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Abstract

The unsteady, bursted vortical flow above the fixed VFE
delta wing at large angles of attack α � 18Æ was ana-
lyzed by time-accurate Euler and Navier-Stokes calcula-
tions. For an inviscid Euler code the situation within the
primary vortex core is dominated by numerical dissipation.
The same is true for a Navier-Stokes code using the alge-
braic Baldwin-Lomax turbulence model, which only pro-
vides additional turbulent eddy viscosity within the bound-
ary layer near the wall. Therefore, both methods have to
be calibrated e.g. by an experimentally proved breakdown
position. On the other hand, the two-equations k-ω turbu-
lence model of Wilcox is able to provide sufficient turbu-
lent eddy viscosity within the primary vortex core. Such a
method becomes independent from the artificial numerical
dissipation k(4) and the grid resolution.

The time-accurate Euler calculations were calibrated
at α = 18Æ. Such an adapted Euler code is able to predict
the breakdown positions and the frequencies of the break-
down process correctly for almost the whole angle of at-
tack range. The influence of the secondary vortex on the
breakdown process of the primary vortex is limited to small
angles of attack α � 23Æ and leads for a calibrated Euler
calculation to a further downstream located breakdown po-
sition and to higher dominating frequencies compared to
Navier-Stokes results. For higher angles of attack the dif-
ferences diminish. Finally, the deadwater-type flow at very
high angles of attack α � 43Æ is predicted identically by
both numerical methods.

1 Introduction

The correct prediction of the maximum lift of a delta wing
is of great technical interest for combat aircrafts maneou-
vering at large angles of attack. The flow past a sharp edged
delta wing differs significantly from the flow past a con-
ventional wing. Even at small angles of attack the flow
separates at the leading edges, forming two spiral primary
vortices. Each of these vortices causes a second boundary-
layer separation beneath them, leading to an associated
small counter-rotating secondary vortex. The main effect
of the secondary vortex is to displace the primary vortex
upwards and inwards compared with the inviscid case. At
higher angles of attack the primary vortices are bursting,
which means the vortex axes are experiencing a spiral mo-

tion with respect to space and a rotation with respect to
time. This phenomenon of vortex breakdown results in a
decline of the lift curve and causes the flow above a fixed
delta wing to become unsteady. With increasing angle of
attack the breakdown position moves upstream and the pro-
duced lift reaches its maximum value. If the breakdown
position reaches the apex of the wing, the bursted vortical
flow suddenly disappears and a deadwater-type flow estab-
lishes.

The complex vortical flow above a sharp-edged delta
wing, especially the unsteady phenomenon of vortex break-
down, has been investigated in the wind-tunnel for many
years (see e.g. [1] - [5]). During the last two decades com-
putational fluid dynamics has become a powerful tool to
provide new insights into the unsteady delta wing flow [6]
- [8]. Nevertheless, most of the numerical investigations
have been carried out by non time-accurate flow solvers,
see e.g. J. Longo [9] and D. Strohmeyer et al. [10],
DLR Braunschweig�. Since the flow above a delta wing at
high angles of attack becomes unsteady only time-accurate
methods are able to predict the breakdown position and
the dominating frequencies of the breakdown process cor-
rectly. These methods also supply the correct amount of
maximum lift.

At the Institute of Fluid Mechanics of Technical Uni-
versity Braunschweig time-accurate calculations have been
carried out for the sharp-edged delta wing of the "Inter-
national Vortex Flow Experiment, VFE" (see G. Drougge
[11]). For this configuration defined in 1986 a large amount
of computational and experimental data exists. It consists
of a 65Æ swept and cropped delta wing with an aspect ratio
of A = 1:38 and a symmetrical airfoil (Fig. 1). Since the
first computations by J. Müller and D. Hummel [12], [13]
were mainly performed by a time-accurate but inviscid Eu-
ler code, the present paper focusses on the corresponding
time-accurate viscous Navier-Stokes calculations. Even at
small angles of attack, the missing secondary vortices in an
Euler calculation cause substantially different pressure dis-
tributions and force coefficients in comparison with Navier-
Stokes results [13]. At high angles of attack, it remains to
analyse the influence of the secondary vortex on the break-
down process of the primary vortex.
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2 Notations

