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Abstract

A numerical procedure for the aerodynamic
configuration design of aircraft based on
genetic algorithms, with single-point, multi-
point and multi-objective optimization
capabilities, is presented. Optimization process
is executed based on a light fighter, which is
composed of wing, body and horizontal tail. The
geometry and relative position of three parts,
wing, body and horizontal tail, are chosen as
the design variables. The objective is to acquire
the maximum lift-to-drag ratio under the given
constraints.

Three single-point designs in the subsonic,
transonic and supersonic region have been first
addressed. Then multi-point designs are taken
under transonic and supersonic cases with three
different weighted factors. Lastly, the pareto
front of optimization design is obtained using
multi-objective pareto genetic algorithms, and
the designed results are shown under the same
design condition as multi-point. A comparison
between the results obtained in three ways is
established, showing the effectiveness of multi-
objective optimization used to deal with
aerodynamic configuration design.

1  Introduction

In recent years, aerodynamic optimization
designs by means of numerical optimization
methods have been receiving more attention.
Through use of numerical methods both design
period and cost could be considerably reduced.
Advantages of high efficiency and low cost of
numerical methods have been verified via
plenty of practical designs.

As the development of computation
technology and computational fluid dynamics,

research on optimization and design of
aeronautic and astronautic vehicles have got
great achievement. Most of them have been
concentrated on design of airfoil and wing[1-5],
only a minority of them is taken on
aerodynamic configuration of a whole
aircraft[5]. Moreover, plenty of work has been
limited to single-objective optimization,
investigations on multi-objective optimization
are far away from suffice.

Aircraft design is a systemic engineering
with high complexity. It comes down to
aerodynamic configuration, structural layout,
and electronic facility, control system and other
mission-related equipment. Generally, aircraft
design problems fall into categories of multi-
disciplinary design[6]. Even considering the
aircraft design problems from a purely
aerodynamic point of view, requirements from
different design points are to be taken into
account to guarantee at least acceptable off-
design performance. Therefore, successful
design methods should have multi-point design
capabilities.

Nowadays, nearly all of the optimization
methods can be sorted into determinate and
stochastic methods. Determinate methods have
the common property that a determinate search
direction is followed. Of the determinate
optimization methods, probably the most
common-used design method is gradient-based
optimization. This process involves computing
the sensitivity derivatives of the objective
function with respect to the design variables,
estimating the design changes that will lead to
improvement, and making the changes and
reevaluating the new design. Therefore, the
optimization result is greatly related to the
property of objective function as well as design
variables.
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Another category of design methods
considered are general search methods which
belong to stochastic methods, such as genetic
algorithms, simulated annealing methods and
Monte-Carlo methods. These methods are
robust since only the value of objective
function, but not its gradients with respect to the
design variables, is required. However, the
major drawback of these methods is that they
usually require thousands of analysis runs to
search the design space for even fairly simple
cases.

The optimization results depend greatly on
three aspects: selection and representation of
design variables, property and efficiency of
numerical optimization method, and accuracy
and efficiency of aerodynamic analysis method.
Therefore, it is important that one reliable and
efficient aerodynamic analysis method should
be chosen if numerical optimization method has
been determined.

Aerodynamic analysis by making use of
Euler or Navier-Stokes equations solver will
bring great cost of both computer CPU time and
memory, in spite of rapid development of
computational fluid dynamics and technology of
computer today. If genetic algorithm is
employed as optimization tool in aerodynamic
optimization, combining with aerodynamic
analysis by Euler equations solver or Navier-
Stokes equations solver, the computation cost
will increase to an egregious extent. In other
words, it is unpractical to design complex
configuration of a whole aircraft by adopting
this strategy. With regard to this situation,
simple aerodynamic analysis approach has to be
chosen to reduce the computation cost for
making sure the proceeding of optimization.

In this paper, a simple engineering tool for
evaluating aerodynamic forces of a whole
aircraft with conventional configuration is
introduced here. First of all, this method is
verified through comparison between
computational results and experimental results
for a given aircraft. Then, the process of
aerodynamic configuration optimization and
design are carried out using single-point, multi-
point and multi-objective strategies in order.

