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Abstract

Consideration is given to the challenging
problem of accordance the theoretical and
experimental data on stability in the case of
compression and bending of stiffened shells
(powerful stiffeners and thin skin) typical of
fuselages of state-of-the-art transport airplanes.

Numerically obtained data were compared
with results of testing the semi-full-scale
cylindrical shells; in the average, the theoretical
critical load is slightly higher than the critical
test load. Note that not taking into account the
plastic and postbuckling behavior of elements
does lead to much larger discrepancy between
numerical analyses and experiments.

Introduction

The problem of general instability of stiffened
cylindrical shells under axial
compression/bending is one of the most
complicated and important problems of strength
of aircraft fuselages and stiffened shells of some
other aerospace vehicles. The urgency of this
problem is defined by the increase of shell
diameters and by the introduction of more
severe requirements to structural weight saving,
which result in the reduction of the relative
stiffness of frames. General buckling becomes
the main failure mode of such shells.

General instability, as distinct from local
buckling and panel instability (shell buckling
between frames) is defined here as the mode of
instability characterized by the variation of
frame shape and mutual displacement of frames.
The problem in real statement is very complex

because of complicated geometry, loading
conditions (surface curvature, non-uniformity of
loads, discrete stiffening, eccentricity) and
necessity of take into account such specific
nonlinear features, as postbuckling skin
behavior, initial imperfections, plastic
deformation, etc.

Developed in [1] numerical computing
method describes the mentioned above
pecularity of stiffened shells behavior, but it is
in need of practical development and
verification by experiment.

Improvement upon the method and
comparison between computing and
experimental results are carried out herein in
regard to the problems of buckling of stiffened
fuselages in axial compression and bending.

At the same time the computations are
executed for ideal shells in bifurcation
formulation using geometrically linearized,
physically nonlinear theory, and a measure of
unconformity (due to initial imperfections)
between theoretical and experimental critical
loads is evaluated by special coefficients kc ,
kb .

The results of the majority of experimental
investigations published are at present of certain
interest, but they can not be used for the
verification of applied analytical methods. It is
connected with two main reasons: (1)
availability of mainly small-scale cylinders and
absence of simulation of all factors, influencing
the general instability of aerospace structures
especially aircraft fuselages; (2) absence of
precise descriptions of test object and test
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procedure, which are necessary for both the
analysis and understanding the results.
Therefore stiffened circular semi-full-scale
cylinders especially designed and manufactured
for compression tests and tested in TsAGI are
chosen as the main objects of investigations.
The results of experiments compare with
computing results using method [1].

The method of practical analysis could be,
in essence, semi-empirical with the correlation
of critical compressive load obtained in tests
Nc  to the reliably determined upper theoretical
load for perfect cylinder, N*  so that
k N Nc c= / * . Thus the verifiable
experimentally design critical load of uniform
axial compression can be determined from the
relationship

N k Nc c= * , (1)
where kc  is the empirical correlation factor. In
real practice the designer should take measures
to reduce the sensitivity of load-carrying
structure to initial imperfections and the
coefficient kc  must be as close to 1 as it is
possible (it differs from that in the case of thin
smooth shells).

The principal possibility to 'smear' the
stiffeners and to use the structurally-orthotropic
model for solution of buckling problem in
compression and bending is of present interest.
The general conclusion was that the grid of
stiffeners should be dense and regular enough,
so that within the limits of one half-wave of
buckle pattern several stiffeners of each
direction are located (not less than two
stiffeners). Only 'smeared' stiffener model can
be used to account for the premature buckling
and the reduction of skin stiffness and ma ybe
the buckling of stiffener webs [1]. The
mentioned condition is verified a posteriory by
using the results of buckling mode analysis. If
this condition is not satisfied, it is necessary to
use other models considering the discreteness of
stiffening elements (stringers, frames).

Separate  attention  should be paid to the
developed approaches, related to the cases of
pure  bending   and   combined   axial
compression  and  bending  of  stiffened
cylinder (or nonuniform compression). Since

the tests of stiffened cylindrical shells in
bending show the buckle pattern typical for
axial compression in compressed zones, here the
concept of reduction of bending to equivalent
compression is used. This reduction uses the
maximum compressive load intensity taken with
appropriate correlation factor kb , which is
obtained from tests and analysis in bending
conditions. This approach provides the
opportunity of use all methods and results,
obtained for uniform compression, to the cases
of bending, and eccentric compression. Being
more simple for analysis and tests, the case of
uniform axial compression becomes a peculiar
standard, and some theoretical and practical
problems mentioned above are verified with
respect to this standard.