A Aspect ratio, A = b2
=S

b Wing span
c Root chord
c1(y) Local chord
ct Tip chord
cµ Reference chord,

cµ =
1
S

R s
-s c2

1(y)dy
CL;CD;Cm Lift, drag and pitching moment

coefficients, based on q∞; S; cµ,
reference point: N25,
nose-up positive

Cp Static pressure coefficient,
Cp = (p� p∞)=q∞

d Root thickness
i; j; k Curvelinear grid coordinates,

see Fig. 2
k(4) Fourth order artificial damping

coefficient
n number of time-steps
N25 Geometric neutral point
M∞ Free stream Mach number
p Static pressure
pt Total pressure
q∞ Dynamic pressure
Re∞ Free stream Reynolds number,

Re∞ =U∞c=ν
s Half wing span, s = b=2
s1(x) Local half span
S Wing area
t Time
t� Non-dimensional time,

t� = t �U∞=c
∆t� Non-dimensional time step,

∆t� = ∆t �U∞=c
T � Non-dimensional period,

T �

= T �U∞=c
ua Axial velocity
U∞ Free stream velocity
x; y; z Rectangular wing fixed

coordinates, see Fig. 1

α Angle of attack
ϑ Nose angle, see Fig. 1
ν Kinematic viscosity
ϕ Leading edge sweep angle
ω� Reduced radian frequency,

ω�

= 2π=T�

ω�

1 Highest dominating frequency
of the azimuthal mode

ω�

1e Highest dominating frequency
according to the experimental
correlation of Breitsamter [22]

Sub- and superscripts:

∞ Free stream
� Non-dimensional
� Time-averaged mean value
0 Standard deviation
^ Amplitude at frequency ω�

3 Numerical method

The numerical calculations were performed with the Finite-
Volume-Code FLOWer [14], provided by the Institute of
Design Aerodynamics of DLR Braunschweig. It solves
the three-dimensional unsteady Reynolds-averaged Navier-
Stokes equations (RANS) in integral form. Turbulent flow
is modelled either by the algebraic model of Baldwin and
Lomax [15] with the modification according to Degani and
Schiff [16] or the two-equation k-ω transport model of
Wilcox [17]. The spatial discretization of the solution algo-
rithm is characterized by a cell vertex scheme and central
differences. For the damping of numerical oscillations ar-
tificial second and fourth order dissipative terms are added
to the governing equations. These terms are mainly con-
trolled by the user-defined damping coefficient k(4). For the
time integration two different time-stepping schemes were
applied: A modified "global time-stepping" scheme [18]
and a "dual time-stepping" scheme based on the method of
Jameson [19].

For the Euler calculations a structured elliptically
smoothed O-O-grid with 81x85x137=943245 gridnodes
was generated using the parametric grid generation code
MegaCADs, also provided by DLR Braunschweig. Since
only symmetrical flow has been investigated just one half
of the wing was discretized and analyzed (Fig. 2). The
farfield boundary of the grid extends about eight wing
chord lengths c in all directions and the first spacing normal
to the wing is about 0:01 � c or less. For the Navier-Stokes
calculations a grid refinement near the wall has been car-
ried out and the first spacing was diminished to 2 � 10�6

wing chord lengths. The resulting Navier-Stokes grid con-
sists of 81x101x137=1120 797 gridnodes.

All calculations have been obtained on a VPP300 vec-
tor processor unit supported by the University of Hanover.
It is equiped with four vector processor elements and a
computing performance of 2.2 GigaFLOPS per element.
Each calculation has required at most 800 MBytes of local
active memory. For a time-accurate Navier-Stokes calcu-
lation a CPU time of approximately three and a half hours
was necessary.

