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Abstract

The optimum design problem is one of the
inverse tasks, that means the structure
parameters are calculated according to a
known criteria of the selection, mathematically
described as a cost function.

The factor determining the development of
optimum design besides the hardware
equipment is the developing of the new methods
and new mathematical programming
algorithms. The optimum design of a skin
stringer panel using the method of non-linear
programming of Himelblaua [2] is presented in
this paper.

The cost function is the mass of the panel.
The constrains has to be chosen so that our
panel should satisfied the requirements for local
and global panel buckling, local and global
stringer buckling and it should satisfy as well as
the static resistance demands.

1   Design parameters, basic dimensions and
the loading of the panel

Optimum design of our panel will be defined by
following design parameters:

t   = X1  -  skin thickness ,
nv = X2  -  number of stringers ,       (1)  
tv  = X3  -  reference stringer thickness ,
hvc= X4  - reference stringer height,

Panel skin is loaded by the normal stresses
σ σx y,  and shear stress τ x y, . The following

notation will be introduced  for the continuous
normal edge loading and the shear loading :

N tx x= ⋅σ , N ty y= ⋅σ , N tx y xy, = ⋅τ     (2)

Supposing that the stringers are loaded by the
force corresponding with the σx stress then

N Fv v x= ⋅σ                                            (3)

Figure 1. Basic dimensions and the positive orientation
of the panel loading.
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Continuous loading N Nx y,  a Nx y,  are

constant through the panel edge and the normal
stresses generated in stringers are the same. By
the stringer thickness we will understand the
characteristic dimension of a general section.
The real section area and the moments of inertia
will be determined using the dimensionless
coefficients:

F K h tv FV v v= ⋅ ⋅ , 3

12

1
vvI htKI

V
⋅⋅⋅=              (4)

Coefficients KFV  a IK  are for chosen section
constant.

For optimum panel design we will suppose
the loading which is described on figure 1 and
we will consider these panel failures:

1. local skin buckling between two stringers

2. stringer buckling

3. global buckling of the panel

4. reaching the UTS or YTS of the used
material

2  Local skin buckling between two stringers

The skin between two stringer as well as whole
panel can be loaded by the linear forces N Nx y,

a Nxy . The buckling criteria of the local

buckling of the skin is described by following
equation: 
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where σ σxkr
m

ykr
m,  a τ xykr

m  are the critical stresses of

the local buckling for each single loading The
critical stress will be of the following form

    σ σikr
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The stability coefficients k kx
m

y
m,  a kxy

m  depend

on the edge boundary conditions and
dimensions. If the coefficients ki

m  almost does
not change and it is possible to consider them as

independent on the dimensions ( )A bv⋅ then

edge ratio is A bv/ 〉1 for the considered wing
panels.

3   Stringer buckling

By the stringer design parameters tv  a hv  is
understood the characteristic stringer
dimensions , The stringer can be a general
arbitrary section. For dimension computing
following assumption will be considered:

1.  the normal stringer stress has the same value
withσx  in the skin.

2.  the normal stringer stress has to be equal to
the critical buckling stringer stress.

σ σ σv x vkr= ≤ .           (8)
Since for the skin and the stringer the

condition of the same deformation ( )ε εx v=  is

valid, we can obtain the stringer normal stress
using just the Hook’s law,

   σ ε µv x
x y
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Critical stringer buckling stress will be
described using the identical form with the
critical skin stress  

σ σvkr v vEk= ⋅ ,        (10)
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Stringer coefficient of stability kv  is a constant
for chosen stringer.
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4   Global buckling of the panel

The global buckling of the panel is such a shape
when the big deformation in several half waves
of our panel supported by two spars and two
ribs arrives. Supposing that the investigated
panel is an orthotrophic plate simply supported
on each edge. The loading is described in figure
1. The panel is loaded by the continuous normal
load and the shear flow on each edge. The
reference thickness will be

   t t
F n

B
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K n t h

B
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.           (12)

Similarly  like in case of local skin buckling we
can use for global buckling the same equation
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where σ σxkr
c

ykr
c, a  τ xykr

c  are the critical global

buckling stresses for each simple loading. For
the applied loads in the stringer direction the
differential stability equation becomes to
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Finally we can obtain the following equation for
the global buckling critical stress
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Where:

( )D
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skin cylindrical stiffness of an unit width,

D D
E I

B1 = +
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                                          (17)

global longitudinal panel cylindrical stiffness,

and

    I I
B t

x= −
⋅ 3
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                (18)

Ix is the moment of inertia of the entire section
in the centre of the gravity of the panel section.

The differential equation for the critical stress of
global buckling of the panel loaded
perpendicularly to the stringers becomes
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The critical global buckling stress of the panel
loaded by the shear flow is described by the
following  equation
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For the plates with the considerable anisotropy,
when the stiffness in one direction is much
higher then the one in other direction, the
following equation is valid for the panel loaded
with the single shear
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5  Cost function and the function of the panel
constrains from the point of view of the
mathematical programming.

For optimum design of a stiffened panel one
variant of the Himmelblau and Paviani
numerical optimisation method was developed,
which is published in literature [2], from where
we have also used the modified code developed
in FORTRAN. The code is able to find the
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extreme of the function W( )X   in case of the
equality constrains
hi ( ) ,X = 0 i =1,...,m
and the inequality constrains
( )g i X ≥ 0,   i =  m+1,...,p,

 where X = ( ,..., )X X n
T

1  is the vector of
design variables.

The following functions define the problem of
the optimum design of a stiffened panel:

Equality constrain is not prescribed, m=0.

Inequality constrains:

1.  Local skin buckling between two stringers is
given by the equation (5), which becomes:
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obtain the following equation for the local
stringer buckling
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3. The global panel buckling is given by
inequality (13), which we modify to obtain:
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4.  The strength is included in the constrain

g R
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5.  The limitation of the number of stringers is
one of the design-technological limitations:

 
g n Xv5 2( ) maxX = − ,

where nv max  engaged maximum number of
stringers

6.  Limitation of the minimum skin thickness is
given by the function:

g X t6 1( ) .minX = −

7.  The maximum skin thickness is limited
similarly

g t X7 1( ) .maxX = −

The thickness tmin  and  tmax  are the input data.
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8.  The stringer height is defined by the
     function

g h Xv8 4( ) maxX = − .

9.  Limitation in equation

g X X9 3 1( )X = −

assures the regularity of the asymptotic values
of  coefficients of stability  kx

m .

Than the cost function is obtained as follows

W A B X K X X X AFv( ) ( )X = ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ρ 1 2 3 4 .

6  Examples

As an example we take a wing panel for a small
transport aircraft.

The input data are:
A      = 400 [mm]      panel length

                                        ( rib spacing )

B      = 532      [mm]      panel width
Nx        = 645     [N/mm]    load in the

stringer direction
Ny     = 0          [N/mm]    traverse load
Nxy    = 75 [N/mm]    shear load
KFv    = 2,543  [1]            stringer area

coefficient
K1     = 4,926   [1]     stringer
                                        moment of

inertia
coefficient

KV     = 1,162   [1] stringer stability
coefficient

κ      = 3          [1] influence of  stringer
asymmetry

Rm     = 380     [MPa] allowed tension
stress

Figure 2.
Relation between the panel optimum dimensions and
the number of the stringers.

The characteristics of the Z stringer
correspond with the profile PR 105 and the
computations from literature [4].

The method presented in this paper was
used to design optimum number of stringers for
a wing  skin-stringer panel using the same input
data. Figure 2 shows the results for the different
numbers of stringers varying from 1 to 10. For
the technologically favorable thickness t = 2.5
mm optimum number of stringers is 6.

Note that all the designs satisfy the
redistribution load requirements however mass
difference between the optimum panel and one
stringer panel is almost double.

7   Conclusion

Application of Mathematical - Programming
Method to the optimum structural design of a
stiffened panel is attempt to class the
optimisation calculation to general structure
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design using the numerical methods. Despite of
some shortage the results are valuable for the
designers because they provide them in advance
important information about basic design
parameters.  Based on calculation into which is
necessary to add experience and technological
special requirements it is possible to choose the
wing conception so that the global mass
effective structure of the plane could be reached.
The calculation enables to follow up design
parameters sensitivity of the mass effective
skin-stringer structures.
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