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Abstract

After substantial progress has been made in
solving flow field accurately, the robustness of a
numerical scheme has raised growing interest
in CFD community. Solution of turbulence
model equations poses additional difficulties
compared with the solution of mean-flow
equations. Method to ensure the discrete
positivity of turbulence eddy viscosity is
proposed by Baldwin & Barth and later
expanded by Spalart & Allmaras in the solution
of their respective one-equation turbulence
models.

It is noticed during the current research
that the strategy proposed by Spalart and
Allmaras is a sufficient but unnecessarily
restrictive condition for the solution procedure
to be positively conservative, and that there is
no fundamental reason to split the Jacobian of
the combined source term into two parts. The
presence of the temporal term allows more
information from the exact Jacobian of the
combined source term to be extracted. A new
strategy of treatment of source terms, having the
potential to give even better convergence
characteristic, is proposed. In addition,
previous works have been restricted to first-
order accurate discretization of convection
terms in the turbulence model. A way to extend
the positivity property to second-order accurate
discretization of convection terms is proposed.

1 Introduction

After substantial progress has been made in the
effort of seeking accurate numerical schemes

for capturing shock and contact discontinuities
with minimal dissipation and oscillations, the
robustness of numerical schemes has raised
growing interest in CFD community, especially
in the conservative computation of flows
containing regions in which the total energy is
overwhelmingly dominated by the kinetic
energy mode. A new concept, the so-called
positivity property of a numerical scheme, has
been proposed to describe one mathematical
aspect of scheme robustness. A scheme is said
to be positively conservative if, starting from a
set of physically admissible states, it can only
compute new states with positive values.
Method to extend one-dimensional first order
accurate positively conservative numerical flux
schemes to more dimensions and higher order
was proposed in [1]. A CFL-like condition to
ensure the positivity property of flux vector
splitting (FVS) schemes is derived in [2].

Solutions of turbulence model equations
poses additional difficulties either because of
the presence of strong source terms, which will
introduce additional time scale s and thereby
causing the stiffness problem, or because of the
singular behavior of the modeled turbulent
quantities near solid boundaries, or because of
non-analytical behavior at sharp turbulent-
nonturbulent interface [3]. Even though
turbulent quantities such as k, ω, ε, µT, etc,
should remain positive on physical basis, and
the exact solution of the model equations can
often be shown to be strictly non-negative,
inappropriate discretization and resolution of the
model equations may generate negative values.
Besides being unphysical, negative values of the
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eddy viscosity cause back-scatter of energy
from turbulence to mean flow, a process not
even considered in the eddy-viscosity type of
turbulence models. It in turn could lead to a
rapid explosion of the solution of turbulence-
model and mean-flow equations. This is most
likely to occur in the initial transient phase
when initial values for both mean-flow and
turbulent variables are far from converged
physical solutions. When the problem occurs, it
can usually be postponed or avoided by
lowering the time-step, resetting the negative
value to a small positive value, discretizing
convection terms with first order accurate
scheme, or imposing some limitation on the
allowable level of production source terms.
However, what one needs is a scheme that
preserves positivity for all time, without
excessively degrading the accuracy and
convergence rate.

In [4], discrete positivity of the turbulence
eddy viscosity in the solution of Baldwin-
Barth’s one-equation model is ensured through
the use of positive discrete operator and M-type
matrices. A positive operator is one that maps a
vector with nonnegative components into a
vector with nonnegative components. An M-
type matrix is diagonally dominant with positive
diagonal elements and non-positive off-diagonal
elements. In addition, it must be either strictly
diagonally dominant or else irreducible and
diagonally dominant with strict diagonal
dominance for at least one row. An important
property of an M-type matrix is that all elements
of its inverse are non-negative; thus the inverse
of an M-type matrix is a positive operator. In
[5], Baldwin & Barth’s approach for the
solution of turbulence transport model is
expanded, and several ways of treatment of
source terms in the solution of Spalart-
Allmaras’s one-equation turbulence model are
compared. A new strategy is identified as being
both robust and efficient. In [6], similar
approach is extended to the solution of Spalart-
Allmaras’s one-equation turbulence model
equation on unstructured grids.

It is noticed during the current research that
the strategy proposed by Spalart and Allmaras is
a sufficient but unnecessarily restrictive

condition for the solution procedure to be
positively conservative. The presence of the
temporal term allows more information from the
exact Jacobian of the combined source term to
be extracted. A new strategy of treatment of
source terms, expected to give even better
convergence characteristic, is proposed. In
addition, previous works have been restricted to
first-order accurate discretization of convection
terms in the turbulence model, and it is not
obvious under what conditions a second-order
accurate discretization can be guaranteed to
remain positively conservative. The
determination of such conditions is another goal
of the present paper.