1 Analysis of nonlinear stress-strain state and
instability

Let us consider in detail the algorithm using the
method [1] for stiffened shell typical of
fuselages, consisted of metallic (isotropic) skin
stiffened by longitudinal and transversal ribs,
under axial compression and bending (Fig.1).

Fig.1. Stringer-and-frame-stiffened cylinder

The flow chart of the algorithm is shown in
Fig.2, where the main stages are presented:
•  Consecutive step-by-step increase of

external loads proportionally to one load
parameter tk+1= t tk k+ ∆ , k = 12 3, , ,... .

•  Determination of momentless prebuckling
stress-strain state (sss). If the plastic
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deformations arise in the elements of
cylinder at some particular step of load or
the skin buckles, the analysis is carried out
by the method of iterations to determine
'secant' material characteristics for this
elements and/or secant reduction factors,
considering the skin stiffness reduction in

postbuckling state E s , µ s , ϕ s . If above
mentioned iteration process is converged,
the 'tangent' stiffness parameters are
calculated. These parameters are used in
neutral balance equations.

•  Analysis of bifurcation criterion and
calculation of critical value of load
parameter t* .

 
 Fig.2. The scheme of stability analysis of thin-walled

structure with the plastic state and/or local skin
buckling

 

1.1 Computation of prebuckling nonlinear
stress state

Prebuckling stress resultants N P Rx
o = / ( )2π

and N p Rs
o = −  are related to the stresses in

skin and stiffeners by the following way:

 N F bx
o

s s s x
o= +σ σ δ/ ,

 N F bs
o

f f f y
o= +σ σ δ/ , (2)

 where σs , σ f  = stresses in stringers and

frames, respectively; σ x
o

, σ y
o

 = average

stresses in buckled skin; Fs , F f  = areas of

stringers and frames, respectively.
The deformations of stringers and frames

are found from relations

 ε σs s s
sE= / ,    ε σf f f

sE= / , (3)

 where Es
s , E f

s  = secant moduli of stringer and

frame material under uniaxial loading in plastic
range.

The skin deformations on lines of its
interface with stringers and frames, respectively,
are expressed in a form:

 ε σ µ σx x
o

x
s

yx
s

y
o

y
sE E= −/ / ,

 ε σ µ σy y
o

y
s

xy
s

x
o

x
sE E= −/ / ,   (4)

 where Ex
s , E y

s  = secant moduli of buckled skin

in plastic range; µxy
s , µyx

s  = secant Poisson’s

ratios of buckled skin in plastic range.

Using the skin-stringer (skin-frame)
deformation compatibility conditions along the
lines of their interface, it is possible to write
down:
 ε εx s= ,   ε εy f= . (5)

 Skin stresses can be obtained from equations (4)
in a form:

 ( )σ
µ µ

ε µ εx
o x

s

xy
s

yx
s x yx

s
y

E
=

−
+

1
,

 ( )σ
µ µ

ε µ εy
o y

s

xy
s

yx
s s xy

s
x

E
=

−
+

1
, (6)

 substituting relations (6) into equation (2) and
using relationships (3) and (5), we obtain:

 ( )σ δ δs x
o

s
oN N= −22 12 / ∆ ,

 ( )σ δ δf s
o

x
oN N= −11 21 / ∆ , (7)

 where

   ∆ = −δ δ δ δ11 22 12 21 ,  δ11 = +F b h rs s xs
s/ ,
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   δ δ µ12 = yx
s
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s/ ,
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ys
sr , (8)
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 Eo
s  = secant moduli of skin material in plastic

range; ϕx
s , ϕ y

s  = secant reduction factors,

considering the skin stiffness reduction due to

its early buckling [1].