4 Results

4.1 Experimental and numerical validation

The numerical calculations were performed at M∞ = 0:2,
Re∞ = 1:55 � 106 and at angles of attack varying between
α = 0Æ and 48Æ. For validation the numerical solutions
have been compared with experimental results measured
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on the VFE configuration according to H. Oelker [20] and
T. Löser [21]. In addition, grid refinement as well as vari-
ations of the artificial damping coefficient k(4) have been
carried out in order to analyse the influence of the numeri-
cal dissipation.

4.1.1 Comparison with experiments

Fig. 3 shows the time-averaged mean value and standard
deviation of the lift, drag and pitching moment coefficients,
CL, CD and Cm. The time-averaged values of the lift coeffi-
cient CL are calculated for a long time period t2� t1 in the
converged solution as follows:

Mean value:

CL =
1
n

t2

∑
t1

CL ; (1)

Standard deviation:

CL
0

=

vuut 1
n�1

t2

∑
t1

�
CL�CL

�2
: (2)

n denotes the number of timesteps ∆t. In the same manner
the mean value and the standard deviation of the drag and
pitching moment coefficients are evaluated.

In Fig. 3 the experimental data of Oelker (M∞ = 0:09,
Re∞ = 1:04 �106, wing without fuselage) and Löser (M∞ =

0:06, Re∞ = 1:55 � 106, wing with a half-cylinder fuselage
on the bottom) are compared with the numerical Euler and
Navier-Stokes computations. The higher Mach number
(M∞ = 0:2) in the calculations has been chosen to avoid
convergence problems.

In the mean value the Euler calculations predict too
high values of lift and drag and too strong nose-down
pitching moments, whereas the Navier-Stokes results using
the k-ω turbulence model of Wilcox agree very well with
the experiments. For the VFE configuration both Löser
and Oelker have observed significant changes of the flow
type from a steady to an unsteady bursted vortical flow at
α = 18Æ and from bursted vortical flow to deadwater-type
flow at α = 43Æ. These distinct angles of attack are well
predicted by the Euler and the Navier-Stokes calculations.
In addition, for the deadwater-type flow at α � 43Æ the Eu-
ler and Navier-Stokes results are identical and they are in
excellent agreement with the measurements.

The fluctuations of the force and moment coefficients
are zero for small angles of attack α < 18Æ and they in-
crease for higher angles of attack. At α = 43Æ the fluc-
tuations are strongly diminished. Although the Euler and
Navier-Stokes results yield different mean values of lift,
drag and pitching moment, the time-averaged fluctuations
are almost the same. The increase of fluctuations at α = 18Æ

and the decreasing values at α = 43Æ are also well con-
firmed by surface-pressure measurements according to T.
Löser [21].

Fig. 4 and Fig. 5 show experimental (Löser [21]) and

calculated time-averaged pressure distributions on the up-
per surface of the wing at a cross section x=c = 0:6 and for
α = 21Æ, 30Æ, 40Æ and 45Æ. The time-averaged mean value
of the pressure coefficientCp is calculated in the same man-
ner as for the lift coefficient CL (see eq. (1)). The y coor-
dinate in Figs. 4 and 5 is based on the local half span s1

depending on the streamwise position x.
For α = 21Æ the Euler result shows a typical effect:

Because of the missing secondary vortex, which cannot be
predicted by an Euler solver, the primary vortex is located
too close to the wing and too far outwards. Therefore, the
predicted suction peak in an Euler calculation is too high,
thus causing a too high lift. The Navier-Stokes results, cal-
culated with the Baldwin-Lomax (BL) and the Wilcox k-ω
turbulence model, respectively, agree very well with the ex-
periment.

At α = 21Æ the breakdown position of the primary vor-
tex lies downstream of the analyzed cross section x=c =

0:6. Therefore, the primary vortex is still non-bursted for
this section. For α = 30Æ and 40Æ the breakdown position
has moved further upstream and the flow at x=c = 0:6 is
dominated by a bursted primary vortex, indicated by the ex-
tremely flattened suction peaks in the time-averaged pres-
sure distribution. For these higher angles of attack the dif-
ferences between the Euler and the Navier-Stokes results
decrease. Finally, at α = 45Æ with a deadwater-type flow
above the wing, all numerical calculations predict the same
constant suction level, which is in excellent agreement with
the measurements by Löser.