The paper is organized as follows. In
section 2, Spalart-Allmaras’s strategy in the
solution of their one-equation turbulence model
will be briefly described. In section 3, a new
strategy for the treatment of source terms will
be proposed and its effect on convergence rate
tested against a simple case. In section 4,
extension of positivity property to second order
accurate discretization of convection terms will
be proposed and tested. In section 5, a note on
the resolution of the discretized model equation
will be given. Finally, the works done in this
paper will be summarized and future work
outlined.

2  Spalart-Allmaras’s Strategy in the
Solution of Their Turbulence Model

The Spalart-Allmaras model is a relatively
recent eddy viscosity model based on a single
transport equation for a variable related to the
turbulent viscosity. This model was inspired
from an earlier model developed by Baldwin
and Barth. Its formulation and coefficients were
defined using dimensional analysis, Galilean
invariance, and selected empirical results, such
as two-dimensional mixing layers, wakes, and
flat-plate boundary layer flows. The model
gives improved predictions obtained with
algebraic mixing-length models for complex
flows, and provides a simpler alternative to two-
equation turbulence models. The model does not
give good predictions in jet flows, but gives
reasonably good predictions of 2-D mixing
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layers, wake flow, and flat-plate boundary
layers and shows improvements in the
prediction of flows with adverse pressure
gradients compared with the k-ε and k-ω
models, although not as much as the k-ωSST
model [7]. The modeled variable behaves
linearly near the solid wall. It does not require
as fine a grid resolution in wall-bounded flows
as two-equation turbulence models and has
shown convergence behavior comparable to or
even better than algebraic models.

The transport equation for a turbulence
quantity, related to eddy viscosity via an
algebraic equation, in Spalart-Allmaras’s one-
equation turbulence model reads:
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where ν~  represents the modeled turbulent
quantity, u is velocity, t is time, x is the
coordinates. For the meaning of other variables
in the equation, please refer to the original paper
[5].

Equation (1) can be rewritten in a form
more convenient for numerical analysis:
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where λ signifies general diffusion coefficient.
Note the source terms are written in a special
form to facilitate numerical analysis.

Equation (2) can be integrated in time
using an implicit backward-Euler scheme of the
form:
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where 
DP SSDiffC JandJJJ ,, are the discrete

approximate Jacobians of the convection,
diffusion, production and destruction terms
respectively; ∆t is time step; and ν~∆  is solution
change.

Rearrangement of (3) gives 1~ +nν  directly as
a function of nν~ :
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Assuming that nν~  is non-negative, then
non-negativity of 1~ +nν  is guaranteed if the right
-hand-side (RHS) operator is positive and left-
hand-side (LHS) operator forms an M-type
matrix. It is shown is [5] that the first-order
accurate discretization of the convection terms
and second-order central differencing of the
diffusion terms will form M-type matrix
components at LHS and positive operator
components at RHS.

Turbulent transport equations differ from
the mean-flow governing equations in their
presence of strong source terms, which may
dominate the budget of the equation in some
regions of the field. Inappropriate treatment of
the source terms may lead to the violation of the
diagonal dominance of the LHS matrix of the
resultant system of algebraic equations, and in
turn resulting in negative turbulent viscosity and
causing divergence of the solution. In common
practice, the production terms are treated
explicitly (lagged in time) while destruction
terms are treated implicitly (they are linearized
and a term is brought to the LHS of the
equations which helps to increase the diagonal
dominance of the LHS matrix). While this
strategy proves to be numerically highly stable,
the convergence rate is not as satisfactory. In
regions where both production and destruction
are large and dominate the equation budget, this
strategy can result in extremely slow
convergence, as the Jacobians of production
terms and destruction terms in these regions will
be individually large but will tend to cancel. If
only Jacobian of the destruction terms are used
to update the solution, the contribution to the
diagonal element of the matrix will be
excessive, the resulting solution change will be
correspondingly small even when the residuals
are not close to zero. Realizing this possible
cancellation of the individually large Jacobians,
Spalart and Allmaras proposed to treat the
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source terms combined together, splitting the
Jacobian of the combined term into two terms,
and then extracting the negative part of each
term and moving them to the LHS.