Using σs  and σ f  obtained from equations

(3) and (5), εs  and ε f  are determined. Using

equation (6), the average stress in skin σ x
o

 and

σ y
o

 can be obtained. The real skin stresses on

the lines of its interface with stringer and frame
are expressed as follows:

 σ σ ϕx
o

x
o

x
s= / ,   σ σ ϕy

o
y
o

y
s= / . (9)

The secant moduli of skin Eo
s , stringer Es

s

and frame E f
s  in equations (8) and (9) are

determined by using nonlinear stress-strain state
diagrams σ ε−  for appropriate materials:

 ( )E
Eo

s i

i o i o
=

+ −
σ

ε µ σ1 2 /
,

 Es
s

s s= σ ε/ ,   E f
s

f f= σ ε/ , (10)

 where

( ) ( ) ( )ε ε ε ε ε ε εi x y y z z x= − + − + −
2

3

2 2 2

σ σ σ σ σi x
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x
o

y
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 ( )ε
µ

σ σz
s
o

o
s x

o
y
o

E
= + , (11)

Secant Poisson’s ratio of buckled skin in
plastic range is expressed as follows:

 µ µo
s

o o
s

oE E= − −0 5 0 5. ( . ) / , (12)
 where Eo , µo  = elastic modulus and Poisson’s
ratio of skin material in elastic range.

The iteration method is used for
determination of nonlinear prebuckling state on
each load step.

At the first iteration, it is assumed that

E Eo
s

o= , µ µo
s

o= , E Es
s

s= , E Ef
s

f=  and

ϕ ϕx
s

y
s= = 1 . The stresses  σs  and σ f  are

found from equations (7), deformations ε εs x= ,
ε εf y=  are found from equations (2), skin

stress is found from equations (6). The
intensities of deformation and skin stress are
found from equations (11);  denominator in the

first equation (10) ( )ε ε µ σi
r

i o i oE= + −1 2 /  is

found by taking into account equation (12).

The Eo
s , Es

s , E f
s  are determined for

obtained deformations εs , ε f  and εi
r  by using

nonlinear stress-strain diagrams σ ε−  for
appropriate materials. New secant reduction
factors are found by using equations from [1].
The iterative process converges quickly; it is
completed, when the variables attain the

required accuracy ≈ 10 3− .

1.2 Calculation of tangent stiffness
parameters and buckling load
After computing the nonlinear prebuckling
stress state on each load step, the variable
tangent stiffness parameters of cylinder are
calculated.

Considering that the equations for
instability analysis in [1] are written in terms of
small increments of prebuckling (initial) state of
equilibrium parameters, the stiffness parameters
in these equations are calculated at variations of
nonlinear stiffness parameters of initial state. In
this connection, the tangent moduli of stiffened
cylinder elements and tangent reduction factors
enter into the expressions for stiffness
parameters:

( )B E r F bt
s
t

ts s s11 = +δ / ,

( )B E r F bt
f
t

tf f f22 = +δ / ,
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 where:
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−1 µ µ
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t

f
t
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 Ex
t , E y

t , Es
t , E f

t  = tangent moduli of

materials of skin, stringer and frame at achieved
stress level, respectively [1];

 µxy
t , µyx

t   = tangent Poisson’s ratios for

skin buckled in plastic range [1];

 Gs
t , Gf

t  = tangent shear moduli of

materials of stringer and frame, respectively;

 Fs , F f , Is , I f , Is
p , I f

p
 =areas, own

moments of inertia and torsion constants for
stringer and frame, respectively;

 zs , z f  = distances from centroids of

stringer/frame cross-section to the skin
midsurface, respectively;

 h1 , h2  = distances from centroids of
stringer/frame cross-section with adjoined
effective skin to the skin midsurface,
respectively.

Critical loads are calculated in accordance
with [1] using tangent stiffness parameters (13).

The empirical rule can be used to check in
the applicability of 'stiffener smearing'

procedure and the quality of analysis by using
orthotropic model: if length of half-waves of
buckle pattern in longitudinal and circumference
directions ! x fb≥ 15.  and ! s sb≥ 15. , than the

results of general instability analysis are
considered to be satisfactory. If the mentioned
inequalities are not satisfied, the analysis can
not be considered to be satisfactory. In this case,
the method is required, which takes into account
the discrete frame arrangement.

The analysis of cylinder buckling between
frames (panel form) is also conducted by using
the above mentioned algorithm. It is assumed,
that the number of half-waves of lengthwise
buckle pattern m  is equal to the number of
spans between frames ( ! x fb= ) and that the

frames are located in nodal lines. In this
connection, their areas F f  and moments of

inertia I f  do not contribute to the calculation of

stiffness parameters Bt
22  and Dt

22 .
 The analysis of instability of stiffened
cylinder requires to perform two analyses:

•  analysis of general instability,
•  analysis of buckling between frames.

