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Abstract  
This paper describes two-dimensional active 
flutter suppression to cope with the transonic 
dip using sliding mode control. The airfoil has 
plunge and pitch degrees of freedom with 
leading and trailing edge control surfaces. The 
aerodynamic forces acting on the airfoil, lift 
and pitching moment, are calculated by solving 
Euler’s equations using computational fluid 
dynamics. At a specific altitude, flutter occurs 
between Mach number of 0.7 and 0.88, which 
corresponds to the transonic dip. Sliding mode 
control makes the airfoil to be stable all through 
the Mach number of flutter occurrence. Sliding 
mode controller gives wider flutter margin than 
linear quadratic regulator. These 
characteristics indicate that sliding mode 
control is useful for active flutter suppression in 
the transonic flight. 

Nomenclature 
 ah : nondimensional elastic axis 

location measured from midchord 
 a∞ : speed of sound 
 b : semichord of the airfoil 
 Cl , Cm : lift and moment coefficients about 

the elastic axis, respectively 
 Clα , Cmα : lift and moment coefficients about 

the elastic axis per angle of attack, 
respectively 

 Clβ , Cmβ : lift and moment coefficients about 
the elastic axis per trailing edge 
deflection, respectively 

 Clδ , Cmδ : lift and moment coefficients about 
the elastic axis per leading edge 
deflection, respectively 

 h : plunge displacement 
 Iα : moment of inertia of the airfoil 

about the elastic axis 
 k : control gain of switching function 

of the sliding mode controller 
 kh , kα : structural spring constant in plunge 

and pitch 
 L : lift per unit span 
 M : Mach number 
 M y : pitching moment per unit span 
 m : mass of the airfoil per unit span 
 Q : weight matrix 
 rα : radius of gyration of the airfoil 

about the elastic axis, I mbα / ( )2  
 t : time 
 ts : time, at which the states reach the 

final intersection of the sliding 
surfaces 

 U : freestream speed 
 U : nondimensional speed, U b/ ωα  
 u : control inputs 
 x : states 
 xα : nondimensional distance from the 

elastic axis to the center of mass 
 α : pitch angle 
 β : trailing edge flap angle 
 δ : leading edge flap angle 
 µ : mass ratio, m b/ ( )πρ 2  
 τ : nondimensional time, tU b/  
 ωh , ωα : uncoupled natural frequencies 

associated with plunge and pitch 
degree of freedom, respectively, 

k mh / , k Iα α/  
 ξ : nondimensinal plunge, h b/  
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1 Introduction  
An aircraft cruising at supersonic speed has the 
aeroelastically severest point in the transonic. 
Although the aircraft passes through the 
transonic region instantly, its structural stiffness 
is targeted for that region. This is because the 
critical speed of flutter suddenly drops in that 
region. We call this drop by transonic dip. If we 
can manage only the while of passing through 
the transonic dip using an active control, we can 
relax the restriction about the stiffness and 
reduce the weight of the aircraft. 
When we consider the active flutter suppression 
at the transonic speed, two questions arise: how 
to design a controller in spite of uncertain 
equations about the aerodynamic forces and 
how to validate the performance of the 
controller. For the first question, adaptive 
control and robust control are suggested. For the 
second question, experiments and computational 
fluid dynamics (CFD) are studied. Baldelli et al. 
[1] experimentally studied transonic flutter 
margin augmentation using H∞ controller where 
aerodynamic forces are derived from doublet 
point method. Matsushita et al. [2] pointed out 
that although the transonic flutter occurring in 
their wind tunnel model was limit cycle 
oscillation, it was suppressed using optimal 
regulator with Kalman estimator. Fujimori et al. 
[3] carried out the transonic aerodynamic model 
modification and H∞ controller used flutter 
suppression. From the results that the dynamic 
pressure of flutter boundary in the experiment 
was lower than that in the calculation, they 
suggested the change of wind tunnel test 
condition and the ability of the actuator must be 
considered for the controller design. A digital 
adaptive controller was introduced for active 
flutter suppression undergoing time varying 
flight conditions [4]. It was indicated that the 
parameter estimator possibly failed to follow the 
aeroelastic system change depending on the 
flight paths. Another adaptive control 
application for the transonic flutter suppression 
was carried out, in which CFD-based 
aerodynamic loads were used [5]. The adaptive 
controller was a good candidate for suppression 

