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Abstract

Applying nonlinear optimization techniques such
as quasi-Newton methods to aerodynamic shape
optimization problems requires the calculation
of gradients of a given objective function. An
effective way of calculating such gradients is
through the use of the so-called adjoint equa-
tions. To achieve fast convergence in the opti-
mization algorithm, accurately computed gradi-
ents are needed. In the computation of such gra-
dients the discretization of the problem and the
choice of boundary conditions are two important
aspects. These issues are studied in the context
of shape optimization of a quasi-1D nozzle using
physically relevant boundary conditions. Isen-
tropy is enforced at the inlet boundary, and the
static pressure is specified at the outlet bound-
ary for subsonic flows. A cell-centered finite-
volume discretization with a standard implemen-
tation of the boundary conditions is applied, and
the corresponding numerical scheme and numeri-
cal boundary conditions for the adjoint equations
are derived in a fully discrete sense.

Numerical experiments at subsonic and tran-
sonic speeds, show that the gradient evaluations
are accurate enough to obtain satisfactory conver-
gence of the quasi-Newton algorithm.
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1 Introduction

As more and more powerful computers develop,
the range of problems possible to solve numer-
ically increases. One class of such problem is
aerodynamic shape optimization using the Euler
or Navier–Stokes equations as the flow model.

Discretization issues in connection with aero-
dynamic shape optimization are discussed in this
article. A simple model for nozzle flow is the
quasi-1D Euler equations, in which the nozzle
geometry is represented as a scalar function oc-
curring in the coefficients of the equation. This is
a standard model problem for transonic flow shar-
ing many features with more complicated mod-
els, but having a known solution in terms of an
implicit formula for the Mach number and the
area function. An objective (or cost) function
is introduced to measure, in a least-square sense,
how far from the optimal design we are. To im-
prove the geometry, we use optimization methods
that utilize the objective function gradient, com-
puted with the aid of the adjoint equations.

We will state the adjoint equations, derived
from the state equation and objective function us-
ing physically relevant boundary conditions. A
quasi-discrete form of the adjoint equations will
also be stated. That is, the precise form of the
discretization of the Euler equations as well as
the precise way in which the boundary conditions
are implemented are taken into account when the
adjoint equations are derived. However, the pre-
cise form of the coefficients in the artificial dissi-
pation terms is not reflected in the adjoint equa-
tions.

245.1



Mattias Chevalier and Martin Berggren

This approach is just one among several ways
of finding the gradient to the objective function.
Using finite differences on each of the design
variables is another alternative. A third alterna-
tive is to compute so-called flow sensitivities by
repeatedly solve linearized versions of the equa-
tions. These alternatives are easier to implement
but are computationally costly. The cost of com-
puting the gradient from the adjoint equations has
the advantage of being independent of the num-
ber of design variables.

Several authors, such as Iollo et al. [9], Nar-
ducci et al. [10], Ibrahim and Baysal [8], and
Cliff et al. [4], have published works on shape op-
timization for the quasi-one-dimensional nozzle
flow. In a very recent article, Giles and Pierce [6]
also derive analytical expressions for solutions to
the adjoint equations. Most of these articles con-
centrate on the particular difficulties that are as-
sociated with embedded shocks in the flow. In
contrast to this, we limit ourselves to the case of
smooth flow when deriving expressions for the
gradient of the objective function. This is done to
highlight the distinct features of the current in-
vestigation: the choice of boundary conditions
together with the use of the quasi-discrete form
of the adjoint equations.

The article is organized as follows. Section 2
introduces the governing equations and the shape
optimization problem. Section 3 describes the
numerical treatment of the equations involved.
Section 4 presents computational results and is
followed by the final discussion of section 5.

2 Theory

2.1 The shape optimization problem

The quasi-1D Euler equations for steady flow are
(references Hirsch [2] and Anderson [5])

fx + ξg = 0; (1)

where the following vector notation is introduced

f =

0
@ ρu

ρu2 + p
(ρe+ p)u

1
A
; g =

0
@ ρu

ρu2

(ρe+ p)u

1
A
: (2)

The equation of state,

p = (γ�1)

�
ρe�ρ

u2

2

�
; (3)

closes the system. Here, x is the streamwise coor-
dinate, ρ is the density, u is the fluid velocity, p is
the pressure, e is the total energy per unit mass,
and A is the area function. We use γ= 1:4 (air
and standard conditions) for all simulations.

Perhaps the physically most natural choice of
inlet boundary conditions for nozzle flow is to
specify constant stagnation conditions. When the
flow is subsonic at the outlet, we also need to
supply a boundary condition there. That is done
through the back pressure, a given constant static
pressure at the outlet. With this choice of bound-
ary conditions, the state equation reads

fx + ξg = 0 in (0;1);

p

�
1+

γ�1
2

M2
�γ=γ�1

= ps at x = 0;

T

�
1+

γ�1
2

M2
�
= Ts at x = 0;

If M < 1 p = pout at x = 1;

(4)

where ξ = A=Ax and where M = u=c is the Mach
number; the speed of sound is given by the rela-
tion c2 = γp=ρ. The constants ps and Ts are the
given values of the stagnation pressure and stag-
nation temperature respectively, and pout is the
given static pressure at the outlet.

Two independent set of variables, conserva-
tive, w, and primitive, v, will be used:

w =

0
@ ρ

ρu
ρe

1
A

; v =

0
@ ρ

u
p

1
A

: (5)

To exert control on the nozzle flow, the shape
of the nozzle will be adjusted. The shape enters
the Euler equations through ξ and the most obvi-
ous choice of design parameter is ξ. Note how-
ever that we could also have used the area, A, and
computed ξ from A.

The aim of the optimization is to force the
nozzle to mimic a target distribution of some flow
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quantity, in our case, the pressure. To quantify
this constraint we introduce an objective function

I(ξ) =
1
2

Z 1

0
(p� pt)2 dx; (6)

where pt is the target pressure distribution and p
is the pressure distribution computed from ξ by
solving the state equation.

The shape optimization problem corresponds
to finding the design ξ, which minimizes the ob-
jective function I in (6). Given a target pressure
distribution pt = pt(x), the problem is

Find ξ� 2 Uad such that

I(ξ�)� I(ξ) 8ξ 2 Uad.
(7)

The set of admissible designs is denoted Uad and
is a subset of bounded functions on [0;1]. That
choice for Uad leads to a well-posed problem for
the Euler equations. Cliff et al. [4, § 3] give an
example of a closed and convex set of this kind.

2.2 The gradient

Most minimization algorithms, such as steepest
descent, conjugate-gradient, