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Abstract

Symbolic computation is used to investigate the
flutter behaviour of uniform composite wings
analytically instead of numerically. As a result
the proposed method requires minimum
computational effort because all numerical
matrix manipulations associated with the
solution of flutter problems are completely
avoided. The wing is idealised as a bending-
torsion (materially) coupled composite beam
with cantilever end condition for which the
frequency equation and mode shapes in free
natural vibration are presented in closed
analytical form. For a given number of selected
normal modes, the expressions for generalised
mass, generalised stiffness and generalised
aerodynamic force are derived in explicit
analytical form. This was assisted greatly by
symbolic computation. Finally the flutter
problem is formulated by summing
algebraically the expressions for generalised
mass, generalised stiffness and generalised
aerodynamic force terms. From the final
expression containing all the above terms the
flutter speed and flutter frequency are
determined by using a standard root finding
procedure. As a consequence, the proposed
analytical method is found to be accurate and
efficient, and therefore, it holds out the prospect
of precise aeroelastic optimisation. An
illustrative example confirming the correctness
and accuracy of the method when predicting the

flutter speed and flutter frequency of a
laminated composite wing is provided.

1.0 Introduction

With the advent of advanced materials such as
fibrous composites, aeroelasticity of composite
wings has become a major research topic in
recent years. There are two important reasons
that stimulate this research. First, composite
materials have very high strength to weight
ratios when compared with their metallic
counterpart. Secondly, and more importantly
from an aeroelastic point of view, they have
directional properties which can be manipulated
to achieve desirable aeroelastic characteristics.
A number of publications [1-5] illustrate the
flutter behaviour of laminated composite wings
by using normal modes obtained from beam
element idealisation of the wing and strip theory
based on Theodorsen type unsteady
aerodynamics [6]. It has been found that
significant parameters that affect the flutter
speed are the laminate stacking sequence, ply
orientation and sweep angle. Investigations on
the subject have shown significant benefits that
can not be achieved easily for wings with
metallic construction. For instance, swept
forward wing design with acceptable divergence
speed is now a distinct possibility. Because of
these potential possibilities, research in the area
of aeroelastic optimisation, often called
aeroelastic tailoring [7-9] has flourished, and is
still continuing. An optimisation study is
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computationally intensive by its nature, and any
improvement in the method of flutter analysis or
solution technique that can enhance either
whole or part of the procedures (for example
sensitivity calculations) is naturally welcome by
research workers. In this paper an analytical
method of flutter analysis for a uniform
cantilever composite wing is developed for the
first time. Such a development has been
possible due to recent advancements in
symbolic computing [10].

Banerjee [11] has recently developed exact
analytical expressions for the frequency
equation and mode shapes of a uniform
composite beam with cantilever end condition
by making extensive use of the symbolic
algebraic package REDUCE [12]. The formulae
for frequency equation and mode shapes derived
by Banerjee [11] account for the bending-torsion
material coupling effect that is usually prevalent
in composite beams due to ply orientations. The
work of Banerjee [11] is extended further in this
paper to cover flutter analysis by linking the
modal analysis to unsteady aerodynamic
analysis of the wing forces. First, the
analytically derived normal modes are
implemented in the expressions for the
generalised mass and generalised stiffness in a
particular mode. The symbolic algebraic
(manipulative) package REDUCE [12] is then
used to obtain the integral expressions
associated with the generalised mass and
generalised stiffness terms in explicit form. The
derivation of the generalised aerodynamic
forces in explicit analytical form in terms of
normal co-ordinates is a difficult task. The
difficulty arises because the unsteady
aerodynamic forces consist of expressions that
have both real and imaginary parts [6]. Due to
advancements in symbolic computation in
recent years [10], this became possible and the
work has thus been greatly assisted by
REDUCE [12]. Once the analytical expressions
for generalised mass, generalised stiffness and
generalised aerodynamic force in each mode are
obtained individually in explicit form, they are
summed algebraically to formulate the complex
flutter function which is primarily a function of
two unknown variables, namely the air-speed

and the frequency. The zeros of this function,
which give the flutter speed and flutter
frequency, are obtained by a standard root
finding procedure for the real and imaginary
parts of the function. Only in this final stage
does the problem become numerical in the sense
that results are obtained from the roots of an
analytical function rather than from more
conventional numerical matrix manipulation.
The above theory has been applied to predict the
flutter speed of a composite cantilever wing for
which some comparative results are available in
the literature. The expected accuracy of the
proposed theory is confirmed by numerical
results.

