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Abstract

This work describesa computationalmethodfor
the treatmentof solid fluid interaction (SOFIA)
for the assessmentof the aerodynamicperfor-
manceof large spanelasticwings by direct nu-
merical aeroelasticsimulation. The fluid flow
is modeledby the Euler or by the Reynolds-
averagedNavier-Stokes equations. The elastic
wing is modeledby a reducedstructuralmodel,
in this casea generalizedTimoshenko-likebeam
structure. Numerical resultsincluding detailed
comparisonto measureddata are shown for a
rectangularelastic wing specimenbuilt within
the framework of the Collaborative Research
CentreSFB401”Modulation of Flow and Fluid-
Structure Interaction at Airplane Wings”of the
RWTH AachenUniversityof Technology.

1 Introduction

The aerodynamic loads acting on the wings of
a high capacity aircraft with e.g. a wing span
of up to 80m may cause large displacements of
the wing’s sections. Therefore, the static and dy-
namic interaction between structural loads and
air loads becomes more important than in the
case of air planes presently being in service. New
design tools which take into account the full non-
linear fluid-structure interaction may even for the
first drafts with reduced structural models help
to avoid dispensable loops in the design pro-
cess and thus to meet economic constraints for a
faster and cheaper design and construction. One
of these tools is the direct numerical aeroelastic

simulation, in which the calculation of the flow
field and the structural deformation is performed
fully coupled and consistent in time. The aero-
dynamic part of the numerical method SOFIA
presented in this paper consists of either an im-
plicit Euler code or a Navier-Stokes code. We
use a finite-element-based solver for a multi-axial
Timoshenko beam model do discretize the elastic
wing structure.

SOFIA is being progressively developed, val-
idated and used in the Collaborative Research
Centre SFB401”Modulation of Flow and Fluid-
Structure Interaction at Airplane Wings”at
RWTH in a mutual exchange with experimental
aeroelasticity projects. On one hand it is used to
determine loads and appropriate pressure gauge
positions. On the other hand the aeroelastic ex-
periments help to validate the code. This paper
focuses on the comparison of numerical and ex-
perimental results for static aeroelastic equilib-
rium configurations of a rectangular elastic wing
at low wind speeds.

2 Physical Model

2.1 Non-Stationary Flow in a Moving Grid

Two different codes for the calculation of the flow
field have been implemented in SOFIA, one solv-
ing the Euler equations for unsteady compress-
ible fluid flow, the other integrating the Navier-
Stokes equations taking into account additionally
viscosity and heat transfer in the fluid.

The governing flow equations are solved by
finite volume techniques with control volumina
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dependent on time in order to describe consis-
tently the fluid flow and the motion of the wing’s
surface. Thereby the nodes on the wing’s surface
are taken as material points of the wing through-
out the motion of the structure, whereas the nodes
at the outer boundary, which is the boundary
of the computational domain, remain fixed in a
rigid body fixed coordinate system. Thus, the
grid is deforming with time and the nodes of the
finite volumes within the flow field are moved
such that a grid fitting the body’s surface is en-
sured. The three-dimensional Reynolds-averaged
Navier-Stokes equations which are implemented
in the FLOWer code read in integral form

∂
∂t

�
V � t � UdV � �

∂V � t � FndS� �
V � t � GdV � 0 � (1)

where U ��� ρ � ρu � ρv� ρw� ρe� T is the algebraic
vector of conserved quantities: density, Cartesian
components of momentum and total specific en-
ergy density. Contributions due to the rigid body
motion of the grid, which may be rotation with
the angular velocity vectorω �	� ωx � ωy � ωz� T , are
contained in the source termG (see [5]). F �
Fc � Fd represents the flux function with its parts
Fc designating the convective and in isentropic
flows conservative terms andFd denoting the dif-
fusive part,

