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ABSTRACT

A methodology for including maximum flutter
speed requirement in the preliminary structural
wing design is developed. The problem of
minimizing structural weight while satisfying
static strength, dynamic characteristic and
aeroelastic behavioural constraints is stated in
a non-linear mathematical form , with beam
width and thickness taken as design variables ,
and solved using gradient-based optimisation
technique. Dynamic characteristics of the
structure are calculated using finite element
model. Laplace form of the unsteady
aerodynamics forces are obtained from Fourier
transform of unit pulse aerodynamics response.
The frequency-domain p-k method is applied for
the calculation of aeroelastic stability
boundaries. Based upon constraint values and
the required gradients, a first order Taylor
series approximation is used to develop an
approximation linear programming for weight
minimization. A modified feasible direction
method is, then, applied iteratively to solve the
optimisation problem. Validation of the method
are carried out in the design of cantilever
straight wing structure with 6% hyperbolic
airfoil. It will be shown that the optimised wing
design can significantly differ from those
obtained without optimisation process.

INTRODUCTION

With advancing design process in which input
data for all calculations become more precise
and easy to generated, an interdisciplinary

design concept, that taking into account all
important interdisciplinary mutual effects
including aeroelastic stability boundary, must be
initiated to provide a basis for design decisions
on time. This design concept should have
capability in providing the effects of change on
each of the design parameter on the behaviour
of the structure (stress level, damping, natural
frequency, aeroelastic boundary etc.).
Furthermore this design concept should also can
be used to find optimal design solution by
means of mathematical optimisation tools. One
such methodology that based upon this
interdisciplinary design concept was proposed
by Sobieszczanski – Sobieski1 in the late eighty
which explicitly includes the important
aeroelastic stability constraints, i.e.: maximum
divergence and flutter speed. Since then, there
were significant number of research works have
been done in the field of optimal design of
aircraft structures subject to aeroelastic stability
constraints, the so called aeroelastic tailoring.
One of important early contribution into this
field were made by Haftka and Yates2 in which
an optimisation algorithm was developed for the
used in repetitive aeroelastic calculation during
the structural design process. The used of
advanced composite / smart materials have
further improved the possibilities in tailoring the
dynamic response characteristics of the structure
under unsteady aerodynamic loads. And the
availability of powerful computer opened the
possibilities for lengthy optimisation
calculation. Because aeroelastic tailoring in the
design process of an aircraft structure is true
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multidisciplinary analysis and optimisation,
design results cannot be achieved independently
of the requirements of certain other disciplines.

With regard to the structure modelling, it is
important to understand that there is a risk of
multiplication in modelling error in each
discipline when different models are combined
during the optimisation process. Aeroelastic
optimisation includes evaluation of non-linear
aeroelastic stability constraints, which consist of
the solution of eigenvalues of non-linear
unsymmetrical and complex matrices.
Evaluation of such non-linear and non-
differentiable constraints lead to discontinuities
in divergence or flutter speed design parameters.

The purpose of present paper is to
demonstrate the accuracy of an aeroelastic
optimisation procedure, which was developed
based upon a simple modified feasible direction
method (MFD), used in the design of flexible
wing structure which is linear but the external
aerodynamic loads are non-linear and are
function of structure response, i.e. : transonic
unsteady aerodynamics. The unsteady
aerodynamics theories used for the aeroelastic
optimisation in the past were linear such as
doublet lattice and Theodorsen’s strip theory for
unsteady subsonic flows and Mach box theory
for unsteady supersonic flows. Nonlinear
dependency of the unsteady transonic
aerodynamic forces on structural response
makes it difficult for the integration of
aerodynamic solution into the solution of the
Aeroelastik equation of motion and stability.
Few works specifically associated with wing
structure design subject to transonic aeroelastic
constraints are available at present time3,4 . In
this works, the optimal design of wing structure
were obtained using non-linear unsteady
transonic aerodynamic theory by solving
transonic small disturbance (TSD) flow
equations. The unsteady aerodynamic forces
were calculated from the unit pulse
aerodynamic response in time domain5. The
structural parameter considered are those found
in the aeroelastic equation of motion: mass
ratio, static unbalance, first bending and first
torsional natural frequencies and free stream
Mach number. Finite difference method is

applied in the calculation of design sensitivities.
The accuracy of this optimisation methodology
are validated using the results obtained using
other methods and experimental data.

