
ICAS 2000 CONGRESS

1101.1

Abstract

In this paper we emphasise how a computer
science technology, namely the Object-Oriented
[OO] approach, is able to help modelling large
and complex systems such as airports. We will
demonstrate how the building of an Information
System for the Airport will allow to better
manage current and future solutions. First of all
we introduce very briefly the 2 used notations:
Use Cases and Class Diagrams that
respectively allow to model the functional and
structural points of view. We show how some
application constraints can be taken into
account. We then emphasise how these models
can be validated by end users such air traffic
controllers, pilots, … These models constitute
the rigorous and static specification of Decision
Support System [DSS] and Collaborative
Decision Making systems [CDM] that should be
used to introduce new procedures, new
regulations, …

1 The AdF project

In the context of an internal ONERA1 research
project started in 1998, we are considering what
should be the Airport of the Future [AdF].
Indeed it is now recognised that due to an air
traffic increase of 8% a year, the bottleneck is
the airport itself.

In the AdF project, we are considering the
airport problems from a global point of view.

1 ONERA stands for Office National d’Études et de
Recherches Aérospatiales.

We have restricted them to landing, taking off,
taxiing and parking phases.

In a 2nd step we are considering alternative
designs that are currently evaluated through the
help of DSSs and CDMs which are directly
derived from the global views we have been
able to build up.

In the following sections we emphasise our
ability to model global views of the airport, and
how it is possible, using an OO approach, to
validate or invalidate the subsequent DSSs and
CDMs.

For more information about the AdF
project, see [1], and [2].

2 The chosen approach

2.1 The Airport complexity

In an airport, both from an airside and landside
point of view, there are many actors. Some are
directly interacting with the airport - passengers,
pilots, controllers, …, some are more passive -
weather forecast, regulations, …. The services -
we call them functionalities - provided by the
airport are numerous. For instance the
Advanced-Surface Movement Guidance and
Control System [A-SMGCS] is in charge of
taking care of all the vehicles movements on the
tarmac. The A-SMGCS interacts both with
active and passive actors.

The airport, as a whole, is a very complex
system that has not been tackled up to now in
the right way.

MANAGING THE AIRPORT COMPLEXITY:
CONTRIBUTION OF THE OBJECT-ORIENTED

APPROACH

MICHEL LEMOINE
ONERA Centre de Toulouse

2 avenue E. Belin
31055 Toulouse CEDEX

e-mail: Michel.Lemoine@cert.fr

Keywords: airport, functional and structural description, object-oriented model, validation

Michel Lemoine

1101.2

Regarding similar complex systems, it has
been shown that a possible answer goes through
the building up of an Information System, seen
as the collection of technical and human
resources that provide the storage, computing,
distribution, and communication for the
information required by all or some part of an
enterprise.

2.2 The object-oriented approach

In the AdF team computer scientists proposed to
model the Information System using the UML
notations [3] which are OO. They also
suggested to use the Fusion [4] method for the
analysis phase.

According to such a method, it is
important to develop two kinds of models:
• Use Cases models which allow to identify

who are the main actors, and what are the
main services the Information System
provides.

• Class Diagrams which allow to identify all
the information that are manipulated, and
their static structure.
These two kinds of models must be

validated2 by end users.

3. Building an Information System for the
Airport

3.1 Identifying actors and services.
In Figure 1, there is an example of a Use Case.
Here we have considered an hypothetical A-
SMGCS.

3.1.1 Actors
The main actors are:
• Air Traffic Controllers: they manage the

ground traffic of all the vehicles on the
tarmac.

• Vehicles: they are the interacting actors
instead of pilots because there are many
kinds of vehicle whereas there are only one
kind of pilot / driver.

2 According to W. Boehm, Validation means: Am I
building the right system?, whereas Verification means:
Am I building the system right?

• Pilot: she / he is also an actor but not
interacting directly with the AdF system.
This results from a design decision. Of
course, in another design we could have
chosen the Pilot as main actor. In the later
the point of view could have been different.

• Weather Forecast: this is a passive actor
only able to send information.

• Gate Manager: she / he is responsible for
gates allocation.

• Police: it is responsible for security.
• Infrastructure: it represents the airport as a

set of taxiways, runways, buildings, …
• Sensors: they are actors as well. They

interact with many services and have
relationships with the infrastructure.

