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Abstract

Performance goals for gas turbine engines
continue to increase to meet the needs of both
military and commercial aviation.

In the compressor system, each stage must
produce a significant total pressure rise with high
efficiency.

According to research there are many
widespread computational method so far to solve
the Navier-Stokes, Euler equation or other
interaction in 3D. It is obvious this kind of
procedures something like that need very
significant computational time and background.

The paper tries to show a simplified fluid
dynamics method, which would be able to
describe airflow over sound speed correctly using
for PC.

1  The Governing Equations

The general technique for obtaining the equations
governing fluid motion is to consider a small
control volume through which the fluid moves,
and to require that mass and energy are
conserved, and that the rate of change of the three
components of linear momentum are equal to the
corresponding components of the applied force.
This produces five equations, which, when
combined with an equation of state, provide
sufficient information for the determination of six
variables: p, ρ, T, u, v, w typically.

1.1  Modelling of Flow
In obtaining the basic equations of fluid motion,
the following philosophy is always followed:
1. Choose the appropriate fundamental physical

principles from the laws of physics, such as

− Mass is conserved,
− F=ma (Newton’s 2nd law),
− Energy is conserved.

2. Apply these physical principles to a suitable
model of flow.

3. From this application, extract the
mathematical equations, which embody such
physical principles.

1.1.1  Compressible, unsteady, two dimensional
conservation form of equation for inviscid flow.
First, for the sake of simplicity let us consider
two-dimensional airflow. The governing equation
for the flow where the dissipative, transport
phenomena of viscosity, mass diffusion, body
forces (gravitational, electric and magnetic),
which act directly on the volumetric mass of the
fluid element and thermal conductivity are
neglected:
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where: jviuv += , 222 vuV +=  and e is the
internal energy. [8]
Forms of the governing equations
particularly suited for CFD: According to
previous remarks, the conservation form of all
the governing equations: continuity, momentum
and energy are given by
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1.1.2  Equation for viscous flow.
Secondly, it would be to arrange more complex
calculation for transonic airflow is provided next.
The conservation form of governing equation for
an unsteady, three dimensional, compressible,
viscous flows are:
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Forms of the governing equations
particularly suited for CFD: The conservation
form of all the governing equations: continuity,
momentum and energy are given by
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2  Rough Sketch to Plane

2.1  Finite volume method.
Discretization of the partial equations is called
finite differences method, and discretization of
integral form of the equations is called finite
volume method. The finite volume method was
originally developed as a special finite
difference formulation. It is central to four of the
five main commercially available CFD codes:
PHOENICS, FLUENT, FLOW3D and STAR-
CD. The numerical algorithm consist of the
following steps:

1. Formal integration of the governing
equations of fluid flow over all the (finite)
control volumes of the solution domain.

2. Discretization involves the substitution of a
variety of finite-difference-type
approximation for the terms in the integrated
equation representing flow process such as
convection, diffusion and sources. This
converts the integral equations into a system
of algebraic equations.

3. Solution of the algebraic equations by an
iterative method.

There are three mathematical concepts can
be useful for our calculation: convergence,
consistency and stability.

2.2  Grids and its transformations.
Usually the physical and computational space is
different. The physical space may be
nonuniform, curvilinear according to shape of
body. The governing partial differential
equations are solved by a finite difference
method carried out in the rectangular
computational space. So, the governing
equations must be transformed from physical
space to computational space and backwards. In
this project, it is solved in C, C++ computer
program also.

2.3  Explicit or implicit scheme.
In the explicit approach, by definition, each
difference equation contains only one unknown
and therefore can be solved explicitly for this
unknown in straightforward manner. This
method is simple, but in some cases not too
stable and the computational time is long. The
better approach is the implicit scheme. By
definition, an implicit approach (for example
Crank-Nicolson form) is one where the
unknowns must be obtained by means of a
simultaneous solution of the difference
equations applied at all the grid points arrayed at
given time level. Because of this need to solve
large system of simultaneous algebraic
equations, implicit methods are usually involved
with the manipulations of large matrices. This
procedure more stable, but more complicated
and time spending with truncation error
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 (because of large matrices) then explicit
approach.[10]

After previous calculation, the next step the
solution of full Navier-Stokes equation with
boundary layer interaction will be considered for
an unsteady, compressible, viscous transonic
airflow. This is the final goal of this project. After
this we can build the pressure field for all stage in
the transonic axial compressor to get the
compressor characteristics.

2.4  Problems

However, there are any inaccuracies:
•  Because of discretization error, which is the

difference between the exact analytical and
solution of the partial differential equation

and the solution of the corresponding
difference equation (in CFD).

•  Because of round-off error, the numerical
error introduced after repetitive number of
calculation in which the computer is
constantly rounding the numbers to some
significant figure (in CFD).

•  Because of neglecting of second order terms
in the partial differential equation (in CFD).

•  Because of neglecting of interaction of
compressor stages (in mathematical model).

The other aim of the theses to work out a
computational method in C++ program, which is
able to calculate transonic airflow in the axial
compressors. For the check of this procedure, it
would be some computational software for
example FLUENT. This software is applicable

                    

Fig. 1.
NACA RM E52C27 Transonic Axial flow compressor, rotor blade geometry (with flow channel) slice at medium

section in FLUENT program

     

 

     

Fig. 2.
Pressure level in the transonic axial compressor blade row

(according to CFD Branch (from CFD Gallery))

Cyclic curve

Cyclic curve Out-let

Inlet



SIMPLIFIED METHOD ON MATHEMATICAL MODEL OF TRANSONIC AXIAL COMPRESSORS

775.5

ΘΘΘΘ

n

δδδδ
ΘΘΘΘm

ΘΘΘΘ

n

δδδδ
ΘΘΘΘm

Fig. 3.Axial compressor characteristics and its
isentropic efficiency

all over the world. At the moment I work on a
computational procedure in C program, which is
able to convert any forms and expression from
the physical domain (x, y) into the mathematical
or computational domain (ξ, η) and back.

2.5  Nomenclature
u: velocity of x direction,
v: velocity of y direction,
w: velocity of z direction,
p: pressure,
ρ: density,
τ: stress,
f: body force,
k: thermal conductivity,
T: temperature,
q! : volumetric heat per unit mass,
x: distance in i direction in cartesian

space,

y: distance in j direction in cartesian
space,

z: distance in k direction in cartesian
space,

θθθθ: stagnation temperature ratio,
δδδδ: stagnation pressure ratio,
n : relative number of revolution,
m : relative mass flow rate.
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