2.0 THEORY

Composite wings have been characterised in the
literature [1-5] by their rigidities which are
essentially the bending rigidity EI, torsional
rigidity GJ, and bending-torsion (material)
coupling rigidity K. The material coupling
rigidity K which does not exist in metallic
wings, is of great significance for composite
wings because it can be exploited to advantage
for aeroelastic tailoring purposes.

A uniform composite wing of length L,
bending rigidity EI, torsional rigidity GJ,
bending-torsion (material) coupling rigidity K,
mass per unit length m, and mass moment of
inertia per unit length Iα, is shown in Fig. 1. In
the right handed co-ordinate system shown, the
centroidal axis which is coincident with the Y-
axis, is allowed to deflect out of the plane by
h(y,t), whilst the cross-section is allowed to
rotate (or twist) about OY by ψ(y,t), where y
and t denote distance from the origin and time
respectively. The wing, with cantilever
boundary conditions and with the built-in end
chosen as the origin, is assumed to undergo
simple harmonic oscillation with circular (or
angular) frequency ω.

2.1 Free vibration analysis

2.1.1 Natural frequencies
In accordance with the recent work of Banerjee
[11], the frequency equation for the composite
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wing shown in Fig. 1 with cantilever end
conditions is given by Equation (1) below,
provided that appropriate substitutions are made
from Equations (2)-(16), and that each of the
parameters is evaluated in the given order of
sequence by making use of the beam properties
EI, GJ, K, m, Iα , L, and a chosen value of the
trial frequency ω. It should be noted that the left
hand side of the frequency equation given by
Equation (1) is primarily a function of the
frequency ω, the zeros of which gives the
natural frequencies ωn in free vibration.

f(ω) =λ1Cβ Cγ Chα +λ2Cβ Sγ Shα +λ3Cγ Sβ Shα +

λ4Sβ Sγ Chα +ξ1Cβ +ξ2Cγ +ξ3Chα=0 (1)

where

 a=Iαω2L2/GJ, b=mω2L4/EI; k=K/EI     (2)

  c =1 –K2 /(EI GJ) (3)

  a =  a/c, b =  b/c (4)

  q=b+a2/3 (5)

  φ=cos-1[(27abc-9ab-2a3)/{2(a2+3b)3/2}] (6)

  α=[2(q/3)1/2cos(φ/3)−a/3]1/2 ,

  β=[2(q/3)1/2cos{(π-φ)/3)}+a/3]1/2  ,

  γ=[2(q/3)1/2cos{(π+φ)/3)}+a/3]1/2 (7)

α = b/α 2, β = b/β 2, γ= b/γ 2  (8)

  kα =( b−α4)/ kα 3 ,  kβ =( b−β4)/ kβ 3 ,

  kγ=( b−γ4)/ kγ3 (9)

  gα =( b−cα4)/ kα 2  , gβ =( b – cβ 4)/ kβ2,

  gγ =( b – cγ 4) / kγ 2 (10)

 Chα=coshα ; Cβ=cosβ ; Cγ=cosγ (11)

 Shα=sinhα ; Sβ=sinβ ; Sγ=sinγ (12)

 µ1 =αkβ −βkα , µ2=βkγ −γkβ ,

 µ3 =γkα−αkγ (13)

 ν1=α gβ−β gα, ν2 =β gγ −γgβ ,

 ν3=γgα −α gγ (14)

 λ1=−2ααµ 2ν2−αγµ2ν1−αγµ 1ν2−2γγµ1ν1,

 λ2 =−ααµ 1ν2+γγµ2ν1 ,

 λ3= −ααµ 3ν2−αβµ 2ν2  − βγµ2ν1,

 λ4  = −αβµ 1ν2−βγµ1ν1 +γγµ3ν1 (15)