After all, the time-accurate Navier-Stokes results (for
both turbulence models) are well confirmed by the experi-
ments of Oelker [20] and Löser [21] for the whole angle of
attack range. On the other hand, the Euler calculated force
and surface-pressure coefficients considerably deviate from
the measurements. These differences decrease with higher
angles of attack.

4.1.2 Influence of the artificial damping coefficient k(4)

For angles of attack α � 18Æ vortex breakdown takes place
and the flow above the VFE delta wing becomes unsteady.
The upper part of Fig. 6 shows the lift coefficient CL as a
function of the non-dimensional time t� = t �U∞=c at α =

20Æ for different Euler calculations with varying numerical
damping coefficients k(4) between 1=40 and 1=128. After
a short initial period all calculations result into converged
solutions with harmonic oscillations of the lift coefficient
CL. Similar oscillations can also be observed for the drag
and pitching moment coefficient CD and Cm, respectively.

The unsteady characteristics of the harmonic lift oscil-
lations at α = 20Æ, i.e. the mean value CL, the standard
deviation CL

0 and the non-dimensional period T � are plot-
ted against k(4) in the lower part of Fig. 6. Additionally,
the breakdown position xB=c is stated for α = 18Æ, 19Æ and
20Æ. (The criterion for the determination of the breakdown
position will be presented subsequently.) For the lower an-
gles of attack (α = 18Æ and 19Æ) and high values of k(4) no
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vortex breakdown is predicted by the Euler code and there-
fore, no symbols are plotted for the corresponding break-
down positions xB=c.

The numerical dissipation k(4) in an Euler calculation
has to simulate the missing viscous dissipation within the
core of the primary vortex. Even for small values of k(4),
it influences the strength and the size of the primary vortex
and therefore the size, the position and all unsteady char-
acteristics of the breakdown process. For a given grid, the
correct amount of the artificial numerical dissipation k(4) in
an Euler calculation has to be calibrated, e.g. with an exper-
imentally proved breakdown position. In agreement with
Oelker [20] and Löser [21], who both observed the break-
down position located at the trailing edge (xB=c � 1:0) at
α = 18Æ, a value of k(4)

= 1=80 was chosen.

Fig. 7 shows the corresponding Navier-Stokes results,
calculated at α = 21Æ with the Baldwin-Lomax (BL) and
the Wilcox k-ω turbulence model. Since the algebraic
Baldwin-Lomax model [15] provides only additional tur-
bulent eddy viscosity within the boundary layer near the
wall, the situation within the primary vortex core is still
dominated by the numerical dissipation as in the case of
an Euler calculation. Therefore, the numerical damping
coefficient k(4) still has a strong effect on the breakdown
process and on its position, even for small values of k(4).
For this reason, a time-accurate Navier-Stokes code using
the Baldwin-Lomax turbulence model has also to be cal-
ibrated according to experimental results. On the other
hand, the two-equation k-ω model of Wilcox [17] is able
to represent sufficient turbulent eddy viscosity in the pri-
mary vortex core. Therefore, all unsteady characteristics of
the breakdown process, as well as the breakdown position,
become independent from the numerical dissipation if the
value of k(4) is small enough. The same effect occurs for
an increasing grid resolution.

A time-accurate Navier-Stokes code with the Wilcox
k-ω turbulence model is numerically validated by the
present investigations, that means, it leads to the same
converged solution independent from the grid resolution
and from the numerical damping coefficient k(4). On the
other hand, time-accurate Euler and Navier-Stokes codes
with the Baldwin-Lomax turbulence model depend on the
grid resolution and on k(4). For these methods the correct
amount of artificial numerical dissipation k(4) has to be cal-
ibrated for a given grid according to experimental results.

