
ICAS 2000 CONGRESS

281.1

Abstract
An open architecture for a component
framework was defined and implemented at the
AEROSPATIALE MATRA AIRBUS aerodynamics
department to provide traceability of the whole
process by embedding organisation tools,
commercial codes and in-house codes, and to
free end-users from information technology
details.

The objectives of this framework are to
accelerate the engineering of research outcomes
by allowing existing codes reusability, as well
as to reduce the cost of development by
shortening the aerodynamics design cycle by
30%.

This paper presents the methodology used
for designing and deploying the aerodynamics
design framework, the AeroStation.

1 Introduction

The worldwide competition between aircraft
manufacturers puts strong pressure and high
priority on the capability to adapt the design
process and tools in order to reduce time cycle
and cost for a new aircraft development.

At the same time, highly challenging
projects, like the Airbus A3XX demand even
more accurate and more reliable design tools.
The design engineers need to be confident with
their performance predictions at an early stage
of aircraft development.

The aerodynamics department of
AEROSPATIALE MATRA AIRBUS, anticipated, in
the early 1990’s, a dramatic evolution in the

development of design tools and especially in
the way numerical codes for computational fluid
dynamics (CFD) could be more efficiently
embedded in the engineering environment.

The increasing complexity of such an
environment, developing interoperability
between large software like CAD systems, mesh
generator, CFD codes and complex
computational flow post-processing (see Figure
1), forced us to consider a new approach for
engineering applications.

Figure 1: Interoperability between tools within
aerodynamic design process

This was amplified by the outsourcing of
codes development to research centers like
ONERA and CERFACS. This decision was
taken in order to concentrate the effort of
industry on engineering activities, but keeping
the means to remain the architect of our design
tools.

The emphasis was put on the capability to
mix and match best in class software
components coming from different providers
within an open architecture allowing the process

AEROSTATION – A  CORBA COMPONENT
APPROACH TO THE AERODYNAMIC DESIGN

FRAMEWORK

Christelle Casties *, Alain Soulard *, Eric Chaput *, Luis Barrera *, Jérôme Huchard ~

* AEROSPATIALE MATRA AIRBUS
316, route de Bayonne 31060 Toulouse Cedex03, France

 ~ Sema Group
56, rue Roger-Salengro 94126 Fontenay-sous-bois Cedex, France

Keywords: CORBA,UML, wrapping, CFD, framework, DAMAS



C.Casties,  A.Soulard, E.Chaput, L.Barrera, J.Huchard

281.2

reengineering on demand, and its traceability:
management of links between design
constraints, design products and design tools.

 Process reengineering and traceability
were considered of utmost importance within a
multi-disciplinary and multi-site process, like it
has to be managed for the aerodynamics design
of the Airbus aircraft.

 A wide range of tools is needed for design
and these tools are continuously improved
taking advantage of new research findings
without additional work for end-users.

A system approach was thus adopted for
building the aerodynamic design environment,
the so-called AeroStation, within the Softair0
project (1995-1998).

The specifications of the project were to
make an intensive exploitation of CFD codes by
design engineers easier, providing a framework
for “plugging and playing” any new tool and
new process in order to inherit of existing
services.

 The provision for future implementation
of processes like aerodynamics shape design
and management, mesh generation and
management, computation environment and
exploitation of results with new generation of
object-oriented CFD codes, made the temptation
to be exhaustive in the specification of services
strong, prescribing a lot of interfaces for the
framework.

 CORBA emerging technology was
considered by AEROSPATIALE and Sema Group,
by the end of 1994, to be a good candidate for
the development of this aerodynamic design
framework. The interface definition language
(IDL) was seen to be well suited to a detailed
specification of services and a full-framework
was designed in order to allow a fine grain
integration of processes and tools.

The deployment of AeroStation within the
aerodynamics department started within the
MEDEA project  (1998-2001). This project deals
with the systematic reengineering and
integration of design processes or sub-processes
in the AeroStation.

Section 2 of this paper gives a description
of the architecture: design principles,

component library, and component integration
techniques adopted for the AeroStation
framework.