of the transonic flutter associated with strong 
shocks. 
We suggest sliding mode control [6], [7] as a 
potential solution for the system that has 
unknown dynamics including nonlinearity. If 
the model uncertainties are satisfied matching 
condition, the behavior of the system under 
sliding mode control has strong robustness. 
Since the aeroelastic system, in which the airfoil 
has leading and trailing edge control surfaces, 
satisfies this matching condition, we can expect 
the sliding mode controller to effectively 
suppress the transonic flutter of aerodynamic 
uncertainties involved. Furthermore, regarding 
the difference of the aerodynamic characteristic 
in Mach numbers as model uncertainties, we 
apply the sliding mode controller designed for a 
Mach number to the flutter suppression of 
another Mach number. This indicates that the 
sliding mode controller is effective all through 
the transonic dip. 
In this study, we calculate the flutter speed of 
the airfoil NACA 64A006 in Mach number of 
0.6 to 0.9. Considering a flight path at a 
constant altitude, we determine the Mach 
numbers, at which flutter occurs. Although the 
airfoil oscillates divergently between these 
Mach numbers, the sliding mode controller 
effectively suppress the flutter. We next confirm 
that the sliding mode controller can increase the 
flutter speed for all Mach numbers investigated. 
Compared to the linear quadratic regulator 
(LQR) of the same controller performance, the 
sliding mode controller provides much more 
margin to the critical speed. 

2 Model and Equations of Motion 
The two-dimensional wing section used in this 
study is shown in Fig. 1. This airfoil is 
supported by two springs, i.e., bending spring 
and torsional spring. Those two springs are 
simplification of the bending and torsional 
stiffness of a real three-dimensional wing. The 
plunge displacement h  is positive downward 
and the pitch angle α  is positive head up. The 
control surfaces for flutter suppression are the 
leading and trailing edges. Both are positive 
downward. 
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The governing equations of the airfoil is 
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where the dot indicates the derivative with 
respect to time. In Eq.(1), we assume that a) the 
dynamics of leading and trailing edges are 
neglected, in other words the flaps perfectly 
track the reference inputs, b) reaction torque due 
to moving edges has no influence on the wing 
itself and c) the static moment and the moment 
of inertia of the wing section after the edge 
deflection are same as those before the edge 
deflection. We obtain a nondimensional form of 
Eq. (1) as follows: 
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  (2) 
where the prime indicates the derivative with 
respect to nondimensional time τ . The lift and 
moment coefficients are calculated by solving 
Euler’s equation using CFD. 

3 Sliding Mode Control 
Sliding mode control is one of the variable 
structure controls. Unlike H∞ control or μ-
synthesis, sliding mode control is available even 
for nonlinear systems. Moreover sliding mode 
control accepts model uncertainties and 

parameter changes as far as they satisfy the 
matching condition. 

Considering the flutter suppression, we 
encounter uncertainties about aerodynamics. If 
we use the simplified model like the quasi-
steady aerodynamic theory and design a 
conventional controller, we may fail to suppress 
the flutter due to the difference between the 
simplified model and the real aerodynamic 
forces. One of the feasible control laws for such 
a purpose is sliding mode control. 

In this study, we use the quasi-steady 
aerodynamic theory 
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as nominal aerodynamic forces for controller 
design. Substituting Eq. (3) into Eq. (2), we 
obtain the aeroelastic system, including model 
errors about lift and itching moment, as 
follows:
[ ]{ } [ ]{ } ([ ] [ ]){ } [ ]{ } { }M q C q K K q G us a f′′ + ′ + + = + ∆
  (4) 
where 
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and { }f∆  is model errors of aerodynamic forces. 
Equations (4) and (5) are transformed into the 
state space form as 
 { } [ ]{ } [ ]{ } { }∆++=′ uBxAx  (6) 
where 
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Fig.1 Two-dimensional wing section with leading and 
trailing edges. It is restrained from bending and 

torsional motion by two springs acting a distance ba 
aft of midchord. Lift and pitching moment about the 

elastic axis are shown. 



