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Abstract

The use of the overset concept for the
unstructured grid method is discussed for the
numerical simulations of flows around complex
and multiple bodies in relative motion. The
intergrid boundaries in the overset grids are
automatically localized using the wall distance
as a basic parameter. The search for donor cells
is efficiently performed by the neighbor-to-
neighbor jump search on a modified convex
domain utilizing a byproduct of the Delaunay
triangulation method. The capability of the
method is demonstrated by simulations of a
rocket-booster separation from a supersonic
experimental airplane. A grid around the rocket
booster is overset on the airplane grid that
covers the entire flow field. The complicated
configuration of the rocket booster is faithfully
reproduced by a single grid. This capability of
the unstructured grid significantly simplifies the
overset procedure as compared with the
conventional structured grids approach.
Comparisons of the computed results with the
experiment show good agreements in the lift and
pitching moment histories.

1  Introduction

CFD applications to real engineering problems
require the numerical simulation of flows
around complex geometries. The overset grid
method [1] provides a powerful means of
handling complex geometries by structured grid
methods. Unstructured grid methods are also
well suited to these kinds of simulation due to
their ability in accurately discretizing complex
computational domains and to their flexibility in

refining the grid in order to match the local flow
features.

Although these two CFD approaches for
complex geometry problems have become
widespread, some difficulties still remain in
each approach. In the overset structured grid
method, the number of subgrids which overlap
increases if the geometry of the computational
models becomes complex. The large number of
subgrids complicates the procedure to construct
the intergrid communications among overset-
structured grids. Unstructured grid approach has
a difficulty in computing the unsteady flow
around multiple bodies in relative motion.
Although the unstructured grid is capable of
treating moving bodies as well (for example,
[2]), a part of the computational grid or in some
cases the whole grid has to be regenerated at
every time step. This procedure may become
quite complex and computationally expensive.

In this paper, we discuss the application of
the overset concept to unstructured grid
methods. By use of unstructured meshes, the
number of submeshes required for covering the
flow filed can be significantly reduced as
compared with that needed in the overset
structured grid. It can also extend the
applicability of the unstructured grid method to
multiple moving-body problems without much
need for code development.

In this paper, an efficient and reliable
algorithm to automatically localize the intergrid
boundaries for the overset unstructured grid
method is described. The method is tested for a
separation simulation of a supersonic airplane
and a rocket booster.
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2  Intergrid Boundary Definition

There are two major steps to establish intergrid
communications in the overset method:

•  Hole-cutting, which involves dividing all
points of each subgrid into two groups,
active and non-active points. The intergrid-
boundary points are identified as the active
points next to non-active points.

•  Identification of interpolation stencils,
which involves a search of donor cells for
all intergrid-boundary points.

The second step, identification of
interpolation stencils, is straightforward for
unstructured grids. Once a donor cell is
identified, values on the point in this cell are
interpolated from values on the vertex of the
cell using the area co-ordinates for a triangle
and the volume co-ordinates for a tetrahedral
cell. In the present approach, the donor cell for
the interpolation at each intergrid-boundary
point is identified during the process of hole-
cutting. Therefore, the first step is described
here.

2.1 Automatic Hole-Cuting

The identification of the intergrid boundary
must be performed completely automatically if
unstructured grids are used for the overset
approach. Manual creations or corrections of the
hole-cutting for the overset unstructured grids
are almost impossible because of the
unstructured numbering of the node points.
Here, the wall distance is used as a parameter to
construct the intergrid boundary. In the mesh
overlapping region, a node point having a
shorter distance to the solid boundary which
belongs to the same grid of the node is selected.

The procedure of the intergrid boundary
definition is schematically shown in Fig. 1.
Suppose that the dotted lines show a grid (Grid-
A) generated around Body-A, and the solid lines
show a grid (Grid-B) for Body-B. Before the
hole-cutting, the minimum distance of each
node point to its body surface is computed.
Then, the hole-cutting procedure is divided into
two steps. The first step is to designate all nodes
points as active or non-active ones. The second

(a)

(b)

(c)
Fig. 1 Determination of intergrid-boundary: (a) Grid
A (dotted lines) and Grid B (solid lines) are
overlapped. (b) After the node identification. Circles
are the active nodes in Grid A and squares are the
ones in Grid B, (c) After removal of non-active
cells.
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step is to classify all cells into three groups:
active cells, non-active cells and intergrid-
boundary cells.