 ξ1=ααµ 2ν1+γγµ1ν2,

 ξ2 =ααµ 2ν3 −αβµ 2ν2−βγµ1ν2,

 ξ3 =αβµ 2ν1+βγµ1ν1−γγµ1ν3 (16)

It can be verified [11] that the value of f(ω) in
Equation (1) is zero when ω=0, which
corresponds to a composite wing at rest so that
there is no inertial loading on the wing. This
known value of f(0)=0 can be used to avoid any
numerical problem of overflow at zero
frequency when computing f(ω). For all other
(non-trivial) values of ω, the expression for f(ω)
given by Equation (1) can be used when
locating the natural frequencies by tracking
successively the changes of its sign.

2.1.2 Mode shapes
Once the natural frequencies ωn have been found
from Equation (1), the normal mode shapes for
the wing consisting of bending displacement (Hn)
and torsional rotation (Ψn) can be expressed as
[11]

Hn(ξ)=Ancoshαnξ+Bnsinhαnξ+Cncosβnξ+
Dnsinβnξ +Εncosγnξ+Fnsinγnξ                            (17)

and

Ψn(ξ)=Pncoshαnξ+Qnsinhα n ξ+Rncosβ n ξ+
Snsinβ n ξ+Tncosγ n ξ+Unsinγ n ξ                        (18)

where ξ=y/L is the non-dimensional spanwise
distance from the wing root, and αn , βn and γn

are calculated from Equations (7) with the help
of Equations (2)-(6) by substituting ωn in place of
ω.

It has been shown earlier by Banerjee [11]
that the coefficients An, Bn, Cn, Dn, En, Fn are
related to Pn, Qn, Rn, Sn, Tn, Un as follows

Pn=(kα/L)Bn ; Qn=(kα/L)An; Rn=(kβ/L)Dn;
Sn=-(kβ/L)Cn; Tn=(kγ/L)Fn; Un=-(kγ/L)En (19)

where kα, kβ and kγ have already been defined in
Equations (9) but must be calculated using αn , βn
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and γn.
Also for cantilever end conditions of the

wing, the ratios of the mode shape coefficients
in terms of An are given by (see Ref. 11)

Bn/An=(−ββµ2ζ3Sβ+γγµ2ζ1Sγ-ααµ 2ζ2Shα)/χ,

Cn/An=(αβδ 3ChαCβ+αγτ 2ChαCγ-βµ 3ε3Sβ+

           αγτ 1ShαSγ+βγδ3CβCγ+τ3)/χ

Dn/An=(αβδ 3ChαSβ+γγµ3ζ1Sγ-ααµ 3ζ2Shα+

            βγδ3SβCγ)/χ

En/An={−αβ (δ3+αµ2)ChαCβ+γγµ1ζ1Cγ-

         αβδ 1ShαSβ-γµ1ε1Sγ-αα 2µ2-β 2δ3}/χ

Fn/An=(−ββµ1ζ3Sβ+γγµ1ζ1Sγ-ααµ 1ζ2Shα)/χ

                                                                         (20)
where µ1, µ2 and µ3 have already defined in
Equations (13), and the following additional
variables are introduced.
ζ1=α nChα+β nCβ, ζ2=β nCβ-γnCγ,

ζ3=γnCγ+α nChα                                             (21)

ε1=αnα nShα-βnβ nSβ, ε2=βnβ nSβ-γnγnSγ,

ε3=γnγnSγ-αnα nShα                                         (22)

δ1=αnµ3+βnµ2, δ2=βnµ1-γnµ3, δ3=γnµ1+αnµ2    (23)

τ1=αnµ1+γnµ2,  τ2=αnµ2−γnµ1 

τ3=αnα n
2µ2-γnγn

2µ1                                       (24)

χ=αnα nµ2ζ2Chα+α nµ2ε2Shα-βγ (δ3+γµ1)CβCγ-

     βγδ2SβSγ+β 2δ3+γγ 2µ1                         (25)

Note that Chα, Shα, Cβ, Sβ, Cγ, Sγ and all other
parameters appearing in Equations (19)-(25)
above must be calculated at the natural frequency
ωn.