Fc � 
����� ρ � v 
 vB �
ρu � v 
 vB ��� pex

ρv � v 
 vB ��� pey

ρw � v 
 vB ��� pez

ρe� v 
 vB ��� pv

������� (2)

andFd � 
����� 0
τxxex � τxyey � τxzez

τyxex � τyyey � τyzez

τzxex � τzyey � τzzez

ψxex � ψyey � ψzez

� ������� (3)

A detailed description of the diffusive part in-
cluding the formulation of the symmetrical stress
tensor components with Stokes’ hypothesis of
vanishing pressure viscosity (µv � 2

3µ) can be
found in [5]. The viscosity is approximated in

case of laminar flow by Sutherland’s formula as
a function of the statical temperature only,

µ � T ����� κM∞
Re∞ � T

T∞ � 1
2 T∞ � 100K

T � 100K � (4)

The vector of heat conduction is modeled by
Fourier’s law (q ��
 kgradT) with the heat con-
ductivity k given by a constant Prandtl number
Pr

k � κ
κ 
 1

µ
Pr
� Pr � 0 � 72 � (5)

For turbulent flows, the viscosityµ is replaced by
µ � µt with the turbulent part provided by a tur-
bulence model. In version 113 of the FLOWer
code, the algebraic model of Baldwin/Lomax is
used. Finally, since air is assumed to behave as a
perfect gas, the pressure is calculated by the ideal
gas equation of state in terms of pressure, density
and internal energy

p ��� κ 
 1� ρ � e 
 1
2v2 � (6)

with κ denoting the ratio of specific heats.

2.2 Underlying Beam Theory

The elastic wing is modeled in ODISA by a
Timoshenko-like beam structure with six de-
grees of freedom for a material cross-section.
The centrelines of mass, bending and torsion
are generally non-coinciding. By that assump-
tion, besides the coupling via aerodynamics, all
degrees of freedom may be coupled with each
other mechanically, too. In contrast to the of-
ten used Euler-Bernoulli beam theory which cou-
ples bending with translation by kinematic con-
straint involving anomalous dispersion of defor-
mation energy propagation, the Timoshenko ap-
proximation with its two more degrees of free-
dom concerning the shear deformation exhibits
no effects of anomalous dispersion and thus de-
scribes unsteady deformation in a physically rea-
sonable way.

Extending Hamilton’s functional for the wing
by terms for the initial conditionsδZIC, bound-
ary conditionsδZBC, the virtual work of airloads

483.2



NAVIER-STOKES-BASED DIRECT NUMERICAL AEROELASTIC SIMULATION

δWaero and energy terms for additional masses
(e.g. winglet, engine)δZC leads to the variational
equation for the complete initial boundary value
problem

δ � e  uS!#"%$'& ( te

ta
δ ( l

0
lBdξ ) δWaeroDt ) δZC) δ  ZIC ) ZBC $ (7)

with the secondary conditionsδu  ξ ! te$*& 0 and
δ "  ξ ! te$+& 0. For the Lagrangian density one
obtains

lB & 1
2
 ρAu̇Su̇S ) "-, S "/. GA0 K 0 . EAu2

B1 1 1. ϕ 11CBTWϕ 1 1 ) ρAuSg2 (8)

(S and B are the centers of gravity and bending,
respectively). Applying Timoshenko’s theory the
shear angles are represented as

γ2 & uS2 1 1 . ϕ3 .  ζSDϕ1 $ 11 !
γ3 & uS3 1 1 ) ϕ2 )  ηSDϕ1 $ 1 1 (9)

whereζSD andηSD are the cartesian co–ordinate
differences between the center of gravity and the
shear center of the cross–section. A detailed de-
scription of the remaining terms can be found in
[6].

3 Solution Strategy

Within the SOFIA code, the solution schemes for
the flow field and the structure are combined in an
iterative process through a strong coupling such
that the differential equations of both media can
be integrated simultaneously i.e. consistent in
time. The central time loop works as follows:

ODISA calculates the velocities and the dis-
placements of the structure under the actual aero-
dynamic loads.