Degaki Takanori  

721.4 

 

{ } { } { }[ ]
[ ] [ ] [ ]

[ ] [ ] [ ] [ ]

[ ] [ ]
[ ] [ ]

{ } { }
[ ] { } 








∆

=∆









=









−−

=

′=

−

−

−−

f

TTT

M

GM
B

CMKM
I

A

qqx

1

1

11

0

0

0

. (7) 

We need no accurate information of how { }f∆  
is represented, except a rough estimate of upper 
bound of the norm of { }f∆ . 

Now we assume that { }∆  satisfies the 
matching condition, i.e., there exists { }∆~  that 
satisfies the equations of 
 { } [ ]{ }∆=∆ ~B . (8) 
Considering Eqs.(7), we assure the existence of 
{ }∆~  as 
 { } [ ] { }fG ∆=∆ −1~  (9) 
because the matrix G  is invertible. When the 
matching condition of Eq. (8) is satisfied, the 
sliding mode controller stabilizes the aeroelastic 
system under the model uncertainties { }∆ . 

The sliding mode control consists of two 
modes, i.e., the sliding mode and the reaching 
mode. The sliding mode, on one hand, assures 
the convergence to the origin if the state is kept 
in the final intersection of the sliding surfaces. 
The reaching mode, on the other hand, assures 
the convergence to the final intersection of the 
sliding surfaces even if there exists model 
uncertainties. We design those two modes in the 
following. 

The purpose of sliding mode design is to 
find the sliding surfaces that assure the 
convergence to the origin. We use quadratic 
minimization method [6] to determine the 
surfaces. The objective function 

 { } [ ]{ }∫
∞

=
st

T dxQxJ τ  (10) 

is chosen to be minimized subject to keeping the 
state in the final intersection of the sliding 
surfaces. Following the similar procedure as 
linear quadratic regulator design and solving 

Riccati equation, we obtain the sliding surfaces 
that minimize Eq. (10) as 
 [ ]{ } 0=xS  (11) 
where each row of S  includes normal vectors 
of sliding surfaces. In this study, there have two 
sliding surfaces since the wing section has two 
control inputs. 

The purpose of reaching mode design is to 
find the control inputs that assure the 
convergence to the final intersection of the 
sliding surfaces. We use unit vector control 
method to determine the control inputs. Such 
control inputs are as follows: 
 { } [ ][ ]{ } { } { }σσ /kxASu −−=  (12) 
where { }σ  is defined as 
 { } [ ]{ }xS=σ  (13) 
and S  is normalized to satisfy the following 
relations: 
 S B I=  (14) 
In reality, in order to avoid chattering motion, 
Eq. (12) is modified [8] using an infinitesimal 
real number ε  as 
 { } [ ][ ]{ } { } { }( )εσσ +−−= /kxASu . (15) 
The control gain k  is determined by 
considering the model uncertainties. As the 
result of applying Lyapunov stability theorem to 
the aeroelastic system, the control gain k  must 
be 
 { }∆> ~k . (16) 

If the control gain k  can be extremely large and 
the control inputs have no limit or saturation, 
the controller, as far as the input matrix B  is 
reliable, works effectively for any inaccurate 
model. The control gain k , in reality, cannot be 
so large due to the controller saturation. That is 
to say that the robustness of the sliding mode 
controller against the model uncertainties 
depends on the magnitude of the control inputs 
available. 

In the sliding mode controller design, the 
design factors are only Q  of Eq. (10)and k  of 
Eqs. (15). For choosing Q , any positive 
definite matrix is acceptable. For choosing k , 
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however, it is insufficient only to be positive but 
it must satisfy the inequality of Eq. (16). 