GENERAL APPROACH

The problem of minimizing wing structural
weight while satisfying static strength and
aeroelastic stability constraint of the structure is
stated in non-linear mathematical programming
form and solved using linearized gradient –
based optimisation technique. Wing skin, spars
and the other wing structural components are
assumed to be built-up and modelled as straight
stiffness beam, positioned along the elastic axis
of the wing, with linear variation of thickness
and width in the span wise directions and
concentrated masses at the beam center of mass.
The dynamic characteristics of the wing are
calculated using finite element modelling in
which the stiffness beam is modelled using
beam elements with three degree-of-freedom at
each of its nodal point. The associated design
variables consist of beam width and thickness.

It is assumed that the amplitude of bending
and torsional deflection is small that the
aerodynamic response of the wing geometry is
considered linear with the change in the wing
angle of attack. This assumption implies that the
pade-approximation method can be used for the
generalized unsteady aerodynamic force
coefficients curve fitting in Laplace domain.
The generalized unsteady aerodynamics forces
coefficients in Laplace domain themselves are
calculated from the Fourier transform of the
time – domain aerodynamic response of the
wing geometry due to a unit pulse displacement.
Unsteady transonic flow fields are represented
using transonic small disturbance (TSD)
equations. This method is considered more
accurate compared with the indicial response
method where a jump in the indicial
displacement, even with moderately small
amplitude, can generate divergence
aerodynamic response. Meanwhile, the
continuously unit pulse displacement can avoid
inaccuracy in the aerodynamic response.
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Aeroelastic stability boundary of the
structure calculated using the p-k method and a
straight forward finite difference method is used
for the approximation of flutter constraints
sensitivities, which represented by the rate of
change of the damping coefficients. The
optimisation problem itself is solved iteratively
by linear modified feasible direction method.

MINIMUM WEIGHT OPTIMIZATION

The problem of minimizing the optimum
structure total weight can be represented in the
form of non-linear mathematical programming
as follows :

Minimize the objective function   :   F ( x )

subject to the constraint conditions of    :

gj ( x ) ≤ 0 j = 1, 2, ….., ng

hk ( x ) = 0 k = 1, 2, …. , nh

xl
i ≤ xi ≤ xu

i i = 1 , 2, …. , n [ 1 ]

where  F ( x ) is the total weight of the structure,
and x is the vector of design variables which
contain all structural physical properties which
are changing during the optimization process ,
such as dimension of the cross section , skin
thickness and the concentrated masses. The gj

and hk functions contain all of the in-equality
and equality constraint, respectively, such as the
allowable structural component stresses and
strains and aeroelastic damping or rate of
change of the aeroelastic damping. In addition
to those two constraints, there is a side
constraint xi which specify the upper bounds
values, xu

i , and the lower bounds values, xl
i , of

each of the design variables.
For the present optimization problem of

wing structural design with aeroelastic
constraint using a flexible beam model divided
into ( numel ) - elements , the objective function
is the total structural weight of the wing and is
represented by :
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where W ( x ) is the total design weight , ρmi , Li

and  Ai  are the mass density , length and cross
section area of the i – th beam elements ,
respectively. Two design variables are the
flexible beam width, x1, and the beam thickness,
x2. Zero subscript or superscript represents
values of the variables at the wing root.

AEROELASTIC CONSTRAINT

Since variables that come in the aeroelastic
constraints function depend on the solution
method used in the flutter analysis of the
structure , before the aeroelastic constraint can
be defined , the method used in flutter analysis
of the wing structure have to be decided first.
Considering all the available flutter solution
method, the p-k iterative method which is based
upon the eigenvalues solution of the stability
equation, with flow free stream velocity as the
input and motion damping coefficients and
frequencies as output , is the most ideal to be
used in this optimization problem. Using the p-k
method for the flutter analysis, the fundamental
wing structure equation of motion can be
expressed as6

{ } 0u])QVK(

p)QVc(pM[

h
R
hh

2
2
1

hh

I
hhk4

12
hh

=ρ−+

ρ−+
[ 3 ]

where  Mhh  and Khh  are the generalized mass
and stiffness of the structure , respectively. The
real and imaginary part of the generalized
aerodynamic forces are denoted , respectively ,
by R

hhQ  and I
hhQ  which are function of flow

free stream velocity , V , and motion reduced
frequency )V/b(k 2ω= . Meanwhile { uh }
represents the structural generalized coordinate
which contains nodal displacements.
Eigenvalues of the system is given by complex
variable p which is defined as