2.  Optimization method

Just as stated above, the genetic algorithms are
global search approach dealing with
optimization problem by simulating the
evolution of natural creature on the genetic
principle of natural selection and survival.
Compared with the conventional determinant
methods, genetic algorithms are perfectly
robust, global and transplantable. Furthermore,
when genetic algorithms are used in
optimization problems, only values of objective
functions of individual are required, and no
requirement for continuity and derivative of
functions as well as calculation of gradients of
objective functions. Just for the great
advantages, genetic algorithms have been
widely used in engineering optimization.

2.1 Genetic algorithm for single objective
optimization
Simple genetic algorithm (SGA)[7] is a typical
scheme among the genetic algorithms. SGA
implements the evolution of population through
the operations of reproduction, crossover and
mutation based on binary encoding and
decoding. Reproduction is the genetic process
that make the better genes of ancestor are
inherited by their offspring by greater
probability by roulette wheel selection. The
process of crossover produces new individual in
the offspring by randomly exchange some genes
in chromosomes of two individuals selected
from parents. Mutation changes some genes of
chromosomes of selected individual. It can be
concluded that crossover and mutation produce
new individual in the offspring and reproduction
makes better character of parents appear in
offspring, their common action make species of
creature evolve based on inheritance.

Although SGA is easy to be understood
and turned into program code, it has some
disadvantages such as higher computation cost
for binary encoding and decoding. Moreover,
Hamming cliff may appear during the search for
optimum. For resolving these shortcomings
existed in SGA, real number could be used to
encode and so decoding is not needed any more.
Furthermore, genetic algorithms based real
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number skill may have higher efficiency than
those based on binary skill [8].

In this work, a sort of extension of the
elitism strategy is introduced into algorithm, and
ranking selection is employed to prevent
evolution from premature convergence or
stagnation[8]. Moreover, adaptive evolutionary
recombination is taken as recombination part,
and non-consistent mutation strategy is adopted
here as mutation part.

Since most optimization problems are
constrained, it is important to deal with the
constraints properly. Here, dynamic
punishment[9] is used to make sure that the
constraints are satisfied. Dynamic punishment
will eliminate those designs violated some of
the given constraints, and it is possible to search
on a wider design space at the beginning of
evolution and satisfy the constraints at the end
of evolution.

2.2 Pareto genetic algorithm for multi-
objective optimization
The mostly common approach of dealing with
multi-objective problems is through weighted
linear combination of the different objectives. In
this way, multi-objective problems could be
converted into single-objective problems by
combining multiple objectives into single one.
The drawback of this approach lies at that the
solution of problem, to some extent, depends on
the choice of the relative weights assigned to
every objective. Sometimes, it is difficult to
make decision about how to interrelate them
properly, specially when multidisciplinary
optimization problems are faced.

One of the ideal schemes may be addressed
as followed. It can be convenient to acquire all
possible solutions, which are members of the
optimal solution set according to different
inclination for designed results, and then final
design can be selected from that set. To
implement this idea, the notions of domination
and pareto optimal solution are introduced.

Let ),...,( 1 nffF =  be the objective vector

of a maximization problem with n objectives,
and aF , bF  be two candidates, then aF
dominates bF  if for any },...,1{ ni ∈  such that

b
i

a
i FF ≥ , and there is an objective such that

b
i

a
i FF ! .

All of the non-dominated solutions
constitute the pareto front, which is the set of
pareto optimal solutions. It is clear that no
design points with better performance are
possible to exist in the set of possible solutions.
In the pareto front, every design point has better
performance at some aspects but worse
performance at other aspects. In other words, if
a solution belongs to the pareto front it is not
possible to improve one of the objectives
without deteriorating some of the others.

Different from some conventional
optimization methods, genetic algorithms are
capable of dealing with multi-objective design
problems in a more straightforward way. With
continuation of genetic evolution, design points
with better performance may be inserted the
pareto front, and those with inferior
performance will be eliminated from the pareto
front. Thus, a whole set of pareto optimal
solutions, which are composed of all possible
alternative solutions to the problem, meeting the
requirements at different levels of compromise,
can be developed.

Due to the difference between pareto
genetic algorithm and single-objective genetic
algorithm, some disposal adopted in single-
objective genetic algorithm cannot be
transplanted to pareto genetic algorithm
directly. To compare two solutions, population
ranking is introduced here. The main idea of
population ranking is that all solutions are
classified into two ranks, rank one is for the
pareto optimal solutions, others belong to the
second rank. Furthermore, in order to prevent
solutions in the pareto front from justling,
pareto solution filter is designed. If the distance
between two pareto solutions is smaller than the
assigned limit value, then one solution is
eliminated from the pareto front.