The grid points on the wing’s surface (inner
boundary of the aerodynamic grid) are moved
corresponding to the structure’s change of shape.
In contrast to the points at the inner boundary the
grid points at the outer boundary remain fixed in a
rigid-body fixed co-ordinate system. GRIDGEN
(GRID GENerator) computes the point distribu-
tion such that the topology of the structured grid
is preserved.

Finally the flow field and the new airloads are
computed for the current time on the numerical
grid, which is updated concerning position and
state of velocity. This is done by INFLEX solv-
ing the Euler equations or in the new version of
SOFIA by FLOWer integrating the Navier-Stokes
equations. A subiteration level has been imple-
mented which computes the global time step.
During repeated calculation an average value of
the aerodynamic forces of the current and the
preceding time step is used. The iteration is
stopped when a certain error bound is reached.
Of course, the computer time increases linearly
with the (number of) subiteration levels. Numer-
ical experiments have shown that in case of care-
fully chosen time steps – i.e. all the relevant time
scales are resolved properly – just one subitera-
tion is sufficient.

3.1 Numerical Methods

The numerical methods used in SOFIA are
desribed here only very shortly. Details are pre-
sented in the references.

3.1.1 Flow Solver INFLEX

For the numerical integration of the strong con-
servation form of the Euler equations an implicit
relaxation scheme is used [1]. The unfactored
Euler equations are solved by applying a Newton
iteration method. Relaxation is performed with a
point Gauß-Seidel algorithm. The combination
of a Newton method with a point Gauß-Seidel
algorithm leads to a robust numerical scheme.
Concerning the resolution of pressure and shock
waves, a characteristic variable splitting tech-
nique is employed. Grid generation is done using
elliptical smoothing in every time step.

3.1.2 Flow solver FLOWer

The FLOWer code is being developed in the
project MEGAFLOW by different German re-
search organisations under the leadership of
DLR/Braunschweig. The numerical discretiza-
tion of the FLOWer code is based on structured
grids. Central differences are used for the spa-
tial discretization. Time integration is performed
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by dual-time stepping. Within each pseudo-time
step an explicit multi stage Runge-Kutta method
is used which is accelerated by techniques of lo-
cal pseudo-time stepping, enthalpy damping and
implicit residual smoothing. The solution pro-
cedure is embedded into a sophisticated multi-
grid algorithm. This flow solver is written in a
flexible block structured form enabling treatment
of complex aerodynamic configurations with any
mesh topology. By coupling a structural solver
and an algebraic grid generator [4] the code has
been made applicable for aeroelastic analysis.

3.1.3 Structural Solver

To determine the generalized deflections,
a second order in time system of ordinary
differential equations (ODEs) is derived by
applying Hamilton’s principle and the method
of Ritz/Kantorowitsch [6]. Linear damping is
included (Rayleigh-damping). Discretization
is done by isoparametric, two–noded elements.
A reduced integration scheme avoids shear
locking. The set of ODEs is integrated by
Newmark’s method, where the resulting linear
system of equations is solved directly using LU-
decomposition. The external forces are assumed
to vary linearly during a time-step. Alternatively,
the system of ODEs is diagonalized by solving
the generalized eigenvalue problem (EVP), and
the time integration is done by the evaluation of
Duhamel’s integral.

4 Results

The focus of this paper is the application of the
numerical method SOFIA for the analysis of elas-
tic wings in subsonic flow and the comparison to
experimental results of our partners in the Collab-
orative Research Centre SFB401. The data base
will be enlarged to the transonic region by aeroe-
lastic experiments carried out by another partner
within the SFB401 in near future. This will make
possible a validation of our numerical method in
flutter analysis, where the correct modeling of

the fluid-structure interaction is essential to cap-
ture the strong non-linearities caused by moving
shocks and local flow separation. Preliminary re-
sults for transonic flow have been published in
[8, 9].