The coefficients Pn, Qn, Rn, Sn, Tn, Un

which give the torsional displacements in the n-
th mode (see Equation (18)) may also be

expressed in terms of An using Equations (19)
and (20). Thus the mode shape is completely
defined in terms of An, which can be arbitrarily
chosen (e.g. An=1).

2.2 Generalised Mass and Generalised
Stiffness
The generalised mass Mn and generalised
stiffness Kn in the n-th mode of the cantilever
wing can be derived using the procedure put
forward by Bishop and Price [13]. These are
respectively given by

Mn= ∫
1

0

(mHn
2 +IαΨn

2)dξ                                 (26)

and

Κn= ∫
1

0

[(EI(Hn
//)2+GJ(Ψ/)2]dξ                        (27)

where Hn and Ψn are given by Equations (17) and
(18) and the terms EI, GJ, m, and Iα  have been
defined before.

However, a simpler means of calculating
the generalised stiffness, Kn, would be to use the
following equation

Kn=ωn
2Mn                                                       (28)

where ωn, the n-th natural frequency has already
been calculated from the frequency equation (see
Equation (1)) prior to the calculation of mode
shapes Hn and Ψn.
Using Equations (16) and (17), the integrals

∫
1

0

Hn
2 dξ, ∫

1

0

Ψn
2 dξ , ∫

1

0

HnΨndξ  and

∫
1

0

HnΨmdξ are evaluated in explicit analytical

form by performing symbolic computation with
REDUCE [12]. The explicit expressions for these
integrals in their most general forms are given in
the Appendix.

2.3 Generalised Aerodynamic Coefficients
The generalised aerodynamic coefficients are
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derived by application of the principle of virtual
work. The aerodynamic strip theory based on
Theodorsen expressions for unsteady lift and
pitching moment [6] and the normal modes
obtained from the analytical formulae of free
vibration theory explained above, are used when
applying the principle of virtual work. Thus if the
bending displacement and torsional rotation in
the i-th mode are Hi(ξ) and Ψi(ξ) and U, b, ρ, k,
C(k) and ah are in the usual notation: the
airspeed, semi-chord, density of air, reduced
frequency parameter (defined as k=ωb/U),
Theodorsen function and elastic axis location
from mid-chord respectively [6], the elements of
the generalised aerodynamic matrix [QA] are
given by

QAij= ∫
1

0

(A11HiHj+A12HjΨi

+A21HiΨj+A22ΨiΨj)dξ                               (29)

where

A11=-πρU2{-k2+2C(k)ik}

A12=πρU2b[(ahk
2+ik)+2C(k){1+ik(0.5-ah)}]

A21=-πρU2b{2C(k)ik(0.5+ah)-k
2ah}

and

A22=πρU2b2[2(0.5+ah)C(k){1+ik(0.5-ah)}+

k2/8 + k2ah
2+(ah-0.5)ik]                                     (30)

Note that the signs of A11 and A21 have
been reversed because, unlike the sign
convention used in Ref. 6, H is considered to be
positive upward in this paper.

The elements of the generalised
aerodynamic matrix [QA] are complex with
each element having a real part and an
imaginary part. This is as a consequence of the
terms A11, A12, …etc in Equation (29) being
complex (see Equations (30)). By contrast, the
generalised mass and stiffness terms (see
Equations (26)-(28)) are both real. Analytical
expressions for each of the integrals in Equation
(29) are obtained by use of REDUCE [12] (see

Appendix for the most general cases of these
integrals). The real and imaginary parts of the
complex terms A11, A12, A21 and A22  in
Equation (29) are dependent on the Theodorsen
function C(k), see Equations (30), which can be
expressed in the following form

C(k) = F + iG                                                   (31)

where F and G are real functions of the variable k
given by [6]

F={J1(J1+Y0)+Y1(Y1-J0)}/{(J1+Y0)
2+(Y1–J0)

2}

G=-(Y1Y0+J1J0)/{(J1+Y0)
2+(Y1–J0)

2}              (32)

while J0 , J1 , Y0 , Y1 are standard Bessel
functions of first and second kinds, of argument
k.