The least load from two obtained ones should be
taken as the determining load.

2 Calculations and buckling analysis for the
case of axial compression

To illustrate the influence of plasticity and skin
local buckling upon general buckling let us
consider calculation results for stiffened shell
with parameters typical of fuselages of state-of-
the-art airplanes. Fig.3 shows the shell, its sizes
and stiffener parameters. The diagram shows
schematically values of critical compression
load obtained by calculations: 1 – without
taking into account plasticity and local buckling,
2 – with taking into account plasticity and
without taking into account local buckling, 3 –
with taking into account local buckling   and
without   taking   into   account plasticity, 4 –
with taking into account plasticity and local
buckling. Comparison of these values shows
influence of each nonlinear effect on
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Fig.3. General buckling loads
considering nonlinear effects

calculated critical load. Summary influence of
both the linearity for parameters considered is
very considerable (>50%) in comparison with
the linear result.

The analysis of convergence of theoretical
and experimental results was carried out
concerning to buckling of full-scale cylinders
tested in TsAGI in axial compression. The
riveted cylinders are typical of fuselages in all
essential details. Sizes and relative stiffness
characteristics of the cylinders are close to the
parameters of fuselages.  The circular cylinders
have diameter 1500 mm, skin thickness δ =1
mm. Skin and stiffeners are made of aluminium
alloy. The cylinders have different length,
different number and shape of longitudinal and
transversal stiffeners. According to parameters
combination the cylinders are subdivided to 19
types. From 1 to 3 cylinders of every type was
manufactured, 41 cylinders in all. Comparison
of theoretical and experimental results is shown
in Fig.4.

The mean value of relationship kc
m =0.9

was obtained for total group of cylinders. This
value shows that the theoretical values of
buckling load N*  (using method [1]) is greater
than the test values Nc  by ≈10% on the
average. Statistical analysis of all cylinders as

single group shows distribution of kc  close to
the normal distribution with mean square
deviation =0.099 and with coefficient of
variation = 11%. Fig.4 shows also comparison
of tests results and calculation results using the
same  method  but  without taking into account

Fig.4. Correlation factor k N Nc c= / *

plasticity and skin local buckling. In this case
the mean value kc =0.54 and coefficient of
variation ≈20% were obtained. These results
shows importance of taking into account
nonlinear effects above mentioned for analysis
of real aircraft stiffened shells.

3 Buckling in bending

The following method is used for analysis of
general instability of stiffened cylinders in pure
bending.

If more than three half-waves ! s  of
buckling pattern of uniform axial compression
of this cylinder are contained in a compressed
zone of cross section of bent cylinder, then

N N1* *= , (14)



422.7

STABILITY OF BUILT-UP CYLINDRICAL STRUCTURES WITH CONSIDERATION OF
PLASTIC AND POSTBUCKLING BEHAVIOR OF THIN-WALLED COMPONENTS

where N1*  = amplitude of stress resultant,
arising in compressed zone due to pure bending,
N*  = stress resultant at buckling in uniform
axial compression, calculated by the method [2].

If less than three half-waves ! s  of
buckling pattern of uniform axial compression
of this cylinder are contained in a compressed
zone of cross section of bent cylinder, then N1*
is calculated by using equations from [1] where
number of half-waves in circumference
direction is set to 3.

The buckling analysis for cylinders
subjected to combined bending and compression
uses the same method.

To demonstrate of accuracy of proposed
method, the refined buckling analysis was
conducted for one of tested cylinder named B.2
in eccentric compression by using numerical
method of stress-strain state and buckling
analysis [1], [2], which enables to take into
account the variation of load and stiffness
parameters in circumference of the cylinder
under bending. Stiffness parameters are
calculated in the some points set in
circumference. The number of these points
should be sufficient for satisfactory description

of functions B B sij
t

ij
t= ( ) , D D sij

t
ij
t= ( )

( , , , )i j = 12 3 . The results of refined calculation
of buckling loads P  and M  for cylinder B.2 in
combined bending and compression are listed in
Table 1.