Fig. 1 shows the airfoil which has been cho-
sen as reference configuration for all numerical
and experimental analyses in the SFB401. Orig-
inally defined by the AGARD group in [7] as a
three element high lift configuration consisting of
slat, main wing and flap (see Fig. 1), we set up
a cruise flight configuration by assemblying the
parts. Experimental data is provided in [7] only
for high lift configuration test cases.

A first set of data for a two-dimensional test
case is given in Fig. 3. The calculated pressure
coefficientCp shows a good agreement to the data
measured by the Institute of Aerospace Engineer-
ing in a low speed wind tunnel at 60m/s flow ve-
locity and zero angle of attack. Since only the
main wing is equipped with pressure gauges, the
nose and the tail region of the airfoil could not be
resolved. The same wing model has been used
to analyse the L1T2 high lift configuration de-
fined in [7]. Again, the pressure on the main
wing can be predicted very well by the numerics
as can be seen in Fig. 4 (M∞=0.192,α∞=20.18o,
Re∞=3.523 106). The contour line plot of the
Mach number distribution in Fig. 5 shows that
the local flow speed on the slat nearly reaches the
speed of sound, even though the incoming flow is
at M∞=0.192. Obviously, the use of compressible
Navier-Stokes equations is necessary to capture
correctly the recirculation zones and flow sepera-
tion occuring in this complex flow field.

An elastically very pliable wing model has
been built in the Department of Aerospace Struc-
tures (Institut für Leichtbau, IfL), particularly to
provide experimental data for code validation.
Therefore its purpose was not to create as much
similarity to a real cruise flight configuration as
possible. In contrast to most other wind tun-
nel models where high stiffnesses i.e. negligi-
ble deformation is desired, this wing shows large
torsional and bending deformation even under
moderate aerodynamic loads at low flow veloc-
ity. The specimen is a rectangular wing with a
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flap lag torsion
586.39Nm2 2.1774 104Nm2 141.329Nm2

Table 1Average stiffnesses of the wing model

1m semi-span and a chord length of 222mm. A
hybrid construction with an aluminum spar and
foam defining the aerodynamic shape has been
chosen, see Fig. 2. The cross shaped spar ad-
mits the realization of a wide stiffness range by
varying the length of the notches on the verti-
cal and horizontal parts. The stiffnesses of the
model used in the present study are presented
in Tab. 1. Since we consider here only steady
aeroelasticity, we renounced a detailed represen-
tation of the ribs in our numerical model yet and
assumed homogeneous spanwise distributions of
mass and moments of inertia. The total weight
of the fully equipped wing amounts approxi-
mately 2.5kg. In the first campaign, no direct
shape deformation measurement has been exe-
cuted. However, high precision deformation in-
formation has been made available by a recon-
struction method analyzing strain gauges at 16
different spanwise positions. The model has a
set of pressure gauges at 50% semi-span. Further
details can be found in [11] in these proceedings
and in [12].

The standard procedure to determine the
wing’s steady state aeroelastical equilibrium con-
figuration at a given Mach number and root an-
gle of attack is as follows: At first, the flow
field about the undeformed reference configura-
tion is computed. Since for that purpose the fluid
solver can be run without coupling to the struc-
tural part in ”steady” mode, the numerical effort
for this first step is relatively low. In the second
stage, the unsteady flow field about the deform-
ing wing has to be computed running the code in
the ”unsteady” coupled mode. Thereby, a fixed
support at the wing’s root is assumend neglect-
ing the elasticity of flange and support. In order
to speed up convergence to steady state, artificial
Rayleigh-type structural damping is used. A typ-
ical computing time for inviscid flow simulation
using 200000 grid points on a vector computer
with a performance of 600 MFLOPS takes about

two hours. In order to find the zero lift angle
of attack of the elastic configuration, normally
at least two runs with slightly different root an-
gles of attack are necessary, which do not meet
exactly the additional condition of vanishing to-
tal lift. However, if the variation of the angle of
attack of the two calculations is small enough,
e.g. 0.3 degrees, the non-linear fluid-structure
system can be assumed to behave linearly within
this small range and thus the true zero lift angle of
attack can be determined by linear interpolation,
i.e. a third run is dispensable.