4.2 Bursted vortical flow at α � 18Æ

4.2.1 Spiral-type vortex breakdown

Fig. 8 shows the converged part of the lift curve CL with re-
spect to the non-dimensional time t� for the Navier-Stokes
calculation with the Wilcox k-ω model at α = 21Æ. The
artificial numerical dissipation was chosen as k(4)

= 1=80.
A spectral frequency analysis of the harmonic lift oscilla-
tion ĈL (ω�

) reveals a significant reduced radian frequency

ω�

1 = 2π=T�

1 = 15:26, corresponding to a non-dimensional
period of T �

1 = 0:41. In the following, one period T �

1 of the
lift oscillation will be analyzed in detail.

Fig. 9 shows the time-averaged mean value and stan-
dard deviation of the pressure coefficient Cp on the upper
surface of the wing. In the mean value a typical pressure
distribution with minimum surface pressures just beneath
the primary vortex axis is predicted by the Navier-Stokes
code. Between this region and the leading edge a second
smaller suction peak can be observed, caused by the sec-
ondary vortex. Vortex breakdown is indicated by a signifi-
cant flattening of the primary suction peak in the rear part
of the wing. In this region considerable fluctuations of Cp

can be observed, whereas on the rest of the wing the flow is
almost steady. In the rear part two distinct centres of maxi-
mum fluctuation establish: One beneath the primary vortex
(with values up to Cp

0
= 0:09) and a second one closer to

the tip beneath the secondary vortex (Cp
0
= 0:08).

Fig. 10 shows lines of constant total pressure losses
within a crossflow plane at x=c = 0:95 for the four times
marked in Fig. 8. In addition, the mean value and the stan-
dard deviation of the total pressure losses, calculated for
one oscillation period, are shown. For all times a main re-
gion of total pressure loss within the primary vortex can
be observed. Between this main region and the wing tip
a second region with increased total pressure losses can be
observed, caused by the feeding sheet of the primary vortex
and the counter-rotating secondary vortex, but both effects
cannot be separated.

Within the primary vortex the point of maximum to-
tal pressure loss is always excentered and it rotates with
respect to time in the same sense as the primary vortex is
turning around. The frequency of this rotation exactly coin-
cides with the oscillation frequency ω�

1 of the lift coefficient
CL. This behaviour leads to a very flat region of maximum
total pressure loss for the mean value and to a ring-shaped
region of maximum fluctuations for the standard deviation.
Just beside this ring-shaped region a second region with
increased fluctuations in total pressure can be observed,
which belongs to the secondary vortex. This region indi-
cates, that the secondary vortex is influenced by the bursted
primary vortex and which leads to the second region of in-
creased fluctuations of surface pressure Cp

0 in Fig. 9. This
numerical result is in very good agreement with C. Breit-
samter [22] from the Technical University of Munich. He
also has measured a ring-shaped region of maximum tur-
bulence in a plane across the bursting leading-edge vortex
of a 76Æ swept delta wing. (These measurements were per-
formed by hot-wire anemometry.)

Connecting the points of maximum total pressure
losses for the primary and the secondary vortex at a given
time t� leads to an instantaneous primary and secondary
vortex axis, respectively. In the same way the correspond-
ing mean vortex axes can be evaluated within the time-
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averaged flowfield. Fig. 11 shows these distinct axes in a
perspective view above the delta wing for different times
t�. Downstream of a certain position close to the trailing
edge all instantaneous primary vortex axes deviate from the
mean primary vortex axis and spiral in space against the
sense of the primary vortex. In addition, the instantaneous
vortex axes turn around with respect to time in the sense
of the primary vortex. An evaluation of the mean value
of the axial velocity ūa with respect to the mean primary
vortex axis indicates a reverse-flow region (ūa < 0), which
is surrounded by the spiraling instantaneous vortex axes
(see the boundary surface with zero axial velocity ūa = 0
in Fig. 11). Because of the unsteady rotation of the instan-
taneous primary vortex axes, the instantaneous secondary
vortex axes in the rear part of the wing execute a vertical
oscillation with the same reduced frequency ω�

1.
The time-accurate Navier-Stokes code clearly predicts

a spiral-type vortex breakdown of the primary vortex,
which is well confirmed by experimental observations (see
[1] - [5]). In addition, the predicted structure of the spiral-
type vortex breakdown agrees very well with the corre-
sponding Euler results (see J. Müller and D. Hummel [12],
[13]). The only difference lies in the mutual interference of
the bursted primary vortex and the secondary vortex.

