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Abstract

A well-known problemin theoperationof com-
mercial jet transportsis theso-called ’wake vor-
tex hazard’. This problem originates from the
compact, strong vortices emanating from the
wing tips which persistwithout much decayin
theirstrength.Thevelocityfield inducedby these
tip vortices forms a threatto following aircraft.
Vortex wakes generally develop 3D instabilities
of which the long-wavelength,or Crow [2], in-
stability can often be observed as sinusoidal per-
turbationsin aircraft contrails. Thepresentpaper
describesa high-resolutionalgorithmfor solving
theNavier-Stokesequationsdevelopedto numer-
ically simulate these wake-vortex flows. Results
obtainedfor an evolving long-wavelengthinsta-
bility in a vortex pair are discussed.

1 Introduction

The dynamics of a pair of counter-rotating ini-
tially rectilinear vortices poses an interesting
problem due to the complexity of the resulting
flow field and the practical relevance for aircraft
operation. Air traffic control (ATC) employs a
system of empirically determined separation dis-
tances between aircraft in air corridors and near
airports. These separation distances form thema-
trix of separations giving the minimum separa-
tion distance as a function of the weights of the
leading and the following aircraft. A number of
thesematrix elements prescribing the separation

distance are the result of the hazard caused by the
vortex wake. The time needed for sufficient de-
cay or dispersal of the wake vortices of the lead-
ing aircraft to ensure a safe flight condition for
the following aircraft sets the minimum separa-
tion distance that needs to be maintained. Uncer-
tainties in navigation, radar tracking, etc. deter-
mine the other distances.

The dynamics of the aircraft vortex wake is
largely determined by 3D instabilities that occur
in the vortex system. The occurrence and char-
acteristics of the instabilities are strongly influ-
enced by atmospheric conditions such as ambient
turbulence and stratification.

Ideally, the separation distances would be
the absolute minimum for the specific conditions
along the corridor or near the airport. Since this
is not practical, thematrix of separations is con-
stant and as a result conservative. A better under-
standing of the dynamics of aircraft vortex wakes
at the actual atmospheric conditions could lead to
more economical separations. Wake vortex stud-
ies could in addition be used in the development
of on-board devices that can modify and control
the wake decay and dispersal.

Since the early 1990s the effort devoted to
wake vortex research has increased significantly
as a result of the ever increasing traffic densities
around large airports and in corridors. In addi-
tion, the forthcoming introduction of a new gen-
eration of very large passenger aircraft stimulated
this research.

Wake vortices decay under the influence of:

653.1



R. Steijl , H.W.M. Hoeijmakers

� molecular viscosity,

� turbulence, when the vortex pair traverses
a turbulent atmosphere,

� 3D cooperative instabilities.

The cooperative instabilities are a result of
the mutually induced velocity of the vortices
forming the vortex pair and can be divided in two
categories:

� long-wavelength (Crow [2]) instability,
with a wavelength of the order 5 to 10 times
the initial spacing of the vortex pair,

� short-wavelength (elliptic) instability,
which has a wavelength comparable to the
vortex core size.

Recently, this type of instability was
clearly visualized in a water-tank experi-
ment by Leweke et al. [7].

A review of recent wake vortex research is
given by Spalart [11]. In the last few years, both
direct numerical simulations (DNS) and large
eddy simulations (LES) have been performed by
a number of research teams to study certain as-
pects of the problem. The influence of atmo-
spheric turbulence on the decay of wake vortex
pairs, for example, has been studied by Riso et
al. [9], Proctor and co-workers [4] and others.
Various vortex decay models have been intro-
duced by Sarpkaya [10] predicting the descent
and decay of aircraft trailing vortices subjected
to realistic environmental conditions. Recently
this model was compared to data obtained with
Lidar in experiments carried out in the 1990s at
Memphis and Dallas-Fort Worth airports. Sarp-
kaya [10] showed that field data and predictions
compare reasonably well.

However, observed behaviour for some
flights cannot be explained by computations nor
by decay models similar to [10]. Therefore, fur-
ther research is needed to understand more of the
dynamics of aircraft wake vortex pairs.

The present research aims at studying details
of the dynamics of the 3D instabilities (both long-
wavelength and short-wavelength) that enhance

the decay of the vortex pair. For this purpose,
a high-order accurate Navier-Stokes solver has
been developed that enables time-accurate simu-
lations of 3D flows on multi-processor comput-
ers (both high-end supercomputers and afford-
able workstations). The present paper shows re-
sults for a model vortex pair in an unstratified,
quiescent medium.

This paper gives a description of the nu-
merical method used for these simulations and
presents and discusses results of the method.