Let’s consider node point i in Grid-A in
Fig. 1(a). Suppose we know the donor cell in
Grid-B for this node. In Fig. 1(a), the donor cell
is indicated by abc. The distance to wall-B from
position i in cell abc is then evaluated by a
linear interpolation from its vertex values. This
distance to wall-B of the donor cell is compared
with the distance to Body-A of the node i. Since
the distance of this node i to wall-A is shorter
than that of the donor cell to wall-B, we select
this node as an active node. In contrast, node j
in Fig. 1(a) will be selected as a non-active
node. This assignment procedure is repeated for
all node points in both grids. In Fig. 1(b), nodes
shown by circles are active nodes in Grid-A,
and those shown by squares are active nodes in
Grid-B. The remaining node points are non-
active.

By designating all node points in the grids
as active or non-active, the next step is to
classify all cells into three groups: active cells,
non-active cells and intergrid-boundary cells.
An active cell is a cell whose vertex nodes are
all active, while a non-active cell is the one
whose vertexes are all non-active nodes. The
remaining cells are the intergrid-boundary cells
which construct the overlapping layers among
subgrids for intergrid communications. Figure
1(c) shows the grids after removal of the non-
active cells.

The above-mentioned procedure is very
simple, yet it automatically defines the intergrid
boundary and overlapping layer between grids.
The overlapping layer has a width of mostly one
or two cells as shown in Fig. 1(c).

2.2 Neighbor-to-neighbor search

The use of the wall distance for the automatic
definition of the intergrid boundary is simple
and very reliable. However, all node points must
find their donor cells in the overset meshes. The
number of searches easily surpasses one million
for three-dimensional problems. Therefore, an
efficient and reliable search algorithm must be
developed.

   The neighbor-to-neighbor jump search
algorithm [3] is efficiently utilized in the present
method. The procedure is schematically shown
in Fig. 2 for a triangular grid. Starting from an
initial guess, cell-A in Fig. 2 for example, the
method is to repeat a jump to the neighboring
cell that is located on the target side of the
current cell.

This search is very efficient because the
search path is one dimensional even in a three-
dimensional field. However, it easily fails
depending on the starting point. As shown in
Fig. 2, a search from point A succeeds in
reaching the target. Searches starting from B
and C, however, get stuck at the body boundary
or the outer boundary. For these cases, the
search has to be restarted by changing the cell
from which the search is commenced.
   To avoid such uncertainty of the search, the
search domain is modified to be a convex
hexahedron for any computational geometry.
This is done so as to add subsidiary grids into
the bodies and outside of the computational
region as shown in Fig. 3. If we use the

Fig. 2 Neighbor-to-neighbor search. The searches
from B and C will fail.

Fig. 3 Neighbor-to-neighbor search in a convex
domain.
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Delaunay triangulation for the grid generation,
the subsidiary grids can be obtained
automatically as a byproduct of the grid
generation procedure. By utilizing the
subsidiary grids, the neighbor-to-neighbor
search becomes reliable and more efficient.
      Since the efficiency of the neighbor-to-
neighbor search depends on the initial guess, the
computational load for the second search after
the initial hole-cutting becomes significantly
small. Once the initial hole-cutting has been
done, the search of the donor cells after a small
relative movement of the subgrid can be limited
to nodes around the current intergrid
boundaries.

3 Solution Algorithm

3.1 Flow solver

The Euler equations for compressible inviscid
flows are written in an integral form as follows:

∫∫ ∂
=⋅+

∂
∂

ƒ¶ƒ¶
0  )( dS dV

t
nQFQ , (1)

where Tewvu ],,,,[ ρρρρ=Q  is the vector of
conservative variables, ρ  the density, wvu ,,  the
velocity components in the x y z, ,  directions, and
e  the total energy. The vector )(QF  represents
the inviscid flux vector and n  is the outward
normal of∂Ω  which is the boundary of the
control volume Ω . This system of equations is
closed by the perfect gas equation of state.