The effect of the secondary vortex on the breakdown
process can be seen in Fig. 12. In this figure lines of con-
stant mean axial velocity ūa=U∞ for a longitudinal section
along the mean primary vortex axis are plotted for Euler
and Navier-Stokes calculations at α = 21Æ. For both meth-
ods the same damping coefficient k(4)

= 1=80 and the same
grid resolution (except within the boundary layer) were
chosen. In both cases a considerable change of the veloc-
ity profiles from a "jetlike" to a "wakelike" shape can be
observed, finally resulting in a reverse flow. Although the
structure of the velocity profiles is very similar, the Euler-
predicted reverse-flow region is located further downstream
in comparison with the Navier-Stokes result. This effect is
caused by the missing secondary vortex in an Euler calcu-
lation, which leads to a location of the primary vortex axis
closer to the wing and to a delayed upstream movement of
the enlarged breakdown region across the trailing edge of
the wing.

At last, Fig. 13 shows the distribution of several quan-
tities along the mean primary vortex axes for the Euler and
Navier-Stokes calculations. In both cases a sigificant in-
crease of the mean value of the pressure coefficient Cp and
a decrease of the axial velocity ūa=U∞ can be observed, fi-
nally leading to reverse flow. In the front part of the mean
vortex axes the fluctuations of total pressure pt

0
=pt∞ are al-

most zero, and they increase very close to the starting point
of the reverse-flow region with zero axial velocity (ūa = 0).
All these flow details are predicted very similarly by the
Euler and the Navier-Stokes code. Only the streamwise
positions of these distinct spatial phases within the break-
down process are different. (For further details about the

distinct phases of the breakdown process see J. Müller and
D. Hummel [12]).

4.2.2 Increasing angle of attack

Fig. 14 shows the time-averaged mean value and standard
deviation of the upper surface pressure Cp calculated by the
time-accurate Navier-Stokes code with the k-ω turbulence
model at α = 30Æ and 40Æ. In the mean value the region
of flattened primary suction peaks contineously enlarges in
upstream and spanwise direction. At α = 40Æ this region al-
most reaches the wing apex, and the distinct suction peaks
induced by primary and secondary vortex are no longer
separated. Considering the standard deviation Cp

0 the flow
above almost the whole wing has become unsteady and the
amount of the fluctuations in surface pressure grows with
increasing angle of attack. Both effects, i.e. the progres-
sive flattening of the mean suction peaks and the increasing
fluctuations Cp

0, indicate the contineous upstream move-
ment of the breakdown position with increasing angle of
attack.

Fig. 15 shows the distribution of several quantities
along the mean primary vortex axes for increasing angle
of attack. Again the strong increase of the mean pressure
coefficient Cp and the decrease of the mean axial velocity
ūa=U∞ at the beginning of the breakdown process can be
observed for all angles of attack. Furthermore, the strong
gradients in Cp and ūa=U∞ are almost equal for the different
angles of attack. With increasing angle of attack the fluc-
tuations in total pressure pt

0

=pt∞ grow up, and the point of
the "beginning unsteadiness" (with pt

0

> 0) as well as the
starting point of the reverse-flow region (with ūa = 0) con-
tineously move upstream. At α = 30Æ and 40Æ one large
reverse-flow region establishes, covering almost the whole
upper surface of the wing.