The integration of in-house processes
within the framework is then illustrated in
Section 3 through the example of the simulation
process reengineering.

Section 4 details the current deployment of
the framework within the aerodynamics
department, giving information about
engineering environments already in use and the
requirement and constraints on software and
hardware architecture. Finally, the perspective
for multi-site applications and new process
integration are examined.

2 Architecture

The architecture of this engineering
environment is based upon the Open Tool Bus
(OTB) specification [3], defined by Sema Group
with France Telecom’s support, and complies
with the international CORBA standard for
distributed objects.

2.1 Design principles

The goal of the OTB specification is to define
the reduced interfaces set between production
tools and management tools, needed to manage
and improve a production process by the mean
of global traceability (see Figure 2).

Figure 2: Production process and traceability

The design of the interfaces is based upon the
following principles.
•  Production tools are responsible for the

production and storage of the production
objects. Thus the OTB specification does
not rely on a common database or a
common file format but on common
interfaces and services described using the
IDL language and object oriented approach.



281.3

AEROSTATION - A CORBA COMPONENT APPROACH
TO THE AERODYNAMIC DESIGN FRAMEWORK

•  Production objects are not only files, they
may be fragments of files, objects in a
database, or anything else produced by a
tool.

•  Reliable identification of production objects
is a key to optimizing the way process
management tools and traceability tools
handle production objects.

•  Production object evolution is a key to
global traceability and an effective update
mechanism.

•  The traceability tools should have direct
access to the production tools in order to
display the production objects in their
context. Thus what you see in the
traceability tools is what you do in the
production tools.

•  The integration of existing production tool
with management and traceability should be
easy.

2.2 OTB/Skipper

OTB/Skipper is an implementation of the OTB
specification.

To achieve the traceability objectives in a
cost-effective way, OTB/Skipper provides an
architecture, a library of components and
efficient wrapping techniques to integrate tools
in the development or design environment (see
Figure 3).

Figure 3: OTB/ Skipper Architecture

OTB/Skipper also provides a query language
giving access to the whole set of trace links to
enable computation of customized indicators
and ratios such as requirement coverage, test
plan coverage, convergence of maintenance

operations (number of fixed and remaining
bugs), etc.

With the component library, OTB/Skipper is
able to build a full-generalized traceability
service customized for a specific project.
Customization covers adaptation of the
OTB/Skipper components to the specific
procedures, constraints and objectives of the
project, development of the wrapping layers
needed to integrate the tools used by the project,
and writing of the needed customized queries.

The component library is made as follow.
•  OTB/Session allows the different

applications and the different objects of the
framework to be accessed.

•  OTB/Catalog is an application which
presents and structures a group of resources.

•  OTB/LFS (Logical File System) is a utility
tool that makes all the files appear as full
OTB resources.

•  OTB/Tracelink allows traceability links
between resources to be put.

•  OTB/Tracematrix  allows the computation of
traceability matrices and the performing of
coverage analysis.

•  OTB/Versions is oriented to evolution link
and version management information.

•  OTB/Forms is a tool used to describe
information with well-defined fields which
correspond to precise semantics. It is used to
define a task precisely or to summarize the
results of a task

•  OTB/Query is used to access resources via
requests written in a proprietary language:
CQL.

2.3 Wrapping integration

The wrapping technique [2] for the integration
of an application consists in writing a software
layer (wrapping code) to answer the queries
addressed by OTB/Skipper to this tool (see
Figure 4). These queries will essentially make it
possible to:

•  start the application and display a
production object in its context,



C.Casties,  A.Soulard, E.Chaput, L.Barrera, J.Huchard

281.4

•  retrieve all the production objects
included in a storage object or a
version,

•  retrieve the intrinsic links provided by
the production application.

The purpose of the wrapping is to make all
the information needed to trace the process
available to the traceability tools through
common interfaces.

Thus the traceability tools query all the
production objects in a uniform way without
knowing their implementation, storage and so
on.

The AeroStation uses the libraries and tools
provided by OTB/Skipper to wrap the
simulation tools, mesh generator, CAD tools...

