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Abstract

In this paper a non-linear mathematical model
of a low-power gas turbine, which is used in the
Budapest University of Technology and
Economics, will be presented.

This topic is current, because with this
model the manoeuvrerability of the engine can
increase in special flight situations.

According to the measurements, the
parameters of the gas turbine are known,
determined.

The method of non-linear modelling is
based on the thermodynamical equations, which
describe the behaviour of the engine.

With this model after linearization we can
design an optimal controller for the gas turbine.

1  State-space representation

The signals are time-dependent functions, which
can be scalar-valued or vector-valued, and
deterministic or stochastic. In the following only
vector-valued and deterministic signals will be
used.

The system is any part of the real world
surrounded by a well-defined boundary. The
system is influenced by its environment via
signals (u(t)  - input signal), and acts on its
environment by other signals (y(t) – output
signal).

The state of the system contains all past
information on the system up to time t0 – time
instant. If we would like to compute the output
signal for t≥t0 (all future values) we only need
u(t), t≥t0 and the state t=t0.

A description, which uses the state signal,
is called state space description, or state space
representation.

The general form of the state space
representation of a finite dimensional linear
time invariant system is:

)()()( tButAxtx +=!   -  state equation (1)
)()()( tDutCxty +=  -  output equation, (2)

with given initial condition x(t0)=x(0), and
rpn RtuRtyRtx ∈∈∈ )(,)(,)( (3)

being vectors of finite dimensional spaces, and
,, rnnn RBRA ×× ∈∈
., rpnp RDRC ×× ∈∈ (4)

The general form of the state space
representation of a finite dimensional non-linear
time invariant system is:

))(),(()( tutxftx =!   -  state equation (5)
))(),(()( tutxhty =   -  output equation, (6)

with the vector-values state, input and output
vectors x, u and y.

2  Description of the gas turbine

The subject of our analysis is a low-power
single-spool gas turbine with single-stage
centrifugal compressor and single-stage
centripetal turbine. This engine is a special
design for technical colleges, universities.
According to this attribute the main principles
of construction to be observed were simplicity
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of design and ease of maintenance.
Consequently, the unit was designed with small
power-to-weight ratio, limited space
requirement, multi-fuel capabilities and
vibration-free running.

The most important parameters of the
engine (if p0 = 1,0133 bar, T0 = 288K, n = 50000
1/min):

Power: P = 80 kW,
Mass flow rate of air: mc = 0,9 kg/sec,
Compressor pressure ratio: πc

* = 2,8,
Exhaust gas temperature: T4

* = 938 K.

We are able to measure:
•  total pressure and total temperature

− before and after the compressor (p1
*,

p2
* and T1

*, T2
*) ,

− before and after the turbine (p3
*, p4

*

and T3
*, T4

*),
•  number of revolutions (n),
•  consumption of fuel (mfuel),
•  and the moment of load (Mload)

3  Thermodynamic non-linear mathematical
model

The thermodynamic non-linear model describes
the behaviour of the engine. It has two different
parts: the first contains the steady-state
equations and the second contains the dynamic
equations.

The steady-state equations describe the
working of the elements of the engine in an
operating (equilibrium) point. Our gas turbine
has four parts.

1. The first part is the inlet. In this
component, it is assumed that the flow is
adiabatic. Let the pressure loss is σinlet, the
adiabatic exponent is κ, the Mach number is M
and the parameters (pressure and temperature)
p0 and T0! With them the conditions (total
temperature and pressure) at the inlet to the
compressor are:

)
2

1
1( 2

0
*

0
*

1 MTTT
−+⋅== κ

(7)

12
0

*
0

*
1 )

2

1
1( −−+⋅⋅=⋅= κ

κκσσ Mppp inletinlet

(8)
2. The second part is the compressor. It is

modelled empirically using the compressor
characteristic (map), which gives the mass flow
across the compressor. The total temperature
rise is found by using the isentropic efficiency
factor ηc, the total pressure is the function of
compressor pressure ratio πc

* and n is the
number of revolution:
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*
2 pp c ⋅Π= (11)

3. The third part is the combustor. In the
combustor the total pressure loss (σf) is
assumed to be a fixed percentage of its inlet
pressure p2

* and total temperature rise is given
by the steady-state energy equation, in which cp

is the heat capacity of air in constant pressure,
ηcomb is the efficiency factor of combustion and
Hl is the lower thermal value of fuel, in the
combustor:
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*
3 pp f ⋅=σ (12)
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where: 
c

fuel
T m

m
q

!