The approximate Jacobian for source terms
proposed by Spalart and Allmaras is taken as:

ν~)()( ′−′+−=− DPnegDPnegJJ
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This strategy maintains M-type matrix at LHS,
and positive operator at the RHS of equation
(4). Hence the non-negativity of the turbulence
quantity during the solution process is
guaranteed. In addition, due to the combined
treatment of the source term, the convergence
rate is also enhanced.

3 A New Strategy in the Treatment of Source
Terms

Newton’s method, with exact Jacobians being
used, is a powerful iterative solution method for
nonlinear equations for it could give quadratic
convergence rate in the neighborhood of the
root. When approximate Jacobians have to be
used, they should be as close to the exact ones
as possible to achieve near-quadratic
convergence rate. In the solution of turbulence
model equations, however, exact Jacobians of
source terms may violate the diagonal
dominance of the iterative matrix at LHS,
destroy the positivity of solution, and cause
solution divergence.

Spalart and Allmaras has found an
effective way of forming an approximate
Jacobian of the combined source terms which
closely resemble the exact Jacobians while not
violating the diagonal dominance of the iterative
matrix at LHS. Improved convergence behavior
is obtained. Nevertheless, it has to be pointed
that, while treating both the production and
destruction source terms as combined together
is appropriate, there is no fundamental reason to
split the Jacobian of the combined source term

into two parts. Furthermore, the condition on the
source term Jacobians (equation (5)) to maintain
non-negativity of the turbulent quantity is
sufficient but not unnecessarily restrictive. It is
hoped that the convergence rate may be further
improved by deriving a less restrictive condition
and keeping the Jacobian of the combined
source term as unsplit.

It is noticed that the presence of the
temporal term, always producing positive
valued diagonal entries on both side of the
discretized equation and thereby enhancing
diagonal dominance at LHS and maintaining
positive operator at RHS, allows more
information from the exact Jacobian of the
combined source term to be extracted and
brought to the LHS. A new strategy of treatment
of source terms, expected to give even better
convergence characteristic, can be formulated
by exploiting this extra freedom.

With backward Euler discretization of
temporal term, first order accurate discretization
of convective terms and second order accurate
discretization of diffusion terms remain
unchanged, the necessary and sufficient
conditions for the maintenance of M-type
matrix on the LHS and positive operator on the
RHS of equation (4) is:
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where 
DP SSS JJJ −= , is approximate Jacobian

of source terms as combined together.
Therefore, approximate Jacobian of source
terms can be determined as:
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In condition (5), only when either part of
the source Jacobians is negative, is it included in
the approximate Jacobian. In condition (8), the
unsplit Jacobian of combined source term could
be positive. It is included into the approximate
Jacobian as long as it is bounded by two upper
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limits, which could be of large magnitude. The
approximate Jacobian is set to the lower one of
the bounds if the exact Jacobian exceeds them.
Therefore, the resultant approximate Jacobian of
the source term will resemble the true Jacobian
to a greater extent, which will help to achieve
faster convergence rate.

To compare the effect of these two
conditions on the convergence rate, flow over
flat plate is chosen as a test problem. The inflow
Mach number is 2. The Reynolds number based
on the flat plate length is 107. Initial values for
ν~  is set to 1.34 at inflow, and a small positive
number elsewhere. Fig 1 shows the predicted
law of wall against an empirical formula. There
is essentially no difference between the
convergence solutions.

The convergence history of the absolute
norm of the residual, relative to the initial value,
for three different treatments of source terms, is
shown in Fig 2. Spallart-Allmaras’s strategy
gave slightly faster convergence than that of
common practice. The new strategy proposed in
this paper converged slightly faster than that of
Spallart-Allmaras’s at the initial stage.
The reason for this apparent indifference of
convergence rate to the treatment of source
terms become clear by inspecting Fig 3, which
shows the budget of ν~ at a typical location
across boundary layer, and Fig 4, which shows
approximate Jacobians resulted from the three
different treatments. It is clear that in this simple
flat plate flow, the dissipation term dominates
production term in most part of the boundary
layer, therefore, all the three strategies give rise
to essentially same approximate Jacobians.
The strength of the proposed strategy is
expected to be fully realized in the computation
of more complex flow with adverse pressure
gradient, where the production term will
become significant and dominating.

4 Extension to Second Order Accurate
Discretization of Convection Terms

As noted in introduction, previous works in
positively conservative solution of one-equation
turbulence model have been restricted to first-
order accurate discretization of convection

terms of the model equation. And it is not
obvious under what conditions a second-order
accurate discretization can be guaranteed to
remain positively conservative, as a
straightforward extension will certainly destroy
the diagonal dominance of, as well as
introducing positive entries into, the LHS
matrix, thereby invalidating it as an M-type
matrix. The author found that the desirable
positivity property could be extended to second-
order accurate discretization of convection
terms with a different treatment of convection
terms on two sides of the discretized equation
and a proper limitation on local time step.