2 Numerical method

The present numerical method was designed
for parallel high-resolution simulations of three-
dimensional flows. Given the simplicity of the
computational domains in the envisaged applica-
tions, a spectral method ([1], [3]) could have been
chosen. However, flexibility of boundary con-
ditions is limited for these methods. This flex-
ibility is necessary in, for example, simulations
of the interaction of vortex systems with solid
walls. Non-periodic formulations in the direc-
tion normal to that boundary are required. There-
fore, for the numerical method in the present re-
search, high-order accurate compact-difference
discretizations ([6], [12]) were chosen. Such dis-
cretizations can be formulated for very general
coordinate systems and complex geometries, as
is shown in Visbal et al. [13]. To enhance numer-
ical stability, a high-order compact-difference
filtering is generally used in conjunction with
compact-difference discretizations of the Navier-
Stokes equations. The low-pass filters used have
a truncation error that is of higher order than
the spatial discretization error and eliminates the
poorly resolved Fourier modes.

2.1 Governing equations

The Navier-Stokes equations for an incompress-
ible Newtonian medium with constant viscosity
in Cartesian coordinates to be discretized are:

∂w
∂t

+u
∂w
∂x

+ v
∂w
∂y

+w
∂w
∂z

=�1
ρ

∇ p+ν∆w (1)

∇ �w = 0 (2)
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In equation (1),w is the velocity vector,p is
the pressure,ρ the (constant) density andν the
kinematic viscosity of the medium. Relation (2)
is the divergence-free constraint on the velocity
field, as a result of the incompressibility of the
medium. The fractional time-stepping method of
Kim & Moin [5] is used in the present simulation
method. The time-stepping method is second-
order accurate in time and consists of 3 steps.
The first step applies the explicit Adams-Bashfort
method to the nonlinear convection terms and the
implicit Crank-Nicholson scheme to the viscous
terms. This results in 3 independent Helmholtz
equations for the updated velocity components:
�

1� ∆t
2Re

∇ 2
�

vi = �∆t

�
3
2

Hi
n� 1

2
Hi

n�1
�

+

�
1+

∆t
2Re

∇ 2
�

wn
i (3)

with Hi the nonlinear convection terms in skew-
symmetric form:

Hi =
1
2

�
∂wiwj

∂x j
+wj

∂wi

∂x j

�
(4)

In equation (3),n denotes the last completed
time-step,vi, the velocity vector at an interme-
diate step betweenn and n + 1. The next step
is the solution of a Poisson equation for a mod-
ified pressureφ, linked to the pressure as:p =

φ� (∆t=2Re)∇ 2φ,

∇ 2φ=
1
∆t

∂vi

∂xi
(5)

A time-step is completed with

wi
n+1 = vi�∆t

∂φ
∂xi

(6)

2.2 Spatial discretization

First derivatives are discretized using compact-
difference expressions of sixth-order accuracy
given by Lele [6]. Equations (3) and (5) are
discretized using a three-dimensional compact-
difference operator shown in Steijl & Hoeijmak-
ers [12].
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Fig. 1 Stencil of compact-difference Laplace
operator around node(i; j;k).

The formulation uses a 27-point stencil
around the mesh point(i; j;k). This sten-
cil is shown in Fig. 1 with the 6 nodes(i�
1; j;k);(i; j�1;k);(i; j;k�1) depicted as , the
12 nodes(i � 1; j � 1;k);(i; j � 1;k � 1);(i �
1; j;k�1) shown asuand the 8 vertices(i�1; j�
1;k�1) as e. The Helmholtz/Poisson equations
(3), (5) can be written in a generic way as:

�∆ f +λ f = R (7)

This equation is discretized as:

1
h2

h�
8(1�β)+

12+λh2

6
λh2

�
f (i; j;k)

�
�2

3
�4β

�
[ f (i�1; j;k)+ f (i; j�1;k)+

f (i; j;k�1)]

�
�1

3
+2β

�
[ f (i�1; j�1;k)+

f (i�1; j;k�1)+ f (i; j�1;k�1)]

+β f (i�1; j�1;k�1)
i

= 2R+
h2

6

h
∆R+λR

i
+O(h4) (8)

Parameterβ can be used to eliminate one of the
groups of elements from the stencil in Fig. 1
and/or specify certain conditions on the resolving
properties in Fourier space.
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2.3 Solution procedure

Applying expression (8) to the discretization of
the Helmholtz equations for the updated veloc-
ity components, equation (3), and the Poisson
equation for the pressure, equation (5), results
in sparse-matrix systems of linear equations. In
a parallel simulation, the Navier-Stokes equation
(1) and (2) are solved in each of the sub-domains
that result from the decomposition of the compu-
tational domain in sub-domains. For each sub-
domain, the number of equations is identical to
the number of nodes used in the discretization.
The maximum number of non-zero elements per
row (each equation corresponds to one row of
the sparse-matrix system) is 27, the number of
elements in the stencil on the left-hand side of
expression (8). The systems of equations are
solved using the Preconditioned Conjugate Gra-
dient method in case the matrix is symmetric.
Neumann boundary conditions lead to an non-
symmetric sparse-matrix to which the Precondi-
tioned Bi-Conjugate Gradient is applied.