The equations are solved by a finite
volume cell-vertex scheme. The control volume
is a non-overlapping dual cell. For the control
volume, Eq. (1) can be written in an algebraic
form as follows:

( )∑ −+∆−=
∂

∂
)(

,,
1

ij
ijijijij

i

i S
Vt

nQQh
Q , (2)

where ijS∆  is the segment area of the control

volume boundary associated with the edge
connecting points i  and j . This segment area,

ijS∆ , as well as its unit normal, ijn , can be

computed by summing up the contribution from

each tetrahedron sharing the edge. The term h
is an inviscid numerical flux vector normal to
the control volume boundary, and ±

ijQ  are values

on both sides of the control volume boundary.
The subscript of summation, )(ij , means all
node points connected to node i .

The numerical flux, h , is computed
using an approximate Riemann solver of
Harten-Lax-van Leer-Einfeldt-Wada[4]. The
second order spatial accuracy is realized by a
linear reconstruction of the primitive gas
dynamic variables with Venkatakrishnan’s
limiter [5].

The LU-SGS implicit method [6] is
applied to integrate Eq. (2) in time. With

nn QQQ −=∆ +1  and a linealization of the umerical
flux term as jjii

n
ij

n
ij QAQAhh ∆+∆+= −++1 , the

final form of the LU-SGS method on an
unstructured grid becomes,

  Forward sweep:
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    Backward sweep:
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D is a diagonal matrix derived by Jameson-
Turkel approximation of Jacobian [7] as

( )IAA Aρ±=± 5.0 , where Aρ is a spectral radius
of Jacobian A. And D is given as follows:
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   The lower/upper splitting of Eq. (3), namely
)(iLj ∈  and )(iUj ∈ ,  for the unstructured grid

is realized by using a grid reordering technique
[6] to improve the convergence and the
vectorization.

3.2 Overset implementation

The above flow solver must be modified to
account for the use of multiple meshes. In
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addition to the boundaries of the computational
domain, subgrids may have holes and intergrid
boundaries with the neighboring donor-
subgrids. The non-active cells must be excluded
or blanked from the flow field solution.
   All node points have information as to
whether they belong to the active or non-active
cells. Namely,

1,   if a point isn’t blanked;
IBLANK=

0,   if a point is blanked.
(5)

This value is 1 or 0 depending on the area inside
or outside of the computational subregion. In
the flow solver, the right-hand side vector 

iR  in

Eq. (3) is multiplied by the value )(iIBLANK .
Namely the ƒ¢Q in the outside region (hole
region) is set to be zero.

4 Computational Results

The National Aerospace Laboratory (NAL) of
Japan is currently working on a project to
develop experimental supersonic airplanes [8]
as a basic study for the next generation
supersonic transport. The first model of the
experimental airplanes is unpowered and a solid
rocket booster will be used to launch it to a high
altitude at a speed of about Mach 2.5. Figure 4
shows the configuration for launch. The
fuselage length of the airplane is 11.5 m, and the
wingspan is 4.718 m.

The present method was applied to the
numerical simulation of this experimental
supersonic airplane’s separation from a rocket
booster. The geometry shown in Fig. 4 was
produced by NAL using the CATIA CAD
software. It includes detailed components, such
as the attachments of the airplane/booster,
fittings for the launcher, and fringes on the
rocket booster. To compute the flow around this
complex geometry by the conventional overset
structured grid method will need a time
consuming work for generating the grid due to
the small components attached on the model.
Thus this is a good test case for the present
method in order to evaluate its capability for a
multiple moving-body problem with complex
geometry.