Figure 4: Wrapping method

2.4 Fine grain integration with CORBA
objects

Another way to answer OTB/Skipper queries is
to create CORBA objects providing OTB
services.

In this approach, the application
implements CORBA servers and CORBA
Objects to provide resources, fine grain access
and manipulation through CORBA/IDL API.

The integrated applications chooses the
level of integration it provides.

The services offered by the application
may include:

•  visualization of data in the application
context with its GUI,

•  semantic manipulation of the data
through CORBA/IDL interfaces,

•  retrieval of the sub-objects needed for
the traceability of the process,

•  retrieval of the intrinsic links provided
by the application.

Thus the traceability tools are directly
connected to the application services by

accessing the CORBA objects provided by the
application.

3 In-house process integration

Now that the major principles of architecture are
established, we can focus on the geometry
designer core domain of competence:
aerodynamic design process.

These processes represent the department
know-how. Its integration in the AeroStation
framework has three main objectives:

•  allow the user to concentrate on
aerodynamic issues and increase its
efficiency,

•  build up experience,
•  reduce training time for new engineers.
To explain the methodology defined for

any home process integration, we propose to
follow the main phases: modeling,
rationalization and optimization, traceability and
management identification, process integration,
through a highly simplified example: the
simulation process which seems to be an easily
understandable illustration.

3.1 Modeling

First of all, it is very important to analyze the
process correctly with the aim of improving the
course of the different operations. It consists in
user interviews about its habits, its
requirements, the tools used and the data
handled. To allow several iterations and, in the
end, a user validation, the process is represented
using Unified Modeling Language (UML)
formalism.

Starting from the existing state, the
different objects handled, their relations with
other objects, their attributes, and their
operations are highlighted. This is shown in
Figure 5 with the objects involved in the
simulation process.

The main objects handled in this process
are the structured meshes, made up of blocks
and faces, and the calculation corresponding to
one flow field solution that has been obtained
through different steps. Every step needs both



281.5

AEROSTATION - A CORBA COMPONENT APPROACH
TO THE AERODYNAMIC DESIGN FRAMEWORK

initial conditions and numerical parameters to
run and produces a convergence history.

These two major objects constitute the
model object. Some entities related to the
calculation (numerical boundary conditions,
initial conditions, and flow field) are linked to
some mesh entities. Moreover, mesh entities
have to be frozen before calculation creation in
order to ensure the calculation consistency.

St ruct ure d Mesh

BlockMinim izing()

NumericalParam

Name : S tring
Value : S tring

SetValue()
GetValue ()

In itialC ond ition

Conv ergenceHistory

Lab elT able : S tring
T able[] : Float

SetValue()
GetValue()

Numerical  BC

Nu m. BC c od e :  int

Set Value( )
In itialize ()

Face

Geom.BC code[] : int

GetValue()
SetValue()

1..*1..*

Block

XY Z[]  :  poin t
{ni ,n j,nk } : f loat

Ge tValu e()
Set Value()

1 *1 *

1..*1..*

Model

11

Step

Name : String
Ty pe : string

Duplicate()
Create()

+i-1

dépend >

+i

0 .. *0 .. *

0..*0..*

0..*0. .*

1.. *1.. *

Bounda ry DataS et

La belR ef  :  Stri ng
Ty p e :  Stri ng
De scr ipt ion : St ring

Set Va lue()
Ge tValu e()
De lete ()

1

1

1

1

11

FlowField

VariableLabel : String
Variable[ ] :  Float

SetValue()
GetValue()

1

1

1

1

Cal culation

Na me :  Str ing
so lv er : St rin g
modelling : Strin g

Du plica te( )
Creat e( )

11

1

0..*

1

0..*

1

1.. *

1

1.. *

11

Calculat ionParam

Name : String
Value : float

SetValue()
GetValue()

1

0. .*

1

0. .*

MESH             <<========>>        CALCULATION

Figure 5: Object model for simulation process

After having described the object structuring
aspects, and their relations, attention must be
turned to the changes they undergo. To
represent the object behavior, we use state
diagrams and instance them with an event trace
(see Figure 6)

Structured
Mesh

StepCalculation Numerical
BC

Select

Create

Boundary
Data Set

Create

Flow
Field

Convergence
History

Input

Initialize

Visualize

Visualize/ Graphic Edition

Visualize

Visualize

Submit job

Flow computation …

Figure 6: Event trace for the simulation process

This shows that the defined objects are
independent of the method used for the
calculation (flow solver).