Thus with the help of Equation (31) the
real and imaginary parts of the terms A11, A12,
A21 and A22 in Equations (30) can be expressed
as

A11R=πρU2(k2+2kG) ;  A11I=-2πρU2kF

A12R=πρU2b{ahk
2+2F-2kG(0.5-ah)},

A12I=πρU2b{k+2G+2kF(0.5-ah)},

A21R=πρU2b{kG(1+2ah)+k2ah} ,

A21I=-πρU2bkF(1+2ah),

A22R=πρU2b2[2(0.5+ah){F-kG(0.5-ah)}+

k2/8+k2ah
2],

and

A22I=πρU2b2[2(0.5+ah){G+kF(0.5-ah}-

                  k(0.5-ah)]                                        (33)

where the suffices R and I stand for the real and
imaginary parts of the coefficients respectively.

2.4 Formulation of the Flutter Problem
Using the standard classical approach, the flutter
determinant is formed from the flutter matrix,
and this is achieved by summing algebraically
the generalised mass, generalised stiffness and
the generalised aerodynamic matrices. Thus for a
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system without structural damping the flutter
matrix [QF] for n number of modes can be
expressed in the form given by Equation (34)
below. (Structural damping has most often a
small effect on the oscillatory motion and is not
included here.)

[QF]{q}=[ −ω2[M]+[K]-[QA] ]{q}      (34)

where [QA] is the complex n×n generalised
aerodynamic matrix defined in Equation (29),
[M] and [K] are n×n diagonal matrices of
generalised mass and generalised stiffness
respectively (with the i-th diagonal representing
the generalised mass Mi and generalised stiffness
Ki), {q} is the column vector of n generalised co-
ordinates and ω is the circular frequency in rad/s.

For flutter to occur, the determinant of the
complex flutter matrix must be zero so that from
Equation (34)

|QF| = | -ω2[M]+[K]-[QA] |= 0

The solution of the flutter determinant can
now be sought by expanding the above
determinant in algebraic form because each of
the terms of [M], [K] and  [QA], and hence each
of the elements of [QF], are now available in
analytical form.

3.0 RESULTS AND DISCUSSION

An illustrative example is chosen which
examines the cantilever carbon-epoxy composite
wing of Ref. 3. The wing is assumed to be
unswept and is modelled by using a total number
of 14 plies which are all orientated along a
common direction θ, so that the stacking
sequence is [θ]14. The first three natural
frequencies and mode shapes were established by
using the explicit frequency equation (1) and the
mode shape expressions given by equations (17)
and (18). These are shown in Fig.2. The first
mode shows a strong coupling between the
bending displacement and torsional rotation. The
second mode is dominated by torsional rotation

with a small amount of bending displacement
whereas the third one is more or less a pure
torsional mode. The frequencies and modes
shown in Fig. 2 agree completely with those
obtained from the dynamic stiffness approach of
Ref. [3]. These three modes were used (and
subsequently found to be adequate) to compute
the flutter speed and flutter frequency of the
wing. Representative results are shown in Table
1 for three different ply angles. These results
agreed completely with the ones obtained
numerically by using an established program
called CALFUN [3-5] which uses exact dynamic
stiffness theory for composite wings.

4.0 CONCLUSIONS

An analytical method of flutter analysis of a
uniform cantilever composite wing has been
presented by deriving in explicit form each term
needed for the flutter analysis (which-hitherto-
has had to be treated numerically). This involved
extensive symbolic computation to finally obtain
expressions for generalised mass, generalised
stiffness and generalised unsteady aerodynamic
terms. The process was assisted greatly by the
symbolic (algebraic) computation package
REDUCE. The correctness and accuracy of the
method is validated by numerical results obtained
from an existing procedure. The proposed
method is free from ill-conditioning problems
usually associated with numerical matrix
manipulation, and hence it can be used to solve
bench-mark problems as an aid to validate
approximate methods. The method offers
prospects for aeroelastic developments in an
optimisation environment.
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APPENDIX

Explicit integral expressions using REDUCE

The integrals used in the theoretical derivations of
generalised mass, stiffness and aerodynamic terms can
be classified under three general forms which are

∫
1

0

Hn
2(ξ)dξ                                                     (A1)

∫
1

0

 Hn(ξ) Ψn(ξ)dξ                                           (A2)

and

∫
1

0

 Hn(ξ) Ψm(ξ)dξ                                          (A3)

where Hn(ξ) and Ψm(ξ) are respectively bending and
torsional modes corresponding to the n-th and m-th
natural frequencies as given below.