Except two skills presented above, the
other treatments used for single-objective
optimization design are employed here.
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3. Aerodynamic analysis method

AERO3D, developed by aircraft design research
group of NPU based on Axelson’s evaluation
theory[10,11], is used to carry out aerodynamic
analysis of aircraft. This approach has the
capability of evaluating aerodynamic forces on
aircraft with/without horizontal tail. The
comparisons between the computational results
and experimental results on aerodynamic
properties are shown in fig1-.3. It can be
concluded that the computational results accord
well with the experimental results at lower angle
of attack under 6 degree in spite of departure
appeared at higher angle of attack.

0 2 4 6 8 10 12 14 16
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

α (Degree)

cl

 Exp (Ma=0.6)
 Cal (Ma=0.6)
 Exp (Ma=1.1)
 Cal (Ma=1.1)

Fig. 1 Comparison of lift properties between
computational and experimental results
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Fig. 2 Comparison of lift-drag properties between
computational and experimental results
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Fig. 3 Comparison of pitching moment-lift property
between computational and experimental results

Since the investigation dealt with is only
for the cases at low angle of attack, it is
acceptable that this aerodynamic evaluation
method is used to carry out aerodynamic
analysis of aircraft at preliminary design stage.

4. Aerodynamic configuration optimization
and design of aircraft

Three parts are followed in this work. They are:
a. Single-point designs
b. Multi-point designs through weighted

combination
c. Multi-objective designs through pareto

solutions.
The objectives of designs are to improve the
lift-to-drag of aircraft with a conventional
configuration.

Design variables of the optimization are
totally 14, which are related to three parts: wing,
body and horizontal tail. Four control
parameters, aspect ratio, taper ratio, wingspan
and sweep angle at the leading edge, which
determine the planform of wing, are chosen as
the design variables relevant to wing, provided
that the profile of wing keeps constant. Three
control parameters, length of body, length of
nose and maximum diameter of cross section,
are taken into consideration for optimization as
design variables relevant to body of aircraft. For
the horizontal tail more design variables are
included here, they are area of surface, aspect
ratio, sweep angle of tail and longitudinal
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station, vertical station and incidence of tail
relative to body. The 14th design variable is
longitudinal position of wing relative to body.
All the control parameters can determine a
feasible configuration of aircraft with
conventional layout, under the help of design
experience that has been accumulated for a long
time.

Since the objective of this work is inclined
to design a light combat fighter with less
weight, the search space is limit to a small range
containing an existed fighter which is chosen as
the baseline of optimization. The ranges of
design variables for configuration of aircraft are
listed in table.1.

Design Variables Range
Aspect ratio of wing [2.5,4]
Taper ratio of wing [0.075,0.5]

Wing span(m) [7,9]
Sweep angle of wing(L.E) (°) [30,60]

Maximum diameter of body(m) [1.1,1.2]
Nose length(m) [4,8]

Length of body(m) [10.5,12.5]
Aspect ratio of tail [2,4]

Area of tail(m2) [5,7]
Tail incidence(°) [-5,5]

Sweep angle of tail(Q.L) (°) [30,60]
Vertical height of tail(m) [-0.01,0.01]

Longitudinal position of tail(m) [8,10]
Longitudinal position of wing(m) [5,7]

Table.1 Range of design variables

To ensure the configuration to be designed
is practical, some constraints must be given. The
constraints include mainly the following
aspects:

1.geometric constraints
For example, intersection is not allowed to

occur between wing and horizontal tail, and
wing should locate in front of the tail. Except
for constraints considered above, area of wing is
limited between 23m2 and 25m2 in the
optimization.

2.aerodynamic constraints
To provide enough lift for flight of aircraft,

minimum lift limit must be set. Moreover, trim
state is considered in the design.

3.structural constraints
The configuration of aircraft should be

realizable or enforceable, that requires structural
considerations. For instance, length of wing at

the root and cross section of body cannot be too
small. It is noticeable that most of these
considerations are in connection with geometric
constraints.