3.1.2 Services
Regarding the services offered by the A-
SGMCS system, we have suggested the 4
traditional functions, as recommended by the
International Organisation of Civil Aviation:
• Monitoring
• Routeing
• Surveillance
• Guidance
The 5th functionality presented in the Use Case
is relative to warnings that can be set up by
police services for security reasons.

Attached to each service are some actors
who interact with them, interact meaning
exchanging information. It must be noticed that
actors are either person, or external systems
such as for instance regulations (not here
represented), infrastructure, …

3.1.3 Use Case Validation
An important aspect of the OO approach as
promoted by Fusion [4] with UML [3]
notations, is the ability to validate, long before
any software development, the functional and
static models.

For validation, as usual, end users are
mandatory. Indeed, we can understand a Use
Case as a high level functional description of
the system under consideration. Thus, a Use
Case represents in some way the What of a
system to be either developed or reengineered.

1101.3

MANAGING THE AIRPORT COMPLEXITY: CONTRIBUTION OF
THE OBJECT-ORIENTED APPROACH

Regarding the AdF project, the 5 services
have been validated by end users because they
correspond to very well known services. But,
regarding the actors, the end users exhibited that
a lot of them were missing. The final list of
actors includes more than 30 different actors
that we added to our models.

3.1.4 Use Case Summary
The main interest of such Use Cases is
threefold:
1. A high level functional description of the

system i.e. the set of services it provides:
What the system does.

2. A clear identification of actors Who
interact with the services.

3. An easy validation by end users.

Figure 1: Use Case for the A-SMGCS

3.2 Class Diagrams
In the OO approach, after representing3 the
interactions between actors and services, we
must produce what constitutes the core of the

3 This representation is done through 2 interrelated
notations: Sequence Diagrams and Collaboration
Diagrams.

OO representation: Class Diagrams that
represent both what information are
known / manipulated and their relationships.

In the following we are considering 2
diagrams according to 2 points of view of the
airport and its air traffic management.

Michel Lemoine

1101.4

Figure 2: Class Diagram for Landing Aid

3.2.1 Landing Aids
Landing aids are represented in Figure 2. A
informal translation of such a Class Diagram is
as follows:
1. Landing Aid: they are either Conventional

or Precision ones.
2. Conventional Landing Aid: it is either a

VOR, or a TACAN, or a LOC or a DME.
3. Precision landing aid: it is either a MLS or

an ILS. To each precision landing
corresponds a Critical Zone.

4. ILS: it s either a GLIDE or a LOCALIZER.
In this class diagram, we have described

landing aids as a classification - or hierarchy.
This classification takes advantage of the OO
concept of specialisation4. In other words, a
TACAN is a specialisation of conventional
landing aid, which is itself a specialisation of
landing aid.

4 The specialisation concept is translated by inheritance
at the OO language level.

In the above Figure, it must be noticed that
a Precision Landing Aid corresponds to a
Critical Zone, i.e. a precision landing aid
cannot exist without a critical zone, and vice
versa. This association between 2 classes
represents a strong link between any pair of
precision landing aid and critical zone. We can
add, but this is not done here, the cardinality of
critical zones and of precision landing aids.
These cardinality is a direct translation of some
informal constraints such as: to each critical
zone is associated at least one or more
precision landing aids, but a precision landing
aid corresponds to one, and only one, critical
zone.

As for Use Cases, a rigorous validation is
required. We taught some air traffic controllers,
and pilots how to interpret the UML notations
for class diagrams. They have immediately
been able to read all the class diagrams we have
produced, and consequently they have
validated / invalidated them. For instance the

1101.5

MANAGING THE AIRPORT COMPLEXITY: CONTRIBUTION OF
THE OBJECT-ORIENTED APPROACH

definition of the binary relation is associated to
is wrong from the point of view of cardinality.

For the Figure 2, no important discrepancy
appeared. This is mainly due to the fact we
have described a classification. It must be

noticed that many constraints can be translated
by binary association – as is associated to in
Figure 2 – with the right cardinalities attached
to each class appearing in the binary
association.