4 Simulation Results 

4.1 Open-Loop Studies 
The airfoil using in this study is NACA 64A006. 
The properties are ah =-0.2, rα =0.5, xα =0.2 and 
ω ωαh / =0.3 [9]. The hinge axes of the leading 
and trailing edges are located at 20% and 75% 
of the chord, respectively. The computational 
grids around the airfoil are shown in Fig. 2. The 
grid is generated by solving Poisson equations 
iteratively [10], [11] from the initial grid 
generated using transfinite interpolation [10], 
[12]. The grid consists of 121 node points in 
circumference and 40 node points in radius. The 
far field boundary is located at 20 chords. 
Before simulating the transonic flutter and its 
control, we compare the results with another 
studies and validate the computational code 
with Refs. [9], [13], [14]. Now that the design 
point of the flutter suppression is M =0.85, 
µ =50 and U  =3.4, the aerodynamic 
coefficients for the steady flow of M =0.85 are 
calculated using CFD as Clα =14.4, Clβ =8.90, 
Clδ =-0.0148, Cmα =1.53, Cmβ =-0.355 and 
Cmδ =-0.279. 

Figure 3 shows the pressure coefficient on 
the airfoil in the steady flow of M =0.88. Since 
this Mach number exceeds the critical Mach 
number, the shock is located at the 3/4 chord. 

The flutter speed around the transonic 
region is determined using U-g method [15] as 

shown in Fig. 4. In this region, the flutter speed 
varies remarkably and is accompanied by the 
dip. If we can specify the speed of sound 
correspond to the altitude, we draw the line of 
U - M  relation in the figure of the flutter speed 
and determine the speed or Mach region at 
which flutter occurs. Provided that we assume 
U =4 M  in Fig. 4, flutter occurs between 0.7 
and 0.88 of Mach number. The corresponding 
speed is between U =2.8 and 3.52. Examples of 
the airfoil motions at some flutter Mach 
numbers are in Fig. 5. The initial condition is 

′ξ =-0.01/ U , which is the same as Ref. [5]. At 
M =0.85, U =3.4 and a∞ =340 m/s, it is equal 

to a vertical velocity change of 0.85 m/s. The 
oscillations of the airfoil are divergent after only 
a few cycles. We consider the suppression of 
those oscillations all through the flutter Mach 
numbers.  

Fig.2 Body-fitted computational grid near the airfoil, 
NACA 64A006, before deformation. 
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4.2 Closed-Loop Studies 
Firstly we evaluate the magnitudes of those 
model uncertainties. The time histories of lift 
and pitching moment coefficients at the design 
point of M =0.85, corresponding plunge and 
pitch motions of which are in Fig. 5 c), are 
shown in Fig. 6. We assume the aerodynamic 
uncertainties have the same magnitude as the 
aerodynamic forces themselves. This 
assumption is overestimate of the model 
uncertainties and leads to conservative result 
about controller gain.  Considering Eq. (9), we 
can find the norm of the lift and pitching 
moment as 
 ~∆ =0.1, (17) 

which means k  must be 0.1 or more. We decide 
the lower bound of k  for the purpose of 
avoiding the chattering motion: 
 k =0.1. (18) 
    Next we select a weighting matrix Q  as to 
minimize the time integral of the total energy, 
the kinetic energy and the potential energy, of 
the wing section all through the sliding mode. 
The total energy of the wing section is 
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where the matrices M  and Ks  are in Eq. (5). 
That means 
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    Now we are ready to simulate and evaluate 
the closed-loop system. We apply the sliding 
mode control inputs of Eq. (15), which is 
designed by using Eqs. (18) and (20), to the 
aeroelastic airfoil in the freestreem of M =0.70, 
0.80, 0.85 and 0.88. The corresponding speed of 
those Mach number are U =2.8, 3.2, 3.4 and 
3.52, respectively. Whereas the motion of the 
airfoil without the controller starting from the 
initial values of ′ = −ξ 0 01. / U  is divergent as in 
Fig. 5, the motion of the airfoil with the sliding 
mode controller starting from the same initial 
values is suppressed effectively for all flight 

conditions throughout the transonic dip as in 
Fig.7.  
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Fig.5 Time histories of plunge displacement and pitch 
angle without control at several Mach numbers; a) 
M=0.7, b) M=0.8, c) M=0.85 and d) M=0.88. The 

initial perturbation is plunge velocity of –0.01bωα, i.e., 
dξ/dτ=-0.01/Ū. 
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    We also investigate the flutter margin of the 
airfoil with sliding mode controller in Fig. 8. 
The upper bound is more than U =20 or 30 (not 
shown in Fig. 8) and the lower bound is around 
U =0.5. Although the design point is M =0.85 
and U =3.4, the sliding mode controller works 
effectively between those speeds at all Mach 
numbers. 
    We compare the performance of the sliding 
mode controller with the LQR. The objective 
function of the regulator is 