3.2 Rationalization and Optimization

Once the model is written and validated, it is
possible to rationalize the process. To do so, we
proceed in four directions: data, graphical user
interface, scenario and consistency with the
other processes.

3.2.1 Data
A key tool of the integration is the sharing of
standardized data. To achieve an efficient
communication between several applications
and to obtain automation, it is necessary to
reduce the number of different data structures.

Furthermore, to ensure durability,
archiving must be homogeneous.

To solve this problem, six years ago, we
have analyzed several market tools. But, noting
the lack of standard concerning CFD data, we
developed the DAMAS storage device [7].

DAMAS, for DAta for Meshes and
Aerodynamic Solvers consists of three
components (see Figure 7):

•  an access method allowing general data
to be stored and read efficiently (SDA),

•  a scheme representing in a structured
way relations and links between entities
corresponding to mesh data, simulation
parameters and simulation results,

•  an application programming interface
to handle these data (LIB_DAMAS).

User Application

DAMAS
Storage
Device

API

Access method

Scheme
manager

SDA

LIB_DAMAS

Entity -relation
scheme

DAMAS
database

Figure 7: DAMAS principle



C.Casties,  A.Soulard, E.Chaput, L.Barrera, J.Huchard

281.6

The main advantages of DAMAS are :
•  consistency,
•  extensibility,
•  high performance access,
•  minimum disk space.
Using DAMAS, we succeed in

rationalizing data access for the different tools.
The user doesn’t need to translate data before
using the various tools of aerodynamic
processes (see Figure 8).

Figure 8: Use of DAMAS in the aerodynamic design
cycle

Today, a standardization is becoming
mandatory to allow people to work together
within different departments and/or companies,
so we are continuing to study emerging tools
with the aim of replacing DAMAS by an
equivalent standard tool.

CGNS, CFD General Notation System
[4,5] seems to be a good candidate, once
performance has been improved and it is
accepted as an ISO standard.

3.2.2 Graphic User Interface
Having solved the data storage problem, the
next task is to look into the way of chaining the
different operations of the process.

The most user-friendly and easy to learn is
the interactive way. A Graphical User Interface
(GUI), designed as a user guide, can provide an
intuitive sequence of actions, controls, and
default values preventing bad inputs.

For example, in the simulation process, the
GUI allows the user to input simulation
parameters, to run a solver and to visualize the
convergence, without any knowledge of the
different tools.

The first window, see Figure 10, shows the
different stages the user must perform:

•  select/create/duplicate a Calculation
Folder,

•  prepare calculation (Boundary Data
Sets),

•  select/create/duplicate step,
•  prepare step (Numerical Parameters),
•  submit calculation job.
Figure 10 illustrates the step preparation

screen. Most used numerical parameters can be
set on the main screen, whereas a second screen
is used for more advanced parameters
(occasionally modified). The use of 3D graphic
tools to edit numerical boundary conditions also
helps to enhance the efficiency of user input.

3.2.3 Scenario
For a more experimented user, the scenario is a
far more efficient tool.

In fact, several iterations are required,
comparisons are needed, and the tasks are not
always done sequentially, so the user must be
free to compile different actions and to execute
them in batch mode.

In a first stage, the scenario can be
automatically generated during the interactive
phase. Then, it can be edited to allow the user to
regulate parameters, and insert control
instructions and new commands (see Figure 9).

define model OTB:/Users/to02428/A3XX/m0.88a2.0
create calculation "CALCUL" solver NSMB model
NST0E_BL

create boundary_data_set "reference" type
"NST0E_BL" values

MACH 0.85 ALPHA 2 BETA 0 PT/PT0 1.0 TT/TT0
1.0
RE1 12.3e6 SU/T0 0.38

create boundary_data_set "fan pressure"
type "CONST. PRESSURE"  values  P/P0 0.861

create boundary_data_set "Fan massflow"
type "GLOBAL MASSFLOW" values  AREF 6.3
EPS1  0.65

create step "step1"
create numerical_bc
create numerical_parameter CFL   5.0
create numerical_parameter NSTEPS 1000
…….
submit job  -time 28800 -memory 128 -clean y

Figure 9: Example of scenario



281.7

AEROSTATION - A CORBA COMPONENT APPROACH
TO THE AERODYNAMIC DESIGN FRAMEWORK

3.2.4 Consistency with other processes
At this stage, it is very important to check the
consistency between the different processes of
the aerodynamic design cycle (existing
processes and foreseen ones)

In so far as these processes are linked
together, we need to have homogeneous
definitions of traceability and avoid
redundancy.

From a user point of view, to improve
efficiency, operating modes and organization
information visibility must be coherent from
one process to another. Similarity identification
is an important difficulty for user requirement
analysis.

Then, from a programmer point of view, a
major benefit is expected from reusing existing
codes. At this stage of analysis, it is necessary to
pool developments and to identify the reuse
possibility at several levels: data access, GUI,
scenario and above all at technical services
level. This frequently involves frequently an in-
house aerodynamic code re-architecture.

3.3 Traceability and organization
identification

From the object model and the user scenarios,
we can highlight the traceability and
management needs as regards data and tools.

3.3.1 Traceability
The know-how of the expert performing an
activity is significantly captured by setting up
links between fine grain elements used as inputs
and fine grain elements of the resulting objects.

The major difficulty is to define the
information level we need to trace, and to find a
compromise solution to conserve performance
and pertinence.

For instance, in the simulation process, at
the highest level, the data traceability allows the
meshes and the computations performed for a
given CAD shape to be founded, and conversely
the shape and the meshes configuration used for
a computation (see Figure 11).

A more down level could be the link
between the step and the solver version used.

Handling traceability includes several
aspects:

•  defining which information items are
involved in traceability,

•  capturing and storing meaningful links,
•  maintaining links in spite of the

evolution of objects,
•  exploiting the trace information to help

understanding and decision-making.

3.3.2 Organization
The organization needs can be divided into
several categories:

•  roles identification if there are several
contributors,

•  the different statuses of the data
(private, public, confidential,
official,…),

•  the right of access (depending on roles
and data status),

•  the nomenclature rules and the data
attributes,

•  the work flows.
As in the case of simulation, the designer

manages private data (simulation data and
scenarios) is stored in its user data space.
Nobody else can have access to this space
except if he explicitly changes the permissions.
Once the study is achieved, he can officialize
the information. He provides mandatory
attributes allowing everybody to find the
information.

3.4 Process integration

3.4.1 Wrapping integration
In the wrapping approach, process data is
encapsulated in a single Resource. Its simplified
interface does not allow manipulation of data
through specific resource operations, but only
the start of a specific tool for resource data
edition.

The wrapped Resource is then typed in
order to allow:

•  a visual recognition of data type thanks
to icons,

•  the start of the appropriate tool for data
visualizing and edition.



C.Casties,  A.Soulard, E.Chaput, L.Barrera, J.Huchard

281.8

Finally, the wrapping technique also allows
us to access some sub-objects, and convert them
into resources, provided the list of sub-objects
with their unique identification key is supplied.

The wrapping technique has been used for
Calculation process integration. The LFS
resource has been used to store the calculation
files (flow field data base, specific input files,
returned logfiles …) in the UNIX directory
attached to the LFS volume. For the time being,
the management of sub-resources has not been
considered essential. It could be implemented
later, if new traceability needs appear.

Mesh and calculation are stored and
managed separately in two resources (Mesh
Folder, Calculation Folder) because meshes and
calculations are obtained through separate
processes with different management rules.
When a Calculation Folder is created, a
traceability link to the Mesh Folder is
automatically installed, and the Mesh Folder is
then frozen.

3.4.2 Fine grain integration with CORBA
objects

Fine grain integration with CORBA objects
consists in specifying sub-objects of a process
(for example blocks in a mesh, steps in a
calculation, graph view in post processing…)
and managing them as workshop Resources.

A first prototype was built to serve as a
guide for the fine grain integration. The
Exploitation Folder was defined as a shared-
folder where design engineers organize their
post-processing of CFD computations.

The feedback considering this fine grain
approach is the confirmation of the considerable
advantage of IDL language for the
standardization of processes. However the large
number of sub-objects and calls to their IDL
operations (CORBA communications) leads to a
less efficient process. Moreover, due to dynamic
activation of various servers, the integration
tests proved to be complex and too time-
consuming.

To sum up, a compromise solution has to
be found between dynamic and modular
architecture, and reliable and efficient tools, so

the wrapping technique seems to be most
advantageous.

4  Deployment

4.1 Use in the aerodynamics department

The AeroStation framework is used in an
industrial way in the AEROSPATIALE MATRA
AIRBUS aerodynamics department for CAD
Shapes, mesh management and simulation
process.

40 aerodynamic designers within the
AeroStation framework handle about 2500 CAD
shapes and 500 meshes per year.

The prevision for the simulation process is
about 2500 converged computations per year.

Figure 11 shows the CAD shape-mesh-
computation traceability through the Trace
Matrix tool.

4.1.1 Shape management
The shape management process in AeroStation
consists of an application providing different
options depending on the user connected. Two
user categories are defined: the shape designer
and the administrator.

The shape designer can:
•  Save his shapes in a safe data space,
•  Ask the administrator to officialize

shapes,
•  Ask the administrator to export or

import shapes.
To do these operations, he must give some

shape characteristics (scale, positioning, format
…).

For an officialization, or an export/import
operation, he has to fill in a form containing the
instructions (shape list reference, destination or
origin, …)

Then the administrator can perform
officialization and export/import operation.

He can have access to CAD tools
(ICEMSURF, CADDS5,…) to control the shape
quality and management tools to move and
freeze the shapes.



281.9

AEROSTATION - A CORBA COMPONENT APPROACH
TO THE AERODYNAMIC DESIGN FRAMEWORK

Both shape designer and administrator can
interrogate the databases via pre-defined
requests to get a shape history.

4.1.2 Mesh management
The mesh management process in AeroStation
looks like the previous one. The different users
are the shape designer, the mesh designer and
the administrator.

The shape designer can:
•  Ask the mesh designer to make the

mesh,
•  Execute a pre-defined scenario to

produce the mesh automatically (for
specific configuration and topology),

•  Ask the administrator to officialize
meshes.

In the first two cases, he must fill in a form
with the mesh specifications (CAD Shapes
reference, structured/unstructured …). Meshing
tools can read them and fill in the mesh
characteristics automatically during the mesh
operation.

For an officialization, he just sets the form
status to “to be officialized”.

The mesh designer freely disposes of
meshing tools. He can:

•  use them interactively, or in batch
mode,

•  create scenario,
•  ask the administrator to officialize

meshes and scenarios.

Then the administrator performs
officialization using management tools to move
and freeze the meshes and the scenario.

Requests are available to search for meshes
and scenarios from any attributes, and to consult
traceability (mesh-CAD Shapes for example).

4.1.3 Simulation process
The simulation process has been described in
Section 3 through several examples. For the
time being, the GUI is already available (UNIX
environment). It then allows the designers to use
and validate the simulation process, carrying out

Euler, Navier-Stokes and coupling boundary
layer calculations.

The simulation process will be deployed in
the framework during the year 2000.

4.2 Deployment architecture

Before describing the deployment of the
AeroStation framework, we now consider the
constraints of the existing architecture and those
of the framework.

4.2.1 General constraints
The aerodynamics department has a total of
thirty workstations (26 SGI, 4 Sun). The user’s
disk space is distributed via NFS. A user can
have access to any application whatever the
workstation via NFS. There are a great number
of different tools:

•  Computer Aided Design (Icemsurf,
Cadds5),

•  mesh generation (Icemcfd),
•  computation (Euler, Navier-Stokes,

boundary Layer solvers),
•  post processing (QuickView, Gsharp).
To submit jobs to Cray, they use NQE

(Network Queuing Environment).
The framework consists of three different

kinds of components:
•  OTB components,
•  fine grain integrated component,
•  wrapped components.
The communication between the different

components is made with an ORB Object
Request Broker. The implementation chosen is
Orbix from IONA.

4.2.2 Framework constraints
The AeroStation framework is characterized by
a strongly client-server architecture. We can
distinguish two kinds of client-server protocols:
Orbix and Objectstore, and two kinds of
persistence:

•  file persistence: the user’s data (CAD
parts, meshes and aerodynamic results)
are stored in LFS. It  needs a large disk
space,



C.Casties,  A.Soulard, E.Chaput, L.Barrera, J.Huchard

281.10

•  object data base persistence: fine grain
integrated tools have a data base
persistence based on Objectstore.

The OTB servers: OTB/Catalog,
OTB/Session, OTB/Graph, OTB/Forms have
their own  persistence based on file storage.

Orbix is the implementation of the
standard CORBA that is used to perform
operations on resources, in particular to obtain
the identifier or transmit the identifier whatever
the software, and whatever the host. An Orbix
daemon must be running on all the workstations
with the same Internet port.

The opening of a client session or the
opening of the tools activates servers per client
which dialogue with the OTB servers. Each
framework must have a specific Orbix
configuration to have a correct communication
between the components of the framework.

A framework is a configuration
characterized by a unique port, a unique
identifier, a set of OTB tools, a set of integrated
components, and a set of wrapped components.

4.2.3 Architecture deployment
The main characteristics of the deployment are
as follow.
•  User sessions are launched from the SGI

workstations or the PCs connected to the
workstations via PCxware. The SGI
workstations can access the LFS databases
via NFS on a DEC server which was used
before the deployment of the framework.

•  The Objectstore databases, the Orbix-shared
OTB servers and their persistence are
centralized on a SUN server.

•  The computing requests are submitted from
the SGI workstations to  a DecAlpha or a
Cray via the NQE tool (Network Queuing
Environment ).
This distributed architecture optimizes the

CPU and disk resources by dedicating a server
to the framework operations and databases.

On the other hand, the SGI workstations
are used to launch CPU-consuming software
such as CAO, Meshing, Pre or Post Processing,
locally.

We realized a successful deployment with
respect to the constraints of the existing tools
and the constraints of the framework.

4.3 Expected benefits

The traceability of the aerodynamics design
process is seen as the most valuable outcome of
the present reengineering work The lesson
learned designing an aircraft can be capitalized
through an automatic recording of relevant links
between intermediate products like CAD-
surfaces, and their corresponding data and tools
at each step of the optimization. The design
engineer know-how can then be attached to a
link between two successive aerodynamic
shapes in order to keep track of the decision
process leading to the optimization of the
product.

Even if such a service does not provide any
immediate time cycle reduction, it is expected to
save a lot of time when this information has to
be retrieved and applied to a new aircraft, all the
more so by an inexperienced engineer.

Traceability also provides the capability to
re-use existing surfaces, meshes and/or
expensive computational results for a purpose
other than the one they have been done for first,
thus saving the time necessary to produce them
again.

The second most noticeable source of
benefits  comes from the rationalization of
process, required before its integration within
the AeroStation. The potential time saving are
then highlighted as soon as the process
modeling is concerned.

 As the framework gets well stocked in
elementary services and complex tools it is
possible to consider the reengineering of  the
tools themselves in order to take advantage of
their possible complementarities and
interactions between tools and process. This can
be achieved by a finer grain integration of tools
within a coupling scenario which allows a more
efficient implementation of any multi-
disciplinary simulations.

The engineering of coupled methods like
mesh adaptation, optimum design, and



281.11

AEROSTATION - A CORBA COMPONENT APPROACH
TO THE AERODYNAMIC DESIGN FRAMEWORK

monitoring of unsteady computations,  is made
easier and faster once each code has adopted an
open architecture.

The global benefit expected for  the whole
aerodynamics design process of Airbus engine-
airframe integration is a 30% reduction in
design time cycle.