To optimize numerical performance of these
Krylov solvers, sparse-storage formulations ([8])
are not used. Instead, the regularity of the compu-
tational domain is used to formulate the matrix-
vector multiplications in the (Bi-)Conjugate Gra-
dient method in terms of a system of multiple
loops.

3 Numerical results

3.1 Evolving Crow instability

A developing long-wavelength instability in a
pair of trailing vortices is considered within a cu-
bic computational domain. A general impression
of the test case can be obtained from Fig. 4, show-
ing the vortex pair at five different instances in
time. Here,T is the time non-dimensionalized
by Γ

2πb2
0
. The 2 vortices are initially straight line-

vortices separated by distanceb0. Periodicity is
assumed inx-direction. This assumption is jus-
tified by the sinusoidal perturbations predicted
by the theories of both Crow [2] and Widnall et
al. [14]. The computational domain is divided

in 4 sub-domains in the periodic direction in or-
der to carry out the parallel simulations. The az-
imuthal velocity of both vortices has a Gaussian
profile in the cores of radiusrc. In Cartesian co-
ordinates, the induced velocity of each of the rec-
tilinear vortices is of the form:

u(x;y;z) = 0

v(x;y;z) =
(z�zc)Γ

2π
[1�exp(�αr2=r2

c )]
r2

w(x;y;z) = � (y�yc)Γ
2π

[1�exp(�αr2=r2
c )]

r2

(9)

with r2 = (y� yc)
2+(z� zc)

2, where the vortex
center is located in(yc;zc). The constantα in
the exponent is chosen to position the maximum
of the azimuthal velocity atrc (this leads to the
constraint(2α +1)e�α = 1).

For an isolated vortex with this velocity dis-
tribution theory gives for the growth of the core
radiusrc and for the decay of the maximum of
the azimuthal velocityuθ;max:

rc(t) �
p

t
uθ;max � 1=

p
t

(10)

Fig. 2 shows the distribution of the initial induced
vertical velocity component of the closely spaced
vortex pair along a horizontal line through both
vortex cores. It is shown in the figure that 81
mesh points iny direction (the horizontal cross-
flow direction) is adequate to resolve the initial
velocity field.

The vortex centers are located aty = 0:875
and y = 1:125, at which locations a significant
down-wash is present due to the mutual induction
of the vortices. To prevent the vortices from ad-
vecting out of the computational domain during
the simulation, a constant vertical velocity equal
to the theoretical sink rate of the vortices is su-
perposed on the initial velocity field. This has an
effect similar to using a frame of reference that
moves at constant speed.

Fig. 3 shows the initial vorticity distribu-
tion (the component of the vorticity vector inx-
direction) along this line.

The pressure field for an isolated vortex can
be found by integration of

∂p
∂r

= ρ
u2

θ
r

(11)
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with r the distance from the vortex core. How-
ever, for the more complex flow field of the
closely-spaced vortex pair the pressure field is
more easily computed using the flow solver em-
ploying a small number of very small time-
steps. For the present azimuthal velocity profile
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Fig. 2 W-component of velocity along horizontal
line through both vortex cores in case of unper-
turbed vortices (T = 0).
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Fig. 3 Vorticity distribution along horizontal line
through both vortex cores in case of unperturbed
vortices (T = 0).

(Lamb-Oseen) and rc=b0 = 0:2, both the theory
of Crow [2] and Widnall et al. [14] give as wave-
length λ for the most unstable mode: λ=b0 = 8.
This wavelength determines the dimension of the
computational domain in x-direction: one long-
wavelength instability mode is initialized in the
initial solution. This initial mode is given an am-
plitude δ=rc = 0:25. Table (1) shows some char-
acteristic parameters for this test case.