The disposal of constraints can be
classified into two categories. The first category
contains the design variables restricted directly
by the low and up bounds, the other in this
paper, deals with that introduced from penalty
functions to the value of the fitness. When
constraints are violated, the fitness of this
individual will be considerably decreased. In
this way, designs violated some constraints will
be excluded from design space and all
constraints will be satisfied.

4.1 Single-point design
Initially, three different single-point designs
have been carried out at Mach number (flight
height) of 0.3(5km), 0.8(11km) and 1.4(15km)
respectively, corresponding to subsonic,
transonic and supersonic design states. The
algorithm presented in section 2.1 is used. The
lift-to-drag ratio when tail deflects for trim is
directly taken as fitness value. Probability of
recombination, reproduction and mutation are
set to be 0.9, 0.1 and 0.01 respectively.
Population size is taken as 100, and maximum
evolution generation is taken as 60.
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Fig.4 Evolutionary histories of lift-to-drag ratio for
single-point designs

The optimal results are given in fig.4-6.
Fig.4 shows the evolutionary histories of lift-to-
drag ratio. Obviously the optimization results
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are improved as proceeding of evolution.
Design variables corresponding to final results
are listed in table.2. Comparison among
performances of three designs and baseline is
shown in fig.5. As anticipated, single-point
designs are characterized by a deterioration of
the performances at off-design conditions.

Design Variables M=0.3
H=5km

M=0.8
H=11km

M=1.4
H=15km

Aspect ratio of wing 3.37 3.39 3.43
Taper ratio of wing 0.122 0.086 0.084

Wing span(m) 8.90 8.86 8.91
Sweep angle of
wing(L.E) (°)

30.74 35.33 45.31

Maximum diameter of
body(m)

1.166 1.172 1.198

Nose length(m) 4.401 7.881 4.008
Length of body(m) 10.592 11.358 11.22
Aspect ratio of tail 3.914 3.971 3.76

Area of tail(m2) 6.9 6.7 6.7
Tail incidence(°) -0.83 1.92 -0.03
Sweep angle of

tail(Q.L) (°)
32.38 36.22 46.51

Vertical height of
tail(m)

0.007 0.009 -0.003

Longitudinal position of
tail(m)

8.89 9.54 9.11

Longitudinal position of
wing(m)

5.3 5.94 6.04

Table.2 Results for single-point designs in subsonic,
transonic and supersonic regime.

Furthermore, performance at subsonic case
is better no matter where the design points are
located. With this understanding, it provides us
some information that subsonic regime may be
not taken into consideration when multi-point
and multi-objective designs are carried out.
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Fig.5 Comparison among performances for single-
point designs

The final designed configurations are
shown in fig.6, from which we can get some
information about configuration of lighter
aircraft. With increase of flight velocity of
aircraft, body should be slenderer and sweep
angle of wing should be greater if higher lift-to-
drag ratio is required.
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Fig.6 The final configurations for single-point designs

4.2 Multi-point design
Since single-point designs generally lead to
unacceptable off-design performance, it is
necessary to specify multiple design points. In
this part,  three two-point designs are carried out
at Mach number of 0.8 and 1.4 and the flight
height of 13km, corresponding to transonic and
supersonic cruise conditions. Here, the objective
functions are computed as a weighted sum of
lift-to-drag ratio:

21 )/)(1()/( dldl ccccobj αα −+=
Where subscript 1 and 2 mark transonic and
supersonic states, respectively. Three different
runs have been carried out with α  of 0.3, 0.5
and 0.7, respectively. The same control
parameters for genetic algorithm are used as
those in single-point designs.

The design results obtained corresponding
to the final results are listed in table.3, and
comparison among the performances of three
designs and baseline is shown in fig.7. It can be
seen that inclination for design point at Mach
number of 0.8 will make design result approach
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that at the same design point for single point,
and depart from the other design point. When α
is equal to 0.7, the performance of the design
result is the best for Mach number of 0.8 among
the three designs, and if α  is set to 0.3 result for
1.4 is the best one. From the results, subsonic
performance at all the flight speed range is
acceptable. The final optimal configurations are
shown in fig.8.

