
ICAS 2000 CONGRESS

723.1

Abstract

In this work, a simple method for target
tracking, based on Artificial Neural Networks
(ANN), is presented. The backpropagation
algorithm is used to train the networks by
using the measured position, velocity and
acceleration data sets obtained from six
different types of aircraft radars such as
cargo, bomber, fighter and commercial
aircrafts. The test results of ANNs are in very
good agreement with the measured results.
The results of ANNs are also compared with
the results of Kalman filter which is widely
used in target tracking. It is shown that the
results predicted by using ANNs are better
than those predicted by Kalman filter.

1  Introduction

Target tracking is an important issue in
military surveillance systems, ballistic missile
defense systems, satellite defense systems and
air traffic control systems. The objective of
target tracking is to partition sensor data into
sets of observations, or tracks produced by
same source. Once tracks are formed and
confirmed, the number of targets can be
estimated and parameters such as position,
velocity and acceleration can be obtained
from each track.

Kalman filter is widely used in the
tracking problem [1,2]. It can optimally
estimate the target motion from noisy radar
data. The optimality of the Kalman filter is
based on the assumption of the Gaussian
noise. If the assumption is violated, the
Kalman filter is no longer the optimal filter. In
a radar system, due to the target glint, the
measurement noise may present non-Gaussian
behavior. If noise is non-Gaussian, tracking

performance of the Kalman filter can
decrease seriously.

In this study, a method based on ANNs
[3-11] that have advantages of ability and
adaptability to learn, generalizability, smaller
information requirement, fast real time
operation, and ease of implementation
features will be presented for getting rid of the
disadvantages of Kalman filter mentioned
above. ANNs in this article are used to
estimate target parameters such as position,
velocity and acceleration.

Multilayered perceptrons (MLP) and
backpropagation algorithm which are used to
train MLP will be explained Section 2.Then in
Section 3, Kalman filter will be presented and
in Section 4, target tracking using artificial
neural networks will be explained. And in the
last section, results obtained from this study
will be discussed.

2  Multilayered Perceptrons

MLPs [7] are the simplest and therefore
most commonly used neural network
architectures. They have been adapted for the
estimation of the position of the six different
targets. MLPs can be trained using many
different learning algorithms.

In this work, MLPs are trained with a
supervised learning algorithm called
backpropagation algorithm. As shown Fig 1
an MLP consists of three layers: an input
layer, an output layer and a hidden layer.
Processing elements (PEs) or neurons in the
input layer only act as buffers for distributing
the input signals xi to PEs in the hidden layer.
Each PE j in the hidden layer sums up its
input signals xi after weighting them with the
strengths of the respective connections wji
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from the input layer and computes its output
yj as a function f of the sum, viz.,

( )∑= ijij xwfy (1)

f can be a simple threshold function, a
sigmodial or hyperbolic tangent function. The
outputs of PEs in the output layer is computed
similarly.

Fig. 1. General form of a backpropagation
multilayered perceptron.

Training a network consist of adjusting
weights of the network using the different
learning algorithms. A learning algorithm
gives the change ∆wji(k) in the weight of a
connection between PEs i and j.

2.1 Backpropagation Algorithm
The algorithm [7] is the most commonly
adopted MLP training algorithm. It is a
Gradient descent algorithm and gives the
change ∆wji(k) in the weight of a connection
between PEs i and j as follows,

( ) ( )1−∆+=∆ kwxkw jiijij αηδ (2)

where η is a parameter called the learning
coefficient, α is the momentum coefficient,
and δj is a factor depending on whether PE j is
an output PE or a hidden PE.

3  Kalman Filter

The Kalman filter is used to estimate the state
x∈ℜ R of a discrete-time controlled process
that is governed by the linear stochastic
difference equation

kkkkk wuBxAx ++=+  1 (3)

with a measurement

kkkk vxHz += (4)

where xk is true system state vector, A is state
transition matrix, B is control input matrix, u
is system input vector, zk is true system
measurement vector, Hk is output matrix. The
random variables wk and vk represent the
process and measurement noise respectively.
They are assumed to be independent of each
other, white, and with normal probability
distributions

p(w)∼ N(0, Q)
p(v)∼ N(0, R).

∈−
kx̂ ℜ R is defined as a prior state estimate at

step k given knowledge of the process prior to
step k, and kx̂ ∈ℜ R as a posteriori state

estimate at step k given measurement zk. The
a priori and a posteriori estimate errors can be
defined as

−− −= kkk xxe ˆ

and

kkk xxe ˆ−= .

The priori error covariance is then

[ ]T
kkk eeEP −−− =  (5)

and the posteriori estimate error covariance is

[ ]T
kkk eeEP = (6)

In deriving the equations for the Kalman
filter, an equation that computes an posteriori
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state estimate kx̂  as a linear combination of a

priori estimate −
kx̂ and a weighed difference

between an actual measurement zk and a

measurement prediction Hk
−
kx̂  is found as

shown equation (7).