!
= (14)

4. The last part is the turbine. It is
modelled empirically with the steady-state
turbine performance map, which gives the mass
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flow across the turbine. The total temperature
drop is found by using the isentropic efficiency
factor ηt, and total pressure is the function of
pressure loss σg in the tube after the turbine:

*
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*
333 )(
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The dynamic equations describe the
changes in the gas turbine, when the operating
point is varying because of the operator or
disturbances.

1. The first dynamic equation comes from
the power balance on the compressor/turbine
spool, where Pl is from the loading:

( ) ( ) lpcmpt

lcmt

PTTcmTTcm

PPP
dt

dn
n

−−⋅⋅−⋅−⋅⋅=

=−−⋅=⋅⋅Θ⋅Π⋅
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(18)

2. A control volume is needed around the
combustor to model the dynamic behaviour. For
this control volume a mass balance and an
energy balance produced two first-order
differential equations:

•  mass balance

( )tfuelc mmm
V

TR

dt

dp
!!! −+⋅⋅=

2

*
2

*
2 (19)

•  energy balance
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4  Jacobian linearization

It was shown, that a gas turbine can be
represented by the following non-linear
differential and algebraic equations:

),(

),(

uxGy

uxFx

=
=!

(21)

In deriving linear models, we assume that
functions F and G are continuous and
differentiable. If the system described by Eq.
(21) is in a steady-state condition, when
constant input uss producing constant state xss,
and constant output yss, then the combination
(uss, xss, yss) satisfies:

),(

),(0

ssssss

ssss

uxGy

uxF

=
=

(22)

The point (uss, xss, yss) is an equilibrium
point of the gas turbine. Perturbating the control
input with δu results in state and output
perturbation δx and δy, respectively and control
input, state and output become uuu ss δ+= ,

xxx ss δ+=  and yyy ss δ+= , and the Eq. (22)

follows:
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++=+ !!

(23)

Because of the continuity requirements
imposed on the F and G functions Eq (23) can
be expanded in Taylor series about the point
(uss, xss, yss). Ignoring the higher order items, the
results is:

uDxCy

uBxAx

δδδ
δδδ
⋅+⋅=
⋅+⋅=!

(24)
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The constant matrices A, B, C and D have
the dimensions of nn× , mn× , nr ×  and

mr × , and given by:
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This equation approximates the dynamic

behaviour of the non-linear gas turbine in a
small region about the operating point.

5  State space representation of our gas
turbine

In our case the state, input and output vectors
will be the follows:
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To construct the A, B, C, D matrices we
have to derive the dynamic equations. For
example:
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The A21 parameter (the first element of the

second row):
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The A22 parameter (the second element of

the second row):
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The A23 parameter (the third element of the

second row):
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The B21 parameter (the first element of

the second row):
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The B22 parameter (the second element of
the second row):
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6  LQ control design

Given a linearised model corresponding to an
engine operating point, the standard linear
optimal design technique can be used to
determine the full state feedback gains by
minimising the quadratic performance criteria:

dtuRuxQxJ TT )(
2

1
0

δδδδ +⋅= ∫
∞

, (33)

and solving the corresponding Control
Algebraic Riccati Equation (CARE):

01 =+−+ − QPBPBRPAPA TT , (34)

the state feedback gains are:
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xKxPBRu T δδδ −=−= −1 (35)

This is the optimal control for the gas
turbine.

7  Simulation

With the help of the equations above we
measured and calculated the parameters, the
elements of the A, B, C and D matrices. With
these we can simulate the behaviour of the gas
turbine, and we can design a controller for the
engine.

In the next four diagrams the response-
functions can be seen, when the input (or
control input) is a Dirac-delta function. In the
first two figures the system is without control,
these are system-simulations. The next two is
with the optimal LQ control.

8  Summary

Comparison:
The LQ control has changed the quantitative
features of the gas turbine, the time constants
are smaller, so we need less time for the system
goes back to the operating point.

Possibility to continue this investigation:

This LQ control design is for an ideal system
without any noises, disturbances. So it is
important, that in the future the noises,
disturbances and uncertainties of the system
(because of the measuring and neglected
dynamics) will have to be investigated, and with
them we will be able to design a new controller.
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Fig. 1.: Simulation when mfuel is a Dirac-delta function (without control)
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Fig. 2.: Simulation when Pl is a Dirac-delta function (without control)
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Fig.3.: Simulation when mfuel is a Dirac-delta function (with LQ control)
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 Fig. 4.: Simulation when Pl is a Dirac-delta function (with LQ control)
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