Summarizing, Fig. 16 shows the Euler and Navier-
Stokes calculated breakdown positions with varying angle
of attack using different criteria for determination. Be-
cause of the strong upstream effect of the breakdown pro-
cess, the point of the beginning fluctuations in total pres-
sure (pt

0

> 0) moves too far upstream for high angles of
attack. Therefore, the best criteria for the determination of
the breakdown position are the deviation point of the in-
stantaneous primary vortex axes and the starting point of
the reverse-flow region (with ūa = 0). Comparing the Eu-
ler and Navier-Stokes calculated positions using the same
deviation point criterion shows very good agreement for
large angles of attack α = 30Æ and 40Æ. For lower angles of
attack (α � 23Æ) the Euler calculated breakdown positions
are predicted too far downstream. As noted before, this ef-
fect can be explained by the missing secondary vortex in
an Euler calculation, which causes a delay of the upstream
movement of the breakdown region across the trailing edge
of the wing. For higher angles of attack this effect dimin-
ishes. The Euler calculations were calibrated at α = 18Æ by
the experimentally proved breakdown position at x=c = 1:0
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according to H. Oelker [20] and T. Löser [21]. A once cal-
ibrated Euler code is then able to predict the correct break-
down positions for the whole angle of attack range, espe-
cially for higher angles of attack α � 23Æ. Also the sudden
change from bursted vortical flow to deadwater-type flow
at α = 43Æ, which is well confirmed by Löser [21], takes
place automatically for a once calibrated Euler code.

Finally, Fig. 17 shows the frequency spectra of the lift

oscillations ĈL (ω�
) for the Euler and Navier-Stokes calcu-

lations with the k-ω model and for different angles of at-
tack. For all spectra several strong narrow-band frequency
peaks in the lift amplitude ĈL occur, which belong to sev-
eral dominating frequencies ω�. These frequency spec-
tra for both the Euler and the Navier-Stokes calculations
are very similar to the spectra evaluated by time-accurate
surface-pressure measurements according to I. Gursul [5]
and C. Breitsamter [22]. A detailed frequency analysis re-
veals three main dominating frequencies, which belong to
three main modes of oscillation of the bursted primary vor-
tex: An azimuthal, an axial and a radial mode. These main
modes and frequencies are well confirmed by the experi-
ments of I. Gursul [5] and C. Breitsamter [22] measured
for different delta wings with varying leading edge sweep.
(For further details about these modes of oscillation see J.
Müller and D. Hummel [13]).

The highest dominating frequency ω�

1 marked in Fig.
17 belongs to the azimuthal mode of oscillation associated
with the rotation of the spiraling primary vortex axes with
respect to time (see Fig. 11). This frequency slowly de-
creases with increasing angle of attack. Based on his time-
accurate measurements C. Breitsamter [22] was able to de-
termine a correlation for this dominating frequency ω�

1e de-
pending on the sweep angle of the delta wing ϕ and the
angle of attack α:

ω�

1e � cotϕ � sinα �= 1:759�0:314 : (3)

The corresponding curve for the 65Æ swept VFE delta wing
is also plotted in Fig. 17. For the Navier-Stokes results, the
agreement between ω�

1 and the correlation of Breitsamter
ω�

1e is very good. For the Euler calculations, the azimuthal
frequency ω�

1 is slightly overpredicted for angles of attack
α � 23Æ. This is also an effect of the missing secondary
vortex in an Euler calculation. Therefore, a time-accurate
Euler code predicts a breakdown position located too far
downstream with too high frequencies for lower angles of
attack. For higher angles of attack α > 23Æ the agreement
between the Breitsamter correlation and the Euler calcu-
lated frequencies is getting better.

4.3 Deadwater-type flow atα � 43Æ

At α = 43Æ the breakdown position reaches the wing apex
and the vortical character of the flowfield suddenly changes

to a deadwater-type flow. For the Navier-Stokes calcula-
tion with the k-ω model, Fig. 18 shows the time-averaged
upper-surface pressures (mean value and standard devia-
tion) and time-averaged streamtraces at α = 45Æ. For the
mean value of Cp an almost constant pressure distribution
on the upper surface of the wing can be observed. The
fluctuations in surface pressure are equally distributed but
rather small (see for comparison Fig. 14 at α = 40Æ). On
the lower surface the time-averaged flowfield is attached,
with an attachment line A0 parallel to the leading edge. On
the upper surface the flow is completely separated. Framed
by an attachment line A1 near the trailing edge and a sep-
aration line S1 along the leading edge a slow reverse flow
can be observed atop almost the whole upper surface of the
wing.