Design Variables α =0.3 α =0.5 α =0.7
Aspect ratio of wing 3.29 3.33 3.39
Taper ratio of wing 0.174 0.088 0.086

Wing span(m) 8.74 8.76 8.87
Sweep angle of
wing(L.E) (°)

30.35 31.28 30.63

Maximum diameter of
body(m)

1.123 1.119 1.195

Nose length(m) 4.101 5.598 5.244
Length of body(m) 10.804 11.155 11.268
Aspect ratio of tail 3.938 3.865 3.93

Area of tail(m2) 6.9 6.7 6.7
Tail incidence(°) 2.0 1.92 1.78
Sweep angle of

tail(Q.L) (°)
30.38 32.96 32.37

Vertical height of
tail(m)

0.008 -0.001 -0.001

Longitudinal position of
tail(m)

9.11 9.39 9.52

Longitudinal position of
wing(m)

5.58 5.75 5.88

Table.3 Results for multi-point designs in subsonic,
transonic and supersonic regime.
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Fig.7 Comparison among performances for multi-
point designs

From the results, we will understand that
different inclination may induce different design
result, which makes off-design performance
vary to a great extent. And we can know that the

solution is largely dependent on the values of
the weights used in the objective function, that
means that the assignment of weights has great
influence on the design results, while the proper
choice of weights rely largely on  the experience
of the designer.

 Design (α=0.3)
 Design (α=0.5)
 Design (α=0.7)

Fig.8 The final configurations for multi-point designs

4.3 Multi-objective design
Lastly, two-point designs by means of pareto
genetic algorithm are taken at the same design
points, with Mach number of 0.8 and 1.4 and
the flight height of 13km. Different from the
representation of objective function in section
4.2, objective functions in multi-objective
design are computed directly as two lift-to-drag
ratios at two design points. Algorithm described
in section 2.2 is used in multi-objective design.
The control parameters for genetic algorithm are
kept the same as those in single-point designs.

Pareto front is obtained as shown in fig.9.
Three designed results, Design-A, Design-B,
Design-C, are marked in fig.9, and their
corresponding performances and configurations
are shown in fig.10 and fig.11. The design
results obtained corresponding to final results
are listed in table.4.
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Fig.9 Pareto front for multi-objective designs
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Fig.10 Comparison among performances for multi-
objective designs

Different from multi-point designs, multi-
objective designs by means of pareto genetic
algorithm provide designers much more choices
through pareto front. When designs move
attention from one side to another side on the
front, inclination is increasing for one objective
and decreasing for the other. In this way,
designer may get a series of design results with
different requirements. Furthermore, from fig.7
and fig.10 it is obvious that multi-point designs
may lead to deterioration of the performances at
off-design conditions because of inappropriate
assignment of weights, however, it is impossible
to occur for multi-objective optimization by
means of pareto strategy.

 Design-A
 Design-B
 Design-C

Fig.11 Comparison among performances for multi-
objective designs

Design Variables A B C
Aspect ratio of wing 3.29 3.08 3.39
Taper ratio of wing 0.174 0.085 0.084

Wing span(m) 8.74 8.74 8.87
Sweep angle of
wing(L.E) (°)

30.35 31.59 30.63

Maximum diameter of
body(m)

1.123 1.172 1.119

Nose length(m) 5.394 7.881 5.598
Length of body(m) 11.123 11.24 11.528
Aspect ratio of tail 3.979 3.971 3.765

Area of tail(m2) 6.9 7.1 6.7
Tail incidence(°) 1.92 1.71 1.99
Sweep angle of

tail(Q.L) (°)
32.14 32.42 32.37

Vertical height of
tail(m)

0.001 0.009 0.008

Longitudinal position of
tail(m)

9.43 9.39 9.76

Longitudinal position of
wing(m)

6.01 5.97 6.10

Table.4 Results for multi-objective designs in subsonic,
transonic and supersonic regime.

5. Conclusions

Aerodynamic configuration designs for
improving an existed light fighter have been
obtained, by means of numerical optimization
procedure through combination of genetic
algorithms with aerodynamic analysis tool.
Objective of optimization is to increase lift-to-
drag ratio of aircraft, considering transonic and
supersonic cruise states at relevant flight
heights. Optimized configurations are
satisfactory for satisfying the given constraints.
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It can be concluded that genetic algorithm is
capable of dealing with single-point, multi-point
and multi-objective problems, and that
AERO3D is effective for aerodynamic analysis
at the preliminary design stage. Furthermore,
when pareto genetic algorithm is used to deal
with optimization problem with multiple
objectives, more flexibility may be provided
according to designer’s inclination or actual
requirements for design.
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