results, it seems that
flow control is possible using the SJ actuators
and an gradient based optimization algorithm
for the cost function drag. This finding has to be
investigated in more details for complex
configurations.
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