All simulations were performed using a cu-
bic computational domain of dimension 2:0m in
each direction. A division in 4 sub-domain was
used in the x-direction that enabled parallel com-
putations on 4 CPUs. Three simulations are dis-
cussed in this study: the base-line simulation at a
Reynolds number of 6:7�105 on a 813 mesh and
two variations. Varied are the Reynolds number,
i.e. a reduction to 6:7� 103 and the mesh reso-
lution, i.e. an increased resolution of 1213. The
Reynolds number is reduced from 6:7� 105 to
6:7� 103 as a result of a factor 100 increase in
kinematic viscosity.

Table 1 Parameters for evolving Crow instability
test case

Test Low Re High Re High Re
case: coarse coarse fine
Re(Γ0=ν) 6:7�103 6:7�105 6:7�105

Γ0 [m2=s] 10:0 10:0 10:0
Mesh 813 813 1213

nodes 6:0�105 6:0�105 1:9�106

Mem.[Mb] 148 148 384
rc=b0 0:2 0:2 0:2
λ=b0 8:0 8:0 8:0

3.2 Discussion

Fig. 4 shows a three-dimensional view of the
growth most unstable Crow instability mode be-
tween T=1:27 and T=3:82. Since periodic bound-
ary conditions are prescribed in x-direction, the
computational domain is sized to contain just
one instability mode. Fig. 4 shows two modes
for clarity. These are the results for the low-
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T=1.27

T=1.91

T=2.55

T=3.18

T=3.82

Fig. 4 Growth of Crow instability between
T=1:27 and T=3:82. Iso-pressure contour
(p=101000 Pa). Simulation on 813 mesh,
Reynolds number 6:7�103.

Reynolds number simulation on the 813 mesh. A
rapid growth occurs for the sinusoidal perturba-
tion. The amplitude of the sinusoidal perturba-
tion is presented in Fig. 5 for both Reynolds num-
bers, both for a linear and a logarithmic scale.
A comparison is made with the inviscid asymp-
totic theory of Widnall. For T < 2:5 the growth
is exponential in both simulations. A good agree-
ment with the asymptotic theory is obtained. At
later times, the growth rate is reduced in com-
parison with the results of the asymptotic the-
ory. This can be attributed to both the reduction
of circulation and the increasing radii of vortex
cores as a result of the viscous decay. For the
lower Reynolds number simulation this effect is
stronger due to the larger kinematic viscosity.

The effect of mesh resolution is shown in
Fig. 6, where the growth of the perturbation for
small T for the high Reynolds number simula-
tions on the 813 and 1213 meshes is compared. It
can be seen that the coarse-mesh and fine-mesh

results are very similar, the result for the 1213

mesh being slightly closer to the result from the
asymptotic theory. From this figure it can be con-
cluded that the 813 mesh results in an adequate
resolution of the flow field.

Fig. 7 and Fig. 8 show a sequence of pictures
at different times between T=1:27 and T=3:50
for both Reynolds numbers. On the left, a top
view of the computational domain is shown. The
side view is shown on the right. At later times,
the vortices start a reconnection process that is
clearly visible from the top-view figures. Results
presented on the 813 mesh in both cases.

4 Conclusion

A high-order accurate numerical method has
been developed that is used in this paper for time-
dependent three-dimensional Navier-Stokes sim-
ulations of an evolving long-wavelength instabil-
ity in a trailing vortex pair. The results show
a good resolution of the flow field using a 813

mesh. The required resources for a simulation on
a mesh of this size are modest with respect to the
memory needed. For the limited number of CPUs
used in the present study (4), the CPU times are
acceptable. For the coarse-mesh simulations, a
run-time of 18 hours on 4 CPUs (SGI R10K) was
required for 1000 time-steps. Future work will
include simulations of physically more complex
flows, such as test cases with interactions of long-
wavelength and short-wavelength instabilities.
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T= 1:27 (1000 time-steps)

T= 1:59 (1500 time-steps)

T= 1:91 (2000 time-steps)

T= 2:23 (2500 time-steps)

T= 2:55 (3000 time-steps)

T= 2:86 (3500 time-steps)

T= 3:18 (4000 time-steps)

T= 3:50 (4500 time-steps)

Fig. 7 Iso-pressure contour (p=101000 Pa). High
Reynolds number. Simulation on 813 mesh.

T= 1:27 (1000 time-steps)

T= 1:59 (1500 time-steps)

T= 1:91 (2000 time-steps)

T= 2:23 (2500 time-steps)

T= 2:55 (3000 time-steps)

T= 2:86 (3500 time-steps)

T= 3:18 (4000 time-steps)

T= 3:50 (4500 time-steps)

Fig. 8 Iso-pressure contour (p=101000 Pa). Low
Reynolds number. Simulation on 813 mesh.
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