We have selected four test cases to compare
the numerical results computed using the SOFIA
code to data measured by the Department of
Aerospace Structures:

case v∞ [ m
s ] ρ∞ [ kg

m3 ] αexp
R [o] αcalc

R [o]
1 65 1.24 6.93 6.93
2 45 1.24 6.6 6.6

3576 65 1.21 -1.38 -1.27
4576 45 1.22 -1.87 -1.7

Table 2Test case definition (586 cases with vanish-
ing total lift)

Cases 1 and 2 both show a relatively high an-
gle of attack and mainly differ in the wind speed.
Cases 3 and 4 are the corresponding cases in
which the total lift at the root of the elastic wing
vanishes. Since this zero lift angle of attack can
be determined very precisely, we have chosen
slightly different angles of attackαcalc

R than the
measured one (αexp

R ).
Table 3 gives an overview of the total lift F2

and and the total torque M1 at the wing’s root.
The maximum error in the lift reaches only about
4% (case 2) and about 7% in the torque (case 4).

The complete data set of case 1 is presented in
detail in Fig. 6-10. The spanwise distributions of
the bending and torsional deformation u2 andϕ1

respectively are shown in Fig. 6. While the tor-
sional deformation coincides very well over the
whole wing span, the bending stiffness at the in-
ner part of the wing seems to be slightly overesti-
mated in the calculation. In Fig. 7 the pressure
coefficientCP at 50% of the semi-span is dis-

483.5



G. Britten, J. Ballmann

F2 [N] M1 [Nm]
case exp calc exp calc

1 486.9 498.4 9.58 9.57
2 204.3 212.7 4.04 3.71

398: <1 <1 -6.52 -7.02
498: <1 <1 -3.17 -3.41

Table 3 Total forces and moments at the wing’s
root (98: denotes cases with vanishing total lift)

cussed. A very good agreement to the measured
data can be seen. Fig. 8 gives information about
the spanwise distribution of lift and moment co-
efficientCL andCM respectively. In this figure the
distributions for the rigid case have been added to
demonstrate the big difference for this very flex-
ible wing. Fig. 9 shows the time history of the
translation and the rotation of the wing tip during
the unsteady simulation. Due to high artificial
Rayleigh-type damping chosen here the transla-
tion reaches its asymptotically steady state rela-
tively fast, while it takes a little more time for
the rotation to converge. Finally, Fig. 10 shows a
qualitative comparison between experiment and
calculation. Though the point of view of the
twice-exposed photograph in the upper part of
this figure showing the wing in the wind tunnel
is not exactly the same as in the computational
result below, this figure gives quite a good im-
pression about the flexibility of the wing.

Concerning case 2 we refer to the work of
our partners of IfL published in these proceed-
ings [11], too.

The angle of attack for which the total lift
of the elastic wing vanishes represents another
parameter suitable for code validation. Fig. 11
shows the zero lift angle of attack versus the wind
speed. As can be seen in this figure the agreement
between the computational and experimental data
becomes very good with higher wind speeds. The
reason for that can be found in Table 4. Herein,
the total lift for the rigid wing with a root angle
of attack corresponding to the zero lift case of the
elastic wing is given. Since the total lift reaches
only 3.8N for flow velocity 35m/s, the deforma-
tion of the wing remains very small which is syn-

onymous with a relative great error in both, ex-
periment and in calculation. On the upper limit at
a wind speed of 85m/s, we have a load of 125.5N
in the rigid case leading to considerable deforma-
tion and thus a smaller error percentage.