( )−− −+= kkkkk xHzKxx ˆˆˆ (7)

The difference (zk- Hk
−
kx̂ ) in (7) is called

the measurement innovation, or the residual.
The residual reflects the discrepancy between

the predicted measurement Hk
−
kx̂  and actual

measurement zk.
The n×m matrix K in (7) is chosen to be

the gain that minimizes the posteriori error
covariance (6). This minimization can be
accomplished by first substituting (7) into the
above definition for ek, substituting that into
(6), performing the indicated expectations,
taking the derivative of the trace of the result
with respect to K, setting that result equal to
zero, and then solving for K. One form of the
resulting K that minimizes (6) is given by

( ) 1−−− += k
T
kkk

T
kkk RHPHHPK (8).

The Kalman filter estimates a process
by feedback control: after estimating the
process state the filter obtains feedback by
noisy measurements. The equation for the
Kalman filter are grouped in two: time update
equations and measurement update equations.
The time update equations are used for
projecting forward in time the current state
and error covariance estimates to obtain the
priori estimates for the next step. The
measurement update equations are used for
the feedback.

The specific equations for the time and
measurement updates are presented below.
The time update equations are

kkkk uBxAx  ˆˆ 1 +=+ (9)

k
T
kkkk QAPAP +=−

+1 (10)

and measurement update equations are

( ) 1−−− += k
T
kkk

T
kkk RHPHHPK (11)

( )−− −+= kkkkk xHzKxx ˆˆˆ (12)

( ) −−= kkkk PHKIP (13)

The first task during the measurement
update is to compute the Kalman gain, Kk.
The next step is to actually measure the
process to obtain zk, and then to generate an a
posteriori state estimate by incorporating the
measurement as in (12). The final step is to
obtain an a posteriori error covariance
estimate via (13).

4  Target Tracking using Artificial Neural
Networks

In this study, a method based on ANNs is
presented for six different aircrafts such as
cargo, bomber, fighter and commercial
aircrafts. Target trajectories are obtained from
real aircrafts [12]. Figure 1 shows neural
model used in this study. As explained before,
BP algorithm is used to train MLPs.

Fig. 2. Neural Model for Target Tracking

Target trajectories are shown in Fig.3.
The first target trajectory represents a large
aircraft, such as a military cargo aircraft. The
second trajectory represents a smaller, more
maneuverable aircraft’s, such as a Learjet or
other similar high performance commercial
aircraft. The trajectories of Target 3 and 4
represent medium bombers’ flying at high
speeds with good maneuverability. Target 5
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and 6 represent the trajectory of fighter/attack
aircraft.

Data sets that are used for training and
testing ANN are obtained from radar
measurements. In this study, ANN is trained
for three different situations. ANN is trained
in the first situation with the data sets
obtained by the positions of the targets; in the
second situation, with data sets obtained by
positions and velocities of the targets; and in

the third situation, with data sets obtained by
positions, velocities and acceleration of the
targets.

A set of random values distributed
uniformly between -0.1 and +0.1 is used to
initialize the weights of the networks.
However, the input data tuples are scaled
between -1.0 and +1.0 and output data tuples
are also scaled between -0.8 and +0.8 before
training.
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Fig. 3. Target trajectories

(a) Target 1 (b) Target 2 (c) Target 3 (d) Target 4 (e) Target 5 (f) Target 6
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After several trials, it is found that the
best estimations are achieved by using two
layers in ANN. The most suitable network
configuration found is six PEs and three PEs
for first and the second hidden layers,
respectively.

The parameters of the networks are for
BP: the learning coefficients (η) were 0.3 for
the first hidden layer, 0.25 for second hidden
layer and 0.2 for the output layer, and the
momentum coefficient (α) was also set to 0.4.

5  Results and Conclusions

In order to show the performance of the
ANNs used in target tracking, position
estimation test results of the first, second and
third targets are compared with the measured

results in the Fig. 4. It is shown Fig. 4. that
results obtained from ANNs are in very good
agreement with the measured results in the
third situation. Only position estimation
results of the three targets are given here. For
other three targets, similar good results are
obtained.

In this study; Kalman filter is also used
in order to compare performance of ANNs in
target tracking. Figure 5 shows the errors of
the Kalman filter and ANNs for the x position
of the first target. It can be seen this figure
that results predicted by using ANN are better
than those predicted by Kalman filter. The
advantage of the neural models given here are
simplicity and accuracy.
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Fig. 4. Position estimation test results obtained from ANN
(a) x position of the target 1 (b) y position of the target 1
(c) x position of the target 2 (d) x position of the target 6
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Fig. 5. (a) Error of the Kalman filter
(b) Error of the ANN
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