4.4 Perspectives

In order to achieve the complete integration of
aerodynamic design processes, and then the
expected gains, the developments planned for
the years 2000 and 2001 are the following:

•  Shape Design,
•  Mesh generation and edition,
•  Mesh Adaptation,
•  Post-processing ,
•  Automatic Generation of synthesis

documents.

The extension of the AeroStation principles
described above, to the whole Airbus
aerodynamics process, requires to consider a
multi-site framework or at least the
communication between frameworks at distant
sites of Airbus partners.

In order to anticipate the issues due to the
management of distributed objets through a
network, we made early this year a numerical
simulation demonstrator distributed between
two sites: Toulouse and Paris.

A cooperative simulation between  two
solvers embedded within two different CORBA
framework using different mesh strategies: an
inviscid fluid solver and a boundary layer solver
driven by a common management process, have
been set-up.

The demonstrator works and we  observe a
good convergence of the simulation. In this
case, the use of  CORBA allows the cooperation
between two CFD worlds (structured meshes
and unstructured meshes) on geographically
distant sites and on heterogeneous hosts.

This approach could be extended to
multidisciplinary methods such as aero-
acoustics or fluid-structure for example.

5 Conclusion

A CORBA component framework has been
defined at AEROSPATIALE MATRA AIRBUS for
the integration of the aerodynamics design
process. The process integration principles have
been presented. Strong emphasis is put on
process modeling, traceability and management
identification, and the necessary rationalization
of the process before its integration by
wrapping. This last technique is preferred to a
finer grain integration which proved to be more
cost consuming due to the numerous interfaces
to be defined.

With the AeroStation framework, the
complete traceability of the design process is
ensured automatically and the users can work
together, sharing data, working methods and
scenarios.

Mixing and matching existing software,
commercial codes, and capturing designers’
know-how within a distributed environment has
been achieved using OTB/Skipper as a means of
integration.

It provides easier design process
reengineering capability. Using the wrapping
technique when appropriate is reducing the cost
of new process integration even further.

This framework will make the work done
with partners easier, allowing communication
between the different tools and the data
exchange management.

The integration of the remaining processes
is in progress, and multi-site implementation has
been experimented.

Acknowledgments

Many of the ideas in this paper come from work
done with Y.Dubois, V.Gachelin, E.Bedessem
and S.Walter from CR2A-DI, and E.André from
Sema Group. T.Hautesserres also provided
information.



C.Casties,  A.Soulard, E.Chaput, L.Barrera, J.Huchard

281.12

Everyone involved in SOFTAIR, MEDEA
and OTB/Skipper projects has contributed to the
drawing up of this paper.

References

[1] V.Treguer-Katossky, J.Huchard,. Building a CORBA-
compliant Aerodynamics Engineering Environment:
The SoftAir Project. DASIA’97 Conference, Seville,
1997.

[2] DGA/DCE/CELAR/Sema Group OTB/Skipper
Wrapping Guide 3.1 1999.

[3] France TELECOM/CNET DGA/DCE/CELAR /Sema
Group OTB Specifications 2.3  1999.

[4] D.Poirier, S.R.Allmaras, D.R.McCarthy, M.F.Smith,
F.Y.Enomoto AIAA-98-3007. The CGNS System,
1998.

[5] D.M.A.Poirier, R.H.Bush, R.R.Cosner, C.L.Rumsey,
D.R.McCarthy AIAA-2000-0681. Advances in the
CGNS database standard for aerodynamics and
CFD, 2000.

[6] P.Farail, J.Huchard DASIA-2000. Software
requirements traceability , why and how? An
avionics case study, 2000.

[7] C.Casties AEROSPATIALE MATRA AIRBUS
NT536.1547/99. Study of the CGNS storage system
for aerodynamic meshes and calculation data, 1999.



281.13

AEROSTATION - A CORBA COMPONENT APPROACH
TO THE AERODYNAMIC DESIGN FRAMEWORK

Figure 10: Simulation process GUI



C.Casties,  A.Soulard, E.Chaput, L.Barrera, J.Huchard

281.14

Figure 11: Computation-Mesh-CADShape Traceability