Fig. 12-15 finally show the spanwise defor-
mation distribution and the pressure coefficient
at 50% semi span for cases 3 and 4. Though the
relative differences between measured data and
the calculation using the SOFIA code are greater
than in the cases discussed before, the results are
quite satisfying.

v∞ [m/s] 35 45 55 65 75 85
αcalc

W0 ; o < -1.8 -1.7 -1.5 -1.27 -1.0 -0.64
FW2 [N] 3.8 9.8 22.3 42.7 75.1 125.5

Table 4Total lift vs. wind speed for the rigid wing
with root angle of attack yielding zero lift in the
elastic case.

5 Conclusions and outlook

In this paper the SOFIA code for direct numer-
ical simulation of fluid/structure interaction has
been presented. Using the domain decomposi-
tion technique the non-stationary flow is modeled
either by the Euler equations or by the Navier-
Stokes equations, and the wing structure is mod-
eled by a generalized quasi one-dimensional the-
ory based on Timoshenko’s beam theory.

Numerical results are shown for rigid and
elastic reference configurations of the Collabo-
rative Research Centre SFB401 “Modulation of
Flow and Fluid-Structure Interaction at Airplane
Wings” for low Mach number cases. Detailed
comparison of calculation and measurement is
presented for the aeroelastic equilibrium position
of a higly flexible rectangular wing model. Be-
sides two test cases with high angles of attack at
the wing’s root, the dependence of the zero lift
angle of attack on the wind speed is discussed.
Numerical and experimental results for the span-
wise deformation and the pressure distribution
agree very well. However, the difference in the
zero lift angle of attack between experiment and
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computation rises up to approximately 0.2 de-
grees when flow velocity decreases because of
decreasing aerodynamic load and very small de-
formation and therefore greater relative errors in
experiment and in simulation as well.

Future work will include dynamic anlysis of
the elastic wing requiring a detailed modeling
of the wing’s mass and inertia distribution con-
cernig ribs, measuring equipment etc. Further-
more, we will concentrate on dynamic stability
analysis in the transonic regime to provide data
for design of corresponding experiments.
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7 Figures

Fig. 1 Cruise flight reference configuration
(based on the 3 element high-lift configuration
BAC 3/11/RES/30/21 [7])
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Fig. 2 Cross-section of the aeroelastic wing
model of the Institute of Lightweight Structures.
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Fig. 3 Comparison of numerical and experimen-
tal results for the SFB reference airfoil
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Fig. 4 Comparison of numerical and experimen-
tal results of [7] for the high lift reference config-
uration (M∞=0.192,α∞=20.18o, Re∞=3.52= 106)
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Fig. 5 Contour lines of the Mach number for the
high lift confiugration (M∞=0.192, α∞=20.18o,
Re∞=3.52= 106)
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tion (case 1)

x

C
p

0 0.25 0.5 0.75 1

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

experiment
calculation

Fig. 7 Comparison of measured and calculated
pressure coefficient in a cross-section at 50%
semi-span (case 1)

y[m]

C
l

C
m

0 0.25 0.5 0.75 1
0

0.2

0.4

0.6

0.8

1

0

0.02

0.04

0.06

0.08

0.1

Cl

Cl (rigid)
Cm

Cm (rigid)

Fig. 8 Spanwise lift and moment coefficient
(case 1)
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Fig. 9 Time history of the torsional and bending
deformation at the wing’s tip (case 1)
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Fig. 11 Comparison of measured and calculated
zero-lift angles of attack at the wing’s root.
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Fig. 12 Comparison of measured and calcu-
lated spanwise bending and torsional deforma-
tion (case 3)
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Fig. 13 Comparison of measured and calculated
pressure coefficient in a cross-section at mid span
(case 3)
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Fig. 14 Comparison of measured and calcu-
lated spanwise bending and torsional deforma-
tion (case 4)
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Fig. 15 Comparison of measured and calculated
pressure coefficient in a cross-section at mid span
(case 4)
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