The convection terms at new time step are
split into a contribution from previous time step
and an increment, with the former part
discretized second order accurately and the
latter part first order accurately:
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With backward Euler discretization of
temporal term, second order accurate
discretization of diffusion terms, the necessary
and sufficient conditions to maintain M-type
matrix on the LHS and positive operator on the
RHS of equation (4) is:
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Here two alternative treatment of the source
Jacobians are possible, which will lead to
different restriction of allowable time step. The
first alternative is to use the strategy proposed
by Spalart and Allmaras, where the above
restrictions can be relaxed and reduced to:
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The second alternative is to use exact Jacobian
of combined source term, which will impose a
stricter restriction of allowable time step:
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While both alternatives could guarantee the
positivity of solution, their respective effects on
the convergence rate is not entirely obvious. On
one hand, the use of the exact source Jacobian
might enhance convergence; on the other hand,
stricter restriction of local time step will inhibit
convergence. The final conclusion can only be
drawn after extensive application to various
flow problems.

Fig 5 shows the convergence history of
relative residual with second order accurate
discretization of convection terms and with two
different restrictions on time step according to
equation (11) and (12). Essentially same
convergence rate is exhibited.

5 A Note on the Resolution of the Discretized
Equation

In principle, solving Reynolds-averaged Navier-
Stokes equations and turbulence-model equation
as coupled together may have better
convergence behavior. However, the coupling
between mean-flow and turbulence-model
equations seems to be relatively weak. So far,
limited experience appears to indicate there is
no appreciable gain to solve all equations
simultaneously as opposed to solving them
sequentially. In common practice the mean-flow
and turbulence-model equations are solved
sequentially, with the primary coupling through
eddy viscosity. In the case of two-equation
turbulence models, the two model equations are
also solved decoupled from each other. This
approach allows different discretization
schemes, different time steps, and different

solution methods, to be applied as appropriate.
In addition, it facilitates the incorporation of
different turbulence models.

It has to be noted that previous argument
about the positivity property of numerical
method assumes that the discretized model
equation is solved exactly. This is unnecessarily
expensive, as in the time marching to steady
state, the intermediate states are physically
irrelevant and an approximate resolution with a
certain level accuracy will give an overall better
convergence behavior. That is, some
compromise has to be made between absolute
robustness and ultimate efficiency. In [5], the
discretized model equation is solved with
approximate factorization, the factorization
error being reduced through subiterations. In
[6], the equation is solved with Gauss-Seidel
procedure with 15 subiterations, and if updated
eddy-viscosity does turn negative, it is reset to
freestream value. The present paper solved the
discretized model equation with alternating-
direction-implicit (ADI). One back-and-forth
and up-and-down sweep was enough to drive
the residual to acceptably low level.

6 Summary

After substantial progress has been made in
solving flow field accurately, the robustness of
numerical schemes has raised growing interest
in CFD community. Solution of turbulence
model equations poses additional difficulties
compared with the solution of mean-flow
equations. Method to ensure the discrete
positivity of turbulence eddy viscosity is
proposed by Baldwin & Barth and later
expanded by Spalart & Allmaras in the solution
of their respective one-equation turbulence
models.

It is noticed during the current research that
the strategy proposed by Spalart and Allmaras is
a sufficient but unnecessarily restrictive
condition for the solution procedure to be
positively conservative, and that there is no
fundamental reason to split the Jacobian of the
combined source term into two parts. The
presence of the temporal term allows more
information from the exact Jacobian of the
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combined source term to be extracted. A new
strategy of treatment of source terms, having the
potential to give even better convergence
characteristic, are proposed and tested against a
simple case. In addition, previous works have
been restricted to first-order accurate
discretization of convection terms in the
turbulence model. A way to extend the
positivity property to second-order accurate
discretization of convection terms is proposed
and tested.

Two-equation turbulence models pose
much more severe numerical difficulties than
that by Spalart-Allmaras’s one-equation model.
The substantial gain in the robustness and
convergence rate through the use of M-type
matrix and positive operator in the solution of
one-equation model encourages future effort to
extend the same idea to the solution of two-
equation turbulence models.
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Fig 1 Law of wall for compressible turbulent flow
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Fig 2 Effects of treatment of source terms on convergence
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Fig 3 Budget of V across boundary layer
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Fig 5 Second order accurate discretization of
convection terms
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