Hn(ξ)=Ancoshαnξ+Bnsinhαnξ+
Cncosβnξ+Dnsinβn+Encosγnξ+Fnsinγnξ             (A4)

Ψm(ξ)=Pmcoshαmξ+Qmsinhαmξ+
Rmcosβmξ+Smsinβm+Tmcosγmξ+Umsinγmξ       (A5)

Note that Hm(ξ) and Ψn(ξ) can be written by replacing
the suffices n and m in Equations (A4) and (A5) by m
and n respectively.

The analytical expressions for the above three integrals
were obtained using REDUCE and manipulating the
algebra very considerably.

The integral of Equation (A1) in explicit form is given
by

∫
1

0

Hn
2(ξ)dξ = µn+νn+ρn+τn+σn+λn+εn+ζn+θn

                                                                         (A6)
where

µn=(An
2-Bn

2+Cn
2+Dn

2+En
2+Fn

2)/2                    (A7)

νn={βnγn(An
2+Bn

2)sinh2αn +αnγn(Cn
2-Dn

2)sin2βn+

αnβn (En
2-Fn

2)sin2γn}/(4αnβnγn)                       (A8)

ρn=-2Cn(ηγnγncosβn-ξγnβnsinβn+Fnγn)/(βn
2-γn

2)
                                                                         (A9)

τn= 2Cn(ηαnαncosβn+ξαnβnsinβn-Bnαn)/(αn
2+βn

2)
                                                                       (A10)

σn= 2An(ηγnγncoshαn+ξγnαnsinhαn+Fnγn)/(αn
2+γn

2)
                                                                       (A11)

λn=-2Dn(ηγnγnsinβn+ξγnβncosβn-Enβn)/(βn
2-γn

2)
                                                                       (A12)
εn= 2Bn(ηγnγnsinhαn+ξγnαncoshαn-Enαn)/(αn

2+γn
2)

                                                                       (A13)

ζn= 2Dn(ηαnαnsinβn-ξαnβncosβn+Anβn)/(αn
2+βn

2)
                                                                       (A14)
θn=(AnBnβnγnsinh2αn+CnDnαnγnsin2βn+
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EnFnαnβnsin
2γn)/(αnβnγn)                                (A15)

with

ηαn=Ansinhαn+Bncoshαn , ηγn=Ensinγn-Fncosγn

                                                                       (A16)

ξαn=Ancoshαn+Bnsinhαn , ξγn=Encosγn+Fnsinγn

                                                                       (A17)

The integral (A2) in explicit form is given by

∫
1

0

Hn(ξ) Ψn(ξ)dξ = µ n+ν n+ρ n+τ n+

σ n+λ n+ε n+ζ n+θ n                                    (A18)
where

µ n={kα(An
2-Bn

2)+kβ(Cn
2+Dn

2)+kγ(En
2+Fn

2)}/2
                                                                       (A19)
ν n={βnγnkα(An

2+Bn
2)sinh2αn+αnγnkβ(Cn

2-
Dn

2)sin2βn+αnβnkγ(En
2-Fn

2)sin2γn}/(4αnβnγn)
                                                                       (A20)

ρ n=-Cn(kβ+kγ)(ηγnγncosβn-ξγnβnsinβn+
                               Fnγn)/(βn

2-γn
2)                  (A21)

τ n=Cn(kα+kβ)(ηαnαncosβn+ξαnβnsinβn-
                                Bnαn)/(αn

2+βn
2)              (A22)

σ n=An(kα+kγ)(ηγnγncoshαn+ξγnαnsinhαn+
                                Fnγn)/ (αn

2+γn
2)               (A23)

λ n=-Dn(kβ+kγ)(ηγnγnsinβn+ξγnβncosβn-
                                  Enβn)/(βn

2-γn
2)              (A24)