This deadwater-type flow at very high angles of at-
tack is almost equally predicted by the Euler and the
Navier-Stokes code, respectively. Fig. 19 shows the Eu-
ler and Navier-Stokes calculated time-averaged total pres-
sure losses and velocity vectors within a longitudinal sec-
tion at half wing span y=s = 0:5. As a reference vector the
free stream velocity U∞ is plotted. Above the wing a large
region with almost constant total pressure losses up to 4
percent can be observed. The velocity within this region
is almost zero and the flowfield is rather unstructured. The
differences between the Euler and Navier-Stokes results are
very small.

Finally, Fig. 20 shows the standard deviation of total
pressure for the longitudinal section at y=s= 0:5. The fluc-
tuations of total pressure are largest at the border of the
deadwater region , whereas near the upper surface they are
almost zero. A time-accurate analysis reveals no significant
dominating frequencies, and no typical von Kármán vortex
street establishes. Again the Euler and Navier-Stokes re-
sults are very similar, although the fluctuations are a little
bit higher for the Euler calculation in comparison to the
Navier-Stokes result.

The occurrence of a deadwater-type flow at high an-
gles of attack is well confirmed by experiments (see e.g.
T. Löser [21]). For a calibrated Euler code, the numeri-
cal dissipation also simulates the necessary viscous dissipa-
tion within the separated deadwater region above the wing.
Therefore, a time-accurate Euler code is able to predict this
kind of flow correctly, if the right amount of artificial nu-
merical dissipation k(4) is added. This is only possible since
the separation edges for the deadwater-type flow are fixed
by the sharp edges of the VFE delta wing. This would not
be satisfied for a thick body with rounded edges.

5 Conclusions

The numerical dissipation in Euler and Navier-Stokes cal-
culations with the algebraic Baldwin-Lomax turbulence
model has to simulate the missing viscous dissipation
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within the core of the primary vortex. Therefore, it in-
fluences the strength and the size of the primary vortex as
well as the position and all unsteady characteristics of the
breakdown process. For this reason, both methods have to
be calibrated, e.g. by an experimentally proved breakdown
position. On the other hand, the two-equation k-ωmodel of
Wilcox is able to represent sufficient turbulent eddy viscos-
ity in the primary vortex core. Therefore, a time-accurate
Navier-Stokes calculation with the k-ω turbulence model
becomes independent of the artificial numerical dissipation
k(4) and the grid resolution. In addition, the agreement with
experiments is very good.

Because of the missing secondary vortex in an Eu-
ler calculation, the predicted primary vortex is located too
close to the wing and too far outwards. Therefore, the
Euler calculated force and moment coefficients as well as
the upper-surface pressure distributions differ considerably
from the Navier-Stokes results and from experiments. Be-
cause of the wrong vertical position of the primary vortex
relative to the wing, the upstream movement of the break-
down region across the trailing edge is delayed for angles
of attack 18Æ � α � 23Æ. In addition, the highest dominat-
ing frequency ω�

1 associated to the rotating motion of the
spiraling primary vortex axes is overpredicted in this angle
of attack range. On the other hand, the influence of the sec-
ondary vortex on the bursted primary vortex decreases with
increasing angle of attack. Therefore, the Euler predicted
breakdown positions and frequencies agree very well with
the Navier-Stokes results for angles of attack α > 23Æ. Also
the differences in surface-pressures and force coefficients
diminish with increasing angle of attack. Finally, at very
high angles of attack α � 43Æ with a deadwater-type flow
above the wing, the Euler and Navier-Stokes results with
k-ω turbulence model are almost identical. However, a
time-accurate Euler calculation needs only two thirds of
the computation time necessary for a Navier-Stokes calcu-
lation.

6 Final remarks

It is gratefully acknowledged, that the Institute of De-
sign Aerodynamics of the DLR Braunschweig provided the
Finite-Volume-Code FLOWer as well as the grid generation
program MegaCADs.
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