At the beginning, the unstructured surface
grids on the airplane and the rocket booster
were generated separately by the direct
advancing front method combined with the
geometrical feature reconstruction [9] on the
STL format file produced by the CATIA. This
surface grid generation approach significantly
reduces the surface meshing burden for complex
geometry. Figure 4(b) is an enlarged view of the
surface grid at the wing trailing edge region of
the airplane. The unstructured surface grid
appropriately covers the detailed components of
the airplane-booster connection parts as well as
the fringe and the wire cover on the rocket
booster.

After the surface meshing, two
unstructured volume grids, each of which covers
the airplane and the rocket booster, respectively
triangulations as shown in Fig. 5, were
generated using the Delaunay method [10]. The

(b)

(a)

Fig. 4 NAL’s experimental supersonic airplane with

rocket booster for launch. (a) Entire view, (b) Enlarged

view showing the surface grid.
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outer cylindrical grid was generated for the
airplane and the inner cylindrical grid for the
rocket booster. The number of node points and
cells of these grids are shown in Table 1. For a
simulation of the airplane/rocket booster
separation, the inner grid moves with the rocket
booster in the stationary outer cylindrical grid.

Table 1 Grid data and average numbers of cell jumps
for search
Airplane grid 599,203 nodes points,

3,268,529 cells
Booster grid 262,513 node points,

1,436,487 cells
Donor cell search
from
airplane to booster

100 cells/node (initial)
0.039 cells/node (the
following steps)

Donor cell search
from
booster to airplane

192 cells/node (initial)
0.13 cells/node (the
following steps)

Figure 6 shows the intergrid boundaries of
the booster grid for several relative locations
between the airplane and the booster. The
relative positions and angles of attack were

prescribed. In the figure, the dark rough surfaces
are the cut surfaces (intergrid boundaries) of the
booster grid due to the existence of the airplane.
As shown in the figure, the intergrid boundary
becomes complex because of the large fins
attached to the end of the rocket booster. Figure
7 shows the grids on symmetrical plane and a
cut plane perpendicular to the axis of the

Fig. 5 Overset grids for the supersonic airplane
(outer cylindrical region) and rocket booster
(inner cylindrical region).

Fig. 6 Intergrid boundaries of the booster subgrid:
angles of attack of the airplane at 2 deg and the
booster at 0 deg and (a) ∆ Z=0.4m, (b) ∆ Z=1.0m,
(c) ∆ Z=3.0m, where ∆ Z is the relative distance
between the airplane and the booster.

(b)

(a)

(c)
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airplane fuselage. Two subgrids, one for the
airplane and one for the booster, overlap each
other. The overlapping layer between two grids
has a width of mostly one or two cells.

Table 1 shows the average numbers of
cell jumps required for one search path
measured for the configuration of zero relative
angle of attack. The search from the booster grid
to the airplane grid is to find a donor cell in
about 3.3 million cells. Even with this large
number of cells, one search path required 192
cell jumps in average. The initial guess for each
search uses the search result of the previous
node. Therefore, this search path length may be
reduced some more if the node numbering is
well ordered. The searches after the initial
intergrid setup become significantly small as

shown in the Table 1.
Computations were performed at a Mach

number of 2.5 with an assumption of the quasi-

(c)

(b)

(a)

Fig. 8 Computed pressure contours of supersonic
airplane/rocket booster separation at ∞M = 2.5,

angles of attack of the airplane at 2 deg and the
booster at 0 deg, and (a) Z∆ =0.4m, (b) Z∆ =2.4m,
(c) Z∆ =5.0m

Fig. 7 Overset grids on: (a) symmetric plane,
(b) a cross-sectional plane.

(a)

(b)
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steady flow. The angle of attack of the airplane
was fixed at 2.0 degrees and the angle of attack
of the rocket booster relative to the airplane was
at –2.0 degrees (0 degree to freestream). The
relative horizontal location of the airplane and
rocket was fixed to 0, the relative vertical
distances between the airplane and the booster
( Z∆ ) were increased in a prescribed motion.

Figure 8 shows the computed pressure
contours around the airplane and booster. Shock
waves generated at the noses of the airplane and
the booster create a complex reflection pattern
in the narrow region between the bodies. At the
beginning of the booster separation, the shock
wave from the booster nose hits the forward part
of the lower surface of the airplane wing. This
initially causes an increase in the pitching
moment of the airplane. This pitching moment
then decreases to a negative value as the
impinging point of the booster-nose shock on
the airplane wing moves downward.