ε n=Bn(kα+kγ)(ηγnγnsinhαn+ξγnαncoshαn-
                                   Enαn)/(αn

2+γn
2)            (A25)

ζ n=Dn(kα+kβ)(ηαnαnsinβn-ξαnβncosβn+
                                  Anβn)/(αn

2+βn
2)            (A26)

θ n=(AnBnkαβnγnsinh2αn+CnDnkβαnγnsin2βn+
              EnFnkγαnβnsin2γn)/(αnβnγn)               (A27)

with ηαn, ηγn, ξαn and ξγn already defined in
Equations (A6)-(A7)

The integral of Equation (A3) in explicit form is given
as

∫
1

0

Hn(ξ)Ψm(ξ)=µmncosβm+νmnsinβm+ρmncosγm+

τmnsinγm+σmncoshαm+λmnsinhαm+εmn+ζmn+θmn

                                                                       (A28)
where
µmn=-(ηβnβnRm+ξβnβmSm)/ϕmn-
(ηγnγnRm+ξγnβmSm)/κmn+(ηαnαnRm-ξαnβmSm)/ψnm

                                                                       (A29)

νmn==-(ηβnβnSm-ξβnβmRm)/ϕmn-(ηγnγnSm-
ξγnβmRm)/κmn+(ηαnαnSm+ξαnβmRm)/ψnm

                                                                       (A30)

 ρmn==(ηβnβnTm+ξβnγmUm)/κnm-(ηγnγnTm+ξγnγmUm)/∆mn+
(ηαnαnTm-ξαnγmUm)/Ωnm                                (A31)

τmn==(ηβnβnUm-ξβnγmTm)/κnm-(ηγnγnUm-ξγnγmTm)/∆mn+
(ηαnαnUm+ξαnγmTm)/Ωnm                                (A32)

σmn== (ηβnβnPm+ξβnαmQm)/ψmn+
 (ηγnγnPm+ξγnαmQm)/Ωmn-(ηαnαnPm-ξαnαmQm)/δmn

                                                                         (A33)

λmn=(ηβnβnQm+ξβnαmPm)/ψmn+
(ηγnγnQm+ξγnαmPm)/Ωmn-(ηαnαnQm-ξαnαmPm)/δmn

                                                                          (A34)

εmn=-(βnDnRm-βmCnSm)/φmn-(γnFnRm-βmEnSm)/κmn-
(αnBnRm-βmAnSm)/ψnm                                  (A35)

ζmn=(βnDnTm-γmCnUm)/κnm-(γnFnTm-γmEnUm)/∆mn-
(αnBnTm-γmAnUm)/Ωnm  (A36)
θmn= (βnDnPm-αmCnQm)/ψmn+
(γnFnPm-αmEnQm)/Ωmn+(αnBnPm-αmAnQm)/δmn

                                                                       (A37)

with ηαn, ηγn, ξαn and ξγn already defined in Equations
(A6)-(A7) and

ηβn=Cnsinβn-Dncosβn, ξβn=Cncosβn+Dnsinβn (A38)

and

ψmn=αm
2+βn

2, κmn
2=βm

2-γn
2, Ωmn=αm

2+γn
2     (A39)

ψnm=αn
2+βm

2, κnm
2=βn

2-γm
2, Ωnm=αn

2+γm
2     (A40)

ϕmn=βm
2-βn

2, ∆mn=γm
2-γn

2, δmn=αm
2-αn

2         (A41)

The above integrals have been checked numerically up
to machine accuracy using Simpson’s rule with five
hundred equally spaced ordinates.
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Table 1. Flutter speed and flutter frequency of a
laminated composite wing.

Ply angle (θ)
(deg)

Flutter
speed
(m/s)

Flutter
frequency

(rad/s)
-5 35.0 138.0
-8 38.8 150.0
-25 59.5 189.4

                                                     Z

     h

                                                                      ϕϕϕϕ
                                                                              θθθθ

    X
                               Y
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Fig. 1. Coordinate system and notation for a
composite wing idealised as a beam element.
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Fig. 2 Natural frequencies and mode
shapes of a composite wing with [-80]14

layup