Table 1

P , kN M , kNm N1* , kN/m
  2160        0      465.1
  1531    258.5      470.0
  1076    456.6      471.6
    542    689      472.8
        0    915      472.5

Fig.5. Stability boundary for cylinder
under combined compression and bending

The data are plotted in Fig.5 against
relative coordinate system P P/ * , M M/ * .
The theoretical points fit well to the straight line
P P M M/ /* *+ =1 , which is shown in Fig.5.
The amplitude value of compressive stress
resultant at buckling N1*  remains practically
constant (see N1*  in Table 1). The difference
between buckling load of pure axial
compression N* =465.1 kN/m and the
amplitude value of compressive stress resultant
at buckling in pure bending N1* =472.5 kN/m
does not exceed 2%.

Fig.5 shows the result obtained in test of
cylinder B.2 under combined compression and
bending. Fig.6 shows the buckle pattern of
cylinder B.2 obtained numerically in pure
compression, compression with bending and in
pure bending.

After completion of static tests program of
one passenger aircraft, special failure tests were
conducted on this structure in order to study
general instability behavior of its fuselage in
bending. Test loads corresponded to one of the
landing cases.
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Fig.6. Buckle patterns (cylinder B.2)

These loads resulted in symmetrical down-
bending of fuselage. Maximum value of
bending moment was realized in regular zone of
fuselage located behind the center wing box,
which is schematically shown in Fig.7. The
distribution of stress resultant (along contour) is
shown in the same Fig.

The loading of aircraft was conducted by
whiffle-tree system by steps of 10% of ultimate

load M p  up to 70% of M p . After that, the
structure was loaded continuously up to failure.
In each step, detailed strain gage measurements
of stress state were carried out. In final stage of
test, high-speed filming of the bottom fuselage
in zone of expected buckling was conducted.

During the tests, fuselage failure occurred

at bending moment Mb =1.38· M p .

For determination of amplitude of load
intensity Nb  in bottom area of fuselage
corresponding to the failure, the analysis of
nonlinear stress state of fuselage section in
bending was conducted. The nonlinearity arises

during loading due to non-uniform skin stiffness
reduction along the contour and probable
occurrence of plastic deformations, depending
on the achieved level of stress in fuselage
elements.  The model for stress analysis was
designed taking into account real skin thickness,
stringer arrangement and their areas.

Fig.7. Model of full-scale fuselage

The results of stress analysis for various
values of Mb  are shown on Fig.8, where the

dependence of Nb  on Mb  is shown. Nb values

were calculated by using stresses in stringers
and in skin, and reduction factors. The
dependencies of the part of load which is carried
by stringers Ns , and part loads carried by skin
No , on bending moment Mb . Here

Nb = Ns + No . The amplitude value of load per
unit length Nb  in bottom area of fuselage in
prebuckling state under bending moment

Mb =1.38⋅ M p   corresponding to buckling is

Nb =1500 kN/m.
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Fig.8. Depending of amplitude value of compression
stress resultant on bending moment of full-scale

fuselage

Further the analysis of buckling of fuselage
section in compression was  executed. It was
considered, that the cylinder has the regular
structure, the same as the structure of bottom
fuselage panel.  As a result of  analysis the
following is obtained:

N* =1647 kN/m ;  m* =6,  n* =5 ;
! x =0.92 m,   ! s =1.32 m .

It was determined, that in compressed zone
more than three half-wave lengths of buckling
pattern are located. In accordance with the rule
stated above, N1* = N* .

Comparing Nb  with N* , we establish that
kb = Nb / N* =0.91.

Consequently, the analysis predicts the real
critical value of Nb  in bending and eccentric
compression well, when using the same

correlation factor k kb c
m≅  ( N k Nb b= * ) as in

pure compression.

Conclusion

The obtained results of tests and analyses are
compared for the problem of general buckling
of stiffened shells of aircraft fuselages.

The results of analyses using the method
[1] and tests, value of correlation factor

kc
m =0.9, scatter of test data (coefficient of

variation = 11%) show a good agreement.
Further improvement of the method of

fuselage general instability analysis in axial
compression is scarcely possible at present time,
because of deficiency of test data and presence
of many uncontrollable parameters like shape
imperfections, eccentricities, residual stresses,
etc. In case of bending, the method which uses
the replacement of bending by equivalent
compression (and taking into account pressure,
torsion, etc.) requires further development and
refinement.
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