Figure 9 is an enlarged picture of the
computed pressure contours at Z∆ =0.1m. A
strong shock wave generated at the booster nose
hits the lower surface of the airplane fuselage
and the reflecting shock return to the booster
surface. The airplane/booster attachment part
also generates a strong shock wave which
interacts with the reflecting nose shock.

Figure 10 shows comparisons of the lift
and pitching moment coefficients between

computational and wind tunnel results. In these
figures, LC∆  denotes the difference between the
lift coefficient of the multiple body case and the
one of the isolated body case. The value MC∆
denotes the same difference of the pitching
moment coefficients.

At the beginning of the booster
separation from the airplane, the shock wave
from the booster nose hits the forward part of
the lower surface of the airplane wing. This
causes an increase in the pitching moment and
lift of the airplane. Then, the pitching moment
of the airplane moves to be negative as the
impinging point of the booster-nose shock on
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Figure 10 Comparisons of (a) lift and (b) pitching
moment coefficients between the experimental and
computational results at 5.2=∞M , angles of attack

of the airplane at 2deg and the booster at 0deg.

Fig. 9 Computed pressure contours of supersonic
airplane/rocket booster separation at ∞M = 2.5,

angles of attack of the airplane at 2 deg and the
booster at 0 deg, and Z∆ =0.1m
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the lower surface of the airplane moves
downward. At Z∆ =2m, the pitch-down moment
of the airplane becomes the maximum value,
and then it decreases temporarily when the
impinging point of the booster shock moves
downstream of the airplane wing. However the
pitch-down tendency of the airplane occurred
again when the booster shock hits the tail wing
of the airplane. The pitching moment and lift of
the booster are decreased due to the effect of not
only the shock wave from the airplane but also
the reflecting shock wave of itself as shown in
Fig. 8 and Fig. 9. Then, the pitching moment of
the booster moves to be positive as the
impinging point of the shock wave from the
airplane moves downward.

The computations were executed in two
cases: one for the full detailed configuration
shown in Fig. 4, and one for a clean
configuration which does not have any small
components such as the attachments of the
airplane/booster, fittings for the launcher, and
fringes on the rocket booster. In the
conventional structured grid CFD, these small
parts are often neglected because of the
difficulty of the grid generation. It is also
thought that the effect of those small
components to the aerodynamic coefficients is
negligible. In the present overset unstructured
grid approach, to include the small components
into the computation is straightforward. The
wind tunnel tests were conducted for the full
detailed configuration.

 By comparing two computed results, with
and without the fringes, the effect of the
connecting fringes is relatively small for the
airplane aerodynamic coefficients. However, as
shown in Fig.10, the peak values of LC∆  and

MC∆  of the booster are apparently affected by
the fringes and the computed results with the
detailed configuration agree better with the
experiment.

5 Conclusions

The use of the overset concept for the
unstructured grid method was discussed for the
numerical simulations of a booster separation

from a supersonic experimental airplane. A grid
around the rocket booster was overset on the
airplane grid that covers the entire flow field.
Owing to the unstructured grid, a single grid can
faithfully reproduce detailed components of the
rocket booster. This capability of the
unstructured grid significantly simplifies the
overset procedure as compared with the
conventional approach to overlap a number of
structured grids. An efficient and robust
algorithm to localize the intergrid boundaries
for the overset unstructured grid method has
been developed using the wall distance as a
basic parameter. The use of subsidiary grids,
which are generated as a byproduct of the
Delaunay triangulation method, makes the
neighbor-to-neighbor jump search reliable and
efficient. The computed result of the
airplane/booster separation clearly reproduced
the complex reflection shock wave patterns
between two bodies. Comparisons with the
experimental results showed good agreements in
the lift and pitching moment histories.

The use of the overset concept with the
unstructured grid methods holds great promise
for extending the applicability of the
unstructured grid method for real engineering
problems without much needed for code
development.
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