)i(p +γω= [ 4 ]

where ω is the motion frequency ( Hz ) and γ is
the transient damping coefficient.
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The unsteady generalized aerodynamic
forces coefficients ]Q[ hh  in the above equation
is defined as

        [ ] [ ] [ ]φφ= )ik(AFC]Q[ T
hh [ 5 ]

in which [ φ }  and  [ AFC ( ik ) ] represents ,
respectively , the structure natural mode shape
and matrix of the aerodynamic response
coefficient. This aerodynamic response
coefficient are calculated by solving , in time
domain , the transonic small disturbance flow
equations around the wing structure having a
unit pulse displacement. Then, by making used
of Fourier transform along with pade
approximation function, the aerodynamic
response coefficients are calculated from this
transformation and can be written in term of p –
variable ( Laplace variable ) as7

∑
= −β+

+++=
6

3m 2m

m2
21oij )p(

pQ
pQpQQ)p(Q

[ 6 ]

where βm-2 represents phase-lag parameter. The
approximating function coefficients Qo , Q1 , Q2

, …  are evaluated by least square curve fitting
using complex values of Qij at discrete number
of k or p - values. Before solution of the
aeroelastic stability equation, Eq. [ 3 ] , as an
eigenvalue problem can be carried out , this
equation should be written in a state – space
form as :

[ ] 0}U{IpA h =− [ 7 ]

where I is a unit matrix , A is a real matrix
defined by matrix equation
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and the vector of generalized coordinate { Uh }
contains not only nodal point displacement but
also velocity. Because A is not a symmetric
matrix, conventional numerical technique can

not be applied in the calculation of the
eigenvalues and eigen modes of this equation.

Dynamic characteristics of the wing
structure required for the analysis, the structural
natural frequency , ωi , and mode shape , φ , are
obtained using a finite element method. The
stiffness beam is divided into several beam
element with three degree-of-freedom ( d.o.f ) at
each nodal point , which are : one transverse
displacement and two torsional / rotation d.o.f .

The flutter constraint is defined by
satisfying requirements on modal damping at a
series of velocities, rather than defined straight
on the actual flutter speed. Aeroelastic
constraints , therefore , can be expressed as8

jreqij γ≤γ

0
GFACT

)x(g
jreqij

ij ≤
γ−γ

= [ 9 ]

in which γij  is the calculated damping
coefficient for the i-th mode at the j-th velocity ,
and γjreq is the required damping level at the j-th
velocity. Both of those constraints have to be
satisfied for all mode shape ( i ) and velocities  (
j ) used in the analysis. The general
normalization factor ( GFACT ) is used to
normalized the constraint values ( which can not
be normalized with respect to γjreq because this
variable could take a value of zero ). As
described in ref. 7, the GFACT value used for
all calculation in this study is 0.1 .

Beside the aeroelastic constraints described
above , two side – constraints are also applied in
this optimisation process to take into account
the maximum and minimum values the design
variables x1 and x2 ( i.e. the width and thickness
of the elastic beam ) can take on.

SENSITIVITY OF AEROELASTIC
CONSTRAINT

Derivative of the constraint function, gj (xi ) ,
with respect to design variable , xi , is defined
from Equation [ 9 ] as
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Since this sensitivity derivative is
represented in term of γij which is obtained from
the non-linear eigenvalue solution of the
stability equation, Eq. [ 7 ] , solution of the
constraint sensitivity as given in the above
equation will be efficiently obtained using
numerical approximation. In this study ,
calculation of the right hand-side of Eq. [ 10 ]
are carried out using forward difference
formulae. The discrepancy of this approach is
that , as in any other finite difference
approximation , it has a computational error
which may be large that the approximation for
the sensitivity become inaccurate. In order avoid
this problem , each step interval have to be
carefully defined.

OPTIMIZATION PROCEDURE

After the engineering and sensitivity analysis
are completed, the structure is then optimized
by solving the non-linear mathematical
programming problem stated in Eq. [ 1 ]. In this
study, the method of modified feasible direction
(MFD) is applied to solve the optimisation
problem8. The main task in this method is to
find an accurate usable-feasible search direction,
Sq , which will defined the direction with
maximum gradient in the objectives function , F
( xi ) but still lie in the feasible domain ( no
constraints are violated ). Once this search
direction defined, new vector for design
variables is composed as

xq  =  xq-1  +  α Sq    ,  q = iteration number [ 11 ]

where α is the scalar displacement parameter.
Values of this scalar parameter are estimated at
the beginning of each iteration based upon the
gradient of the objective function and
constraints. Linear Taylor series approximation
is applied in the calculation of the required
values of the objective function and also
constraints at every iteration step
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The procedure to perform the optimisation
process are as follows:

a. Select a free stream Mach number and
the corresponding velocity , altitude and
wing configuration.

b. Define the initial values for design
variables and initial dynamic
characteristics of the wing structure.

c. Calculate static aerodynamic pressure
distribution ( by solving the steady TSD
equation ) and calculate static aeroelastic
stability of the structure

d. Based upon the static aeroelastic
deformation of the structure , calculate
the unit  pulse response of the wing
structure     ( solve the unsteady TSD
flow equations ).

e. Once the unit pulse response is
calculated , the generalized aerodynamic
forces in Laplace domain can be
determined and the flutter damping
constraint and sensitivities evaluated.

f. With the results from step e , an
optimisation process can be started ,
yielding a new set of design variables.
Calculate a new dynamic characteristic
of the structure.

g. With the new design variables, repeat
step c to f until a converged optimum
results is obtained. At the optimum, the
normalized values of the constraint must
not larger than the defined error of
EMIN and the objective function can not
have moved by more than FMIN % from
the previous iteration.

EXAMPLE PROBLEM

To demonstrate the preceding optimization
derivation , a straight wing model is considered
at various flutter speed target and flight
conditions. The wing has a rectangular,
unswept, untapered planform that uses a
stiffness beam representation for the structure’s
flexibility and concentrated masses for the
distributed mass representation. This same
rectangular wing was selected to demonstrated
transonic flutter prediction in ref. 3. The wing
has a moderate aspect ratio of 3.34 with a 6%
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hiperbolic airfoil, taper ratio of 0.7 and a
tapered cantilever stiffness beam that
representing the flexibility of the wing. As
shown in Figure 1, the elastic axis of the
stiffness beam is placed at 33% chord length
from the leading edge, meanwhile its beam
mass is position at 43% chord length from the
leading edge. Elastic beam is made of
aluminium with E = 1.5 E+09 lb/ft2 and G =
5.5E+08 lb/ft2. The other structure properties
are given in Table 1 below.

Parameter Values

Chord length 72.0 in

Span length 240.0 in

EI 23.65E+06 lb. - ft2

GJ 2.39E+06 lb. – ft2

Mass / span length 0.746  slug / ft

Sα 0.447  slug – ft / ft

Iα 1.943  slug – ft2 / ft

Table 1. Structural properties of tapered wing

For the determination of structural dynamic
characteristics the stiffness beam is divided into
20 beam-elements of equal length with the same
number of discrete mass points. Initial values of
the design variables are evaluate based upon
static load requirements and taken to be  x1 , the
stiffness beam width equal to 0.2950 ft and the
beam thickness x2 equal to 0.9221 ft. With this
beam initial dimension, the first ten natural
frequencies of the structure are in Table 2
below, comparison are made with respect to the
uniform model. lt can be seen that , in general ,
the prediction of the bending frequencies using
uniform structural model are more accurate
compared to the torsional frequencies.

For aeroelastic analysis it is assumed that
the stiffness beam gives no contribution to the
6% hyperbolic airfoil aerodynamics. A cubical
spline is applied to accomplished transformation
of structural mesh into the aerodynamic mesh
required for the solution of TSD flow equation.
The aerodynamic response at certain free stream

Mach number is obtained using mesh system
consist of 100 x 23 x 40 mesh points.

Aeroelastic analysis of the initial structure,
carried out using p-k method, shows that the
finite element model gives the highest flutter
speed for the structure at almost the same flutter
frequency, as shown in Table 3. It was shown in
the damping versus velocity curve that the
initial wing structure undergo a mild flutter in
bending mode.