Figure 3: Class Diagram for Guidance, Routeing and Monitoring

3.2.2 Exhibiting conflicts between Vehicle and
Movement Area
In Figure 3, we have represented, from a
structural point of view, parts of an A-SMGCS.

The above figure should be read as
follows:
• Vehicle: it represents either an authorised

vehicle, or an unauthorised one.
• Movement Area: it is the area5 on which

vehicles (authorised or unauthorised as
well) can run, or park.

• There are 3 relationships between these 2
classes that may be used for conflict
detection.

5 There is another class diagram to describe it. It is made
of both a hierarchy and an aggregation.

1. The association goes towards represents
the next location a vehicle is going to.
This association can be seen as the set
of a couple vehicle, movement area,
itself instance of the association class
Next Location. It must be noticed that
an association class is a real class, with
its own attributes and its own
operations.

2. The is allocated to association
corresponds, for a given vehicle, to the
movement area it should go. As for
Next Location, the set of couples
vehicle, movement area are instances of
the association class Route.

3. The is on association represents the
movement area where any vehicle is at

Michel Lemoine

1101.6

a given time. The corresponding
association class is Current Location.

• Guidance: it is a class, the set of Next
Location instances. Indeed the vertical
diamond represents the notion of
composition / aggregation. In other words
we have specified that the guidance
corresponds to the set of next locations for
a vehicle.

• Routeing: it is a class representing the set of
routes allocated to each vehicle (when they
are under control). It must be noticed that at
each time step, the next location is unique
for a vehicle whereas the route is composed
of next locations that can change over the
time.

• Monitoring: at each time step this class
represents what kind of control the system
may have. Indeed, knowing where a vehicle
is (known by is on) and where it should be
(known by goes towards and / or is
allocated to) it is easy to detect either
Prohibited Area Conflict (the vehicle going
to a wrong movement area), or Deviation
Conflict (the vehicle following a wrong
route), and other conflicts.
This incomplete class diagram helps to

understand how we are able to model, even
from a static point of view, conflicts. The main
point is here we have had the ability to
formalise6 the basic notions taken into account
by the Air Traffic Controllers as soon as
she / he is managing vehicle on the movement
area.

3.2.3 Class Description
The building of use cases and class

diagrams is the 1st answer we gave to the AdF
project for representing a huge and complex
system such as airport. But, even we the best
functional and static description of a system,
we are not able to tackle all the complexity of
the system. Thus we have been obliged to detail
as far as possible each class as shown in the
next Figure.

6 Formalise means here to give a rigorous meaning, not
necessarily a full semantics.

The Runway class is
amodel for the concept
of Runway.
An important constraint
must be satisfied: one
runway, one plane at
maximum.

Runway

mode : int
stopBarLocation : Coordinates
waitingPoint : Coordinates

isFree?()
maintenance?()
isOK?()

Figure 4: Class description

From a practical point of view we have
built such class description, plus a large Data
Dictionary as recommended by the Fusion
method [4].

4. Conclusion
In this paper we have restricted our
presentation to how a OO approach can help
modelling, and consequently better understand,
a huge and complex system such as an airport.

The current models encompasses more
than 100 classes, and more than 50 relations.
They have been split in 8 components, related
to Landing Aids, Movement Area, Traffic
Area, Sensors, Markings (lighting and others),
Planes Departure and Arrivals, Airport
Infrastructure, Vehicle (all of them). A last
component called Central gathers all the 8
components.

Moreover all these diagrams have been
validated by the end-users such as pilots,
drivers, airport authorities, ATC people, ...
These functional and static / structural models
are the firm and formal basis for the
development of realistic simulators we are
currently prototyping as described in [5].

References

[1] http://www.cert.fr/en/dprs/activites/adf/index.html
[2] http://www.red-scientific.co.uk/optas_b.htm
[3] Booch G., Rumbaugh J., Jacobson I. The Unified

Modeling Language User Guide. Object Technology
Series, Addison-Wesley, 1999.

[4] Coleman D. et al. Object-Oriented Development.
The Fusion Method. Prentice Hall Internatial. 1994.

[5] Adelantado M. Experimenting the HLA framework
for the ONERA project “Airport of the Future”. Fall
Simulation Interoperability, SISO 1999, Workshop,
Orlando, USA, 1999