 { } [ ]{ } { } { }( )∫
∞ −+=

0

310 τduuxQxJ TT . (21) 

The weight matrix to { }x  is the same as in Eq. 
(20), i.e., { } [ ]{ }xQx T  represents the total energy 
of the airfoil. The weight to { }u  is chosen as to 
the time integral of the total energy 

{ } [ ]{ }( )∫
∞

0
τdxQx T  is equal to that of the sliding 

mode controller. At the design point, the LQR 
works effectively. The flutter margin, however, 
deteriorates, compared to the sliding mode 
controller, as shown in Fig. 9. While the lower 
bound is the same as that of the sliding mode 
controller, the upper bound deteriorates as to 
less than U =10. This indicates that the sliding 
mode controller is much more robust compared 
to the LQR. 
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The initial perturbation is the same as that in Fig. 5. 

-0.1

-0.05

0

0.05

0.1

0 50 100 150

Nondimensional time, τ=tU/b

ξ
, 
α

, 
β

 a
n
d 
δ

ξ

α

β

δ

-0.1

-0.05

0

0.05

0.1

0 50 100 150

Nondimensional time, τ=tU/b

ξ
, 
α

, 
β

 a
n
d 
δ

ξ

α

β

δ

-0.1

-0.05

0

0.05

0.1

0 50 100 150

Nondimensional time, τ=tU/b

ξ
, 
α

, 
β

 a
n
d 
δ

ξ

α

β

δ

-0.1

-0.05

0

0.05

0.1

0 50 100 150

Nondimensional time, τ=tU/b

ξ
, 
α

, 
β

 a
n
d 
δ

ξ

α

β

δ

-0.1

-0.05

0

0.05

0.1

0 50 100 150

Nondimensional time, τ=tU/b

ξ
, 
α

, 
β

 a
n
d 
δ

ξ

α

β

δ

-0.1

-0.05

0

0.05

0.1

0 50 100 150

Nondimensional time, τ=tU/b

ξ
, 
α

, 
β

 a
n
d 
δ

ξ

α

β

δ

-0.1

-0.05

0

0.05

0.1

0 50 100 150

Nondimensional time, τ=tU/b

ξ
, 
α

, 
β

 a
n
d 
δ

ξ

α

β

δ

-0.1

-0.05

0

0.05

0.1

0 50 100 150

Nondimensional time, τ=tU/b

ξ
, 
α

, 
β

 a
n
d 
δ

ξ

α

β

δ

Fig. 7 Time histories of plunge, pitch, trailing and 
leading edges deformation using sliding mode control 

at several Mach numbers; a) M=0.7, b) M=0.8, c) 
M=0.85 and d) M=0.88. The initial perturbation is 
plunge velocity of –0.01bωα, i.e., dξ/dτ=-0.01/Ū. 
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5 Conclusions 
We calculated using CFD the two-dimensional 
transonic flutter characteristics, in which the 
transonic dip appeared, and successfully 
suppressed the flutter by sliding mode control. 
The controller was effective for all the Mach 
numbers passing through the dip. Compared to 
LQR, the sliding mode controller possessed 
wider flutter margin. 
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Fig. 8 Lower bound of the speed, above which the 
sliding mode controller is effective. Below the bound, 
the controller makes the airfoil diverge although the 

uncontrolled airfoil is stable. Upper bound is more than 
Ū =20. Also shown is flutter speed of uncontrolled 

airfoil. 
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Fig. 9 Upper and lower bounds of the speed, 
between which the LQR is effective. Beyond the 
bounds, the controller makes the airfoil diverge. 

Also shown is flutter speed of uncontrolled airfoil. 