   Natural Frequency
( Hz )No Modes

Uniform Tapered

% Error

1
1st

bending 7.872 8.877 12.8

2
1st

torsion 12.995 14.667 12.9

3
2nd

torsion 38.989 40.199 3.1

4
2nd

bending 49.038 51.686 5.4

5
3rd

torsion 64.973 66.713 2.7

6
4th

torsion 90.962 93.775 3.1

7
5th

torsion 116.951 121.480 3.9

8
3rd

bending 138.051 141.650 2.6

9
6th

torsion 142.940 149.970 4.9

10
7th

torsion 168.929 179.400 6.2

Table 2. The first ten natural frequency
of tapered wing structure

Values
Flutter

parameter Exact Assumed
mode

F E M

UF ( ft/sec ) 576.53 564.785 600.00

fF  ( Hz ) 10.54 11.73 11.04

kF 0.344 0.358 0.347

Table 3. Flutter properties of the tapered wing
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Wing structure optimization are studied for
several flutter speed target, which are : 720 ,
840 , 960 , 1080 and 1200 ft/sec , or an increase
of 20 , 40 , 60 , 80 and 100% in flutter speed
from the initial configuration , with maximum
error in the constraint and objective function are
0.0001 and 0.001 , respectively. The side
constraints of the problem are defined as

0.01 ft  <  x1  <  0.5 ft        and
0.70 ft  <  x2  <  1.0 ft

The change in design variables from its initial
values to the optimum values at various flutter
speed target is given in the following Table 4.

Initial Condition Optimum values
Uf

Obj.
func.

x1 x2
Obj.
func.

x1 x2

720 14.78 0.295 0.922 15.67 0.321 0.899

840 14.78 0.295 0.922 17.65 0.351 0.927

960 14.78 0.295 0.922 19.45 0.383 0.934

1080 14.78 0.295 0.922 21.52 0.416 0.952

1200 14.78 0.295 0.922 22.55 0.470 0.883

Table 4. Comparison between the initial and
optimum value of the design variables

The percentage of change in the design
variables from their initial values can be
summarised in the following Table 5 below.
This table shown that the change in x1 variables
to the optimum design is larger compared to the
change of x2 variable, which indicate that the
optimization problem is more sensitive to the x1

design variable. Compared to uniform wing
structure model, this change in design variables
are smaller.

% of change
Uf

x1 x2

720 8.81 -2.49

840 18.98 0.55

960 29.83 1.30

1080 41.02 3.25

1200 59.32 -4.23

Table 5. Change in values of the design
variables at several flutter speed target

Time history of the objective function and
the aeroelastic constraints during the iteration
process are given in Figure 2 and 3. Meanwhile,
comparison of the variation of damping values
with respect to the free stream velocity for
initial and optimal design variables is shown in
Figure 4. From Figure 2 it is shown that both the
objective function and aeroelastic constraints
converged in less than 5 iterations regardless of
the flutter speed target. The increase in flutter
speed from the initial to the optimal design can
be seen in Figure 4 , along with the fact that the
flutter mechanism does not change from the
initial design.

The change in structure natural frequency
at the optimal design compared to the initial
design values for various flutter speed target is
shown in the following Table 6. It is found that
the change in the torsional frequency is much
higher compared to the change in the bending
frequency. This can be explained as that the
change of the x1 design variable from its initial
value is higher compared with the change in the
x2 variable . This cause the change in torsional
stiffness of the beam will also higher compared
to the change in bending stiffness which. In
turn, it will cause a higher change in the
torsional frequency of the beam.

The variation of the change in the structure
total mass with respect to the percentage of
change in the flutter speed target is given in
Figure 5. Relation between these two
parameters is represented as an S curve.

Initial frequency
( Hz )   Optimal values

( Hz )
% of change

Uf

ωbendin ωtorsion ωbendin ωtorsion ωbendin ωtorsion

720 8.88 14.67 8.65 16.42 2.52 11.94

840 8.88 14.67 8.92 18.17 0.55 23.89

960 8.88 14.67 9.00 20.20 1.34 37.71

1080 8.88 14.67 9.16 22.18 3.23 51.22

1200 8.88 14.67 8.50 25.69 4.28 75.16

Table 6. Comparison between the initial and
optimum natural frequency at several
flutter speed target



 Harijono Djojodihardjo ,I  Wayan Tjatra ,  Ismojo Harjanto 

472.8

CONCLUDING REMARKS

A methodology for including flutter speed
requirements in the design of a wing structure is
developed and tested. The problem of
minimizing structural weight while satisfying
static behavioural constraints is stated as a non-
linear programming which is solved using a
modified feasible direction optimisation
procedure. The wing structure is modelled as a
stiffness beam with discrete masses using finite
element method and the associated design
variables consist of beam width and thickness.
The unsteady aerodynamic generalised forces
are calculated based upon TSD flow solution
using unit pulse response technique.

For the straight wing test case, the
optimisation problem converged in less than 10
iterations. A higher flutter speed constraint /
target will gives an optimum design with a
larger different between the first two bending
and torsion natural frequencies and a larger total
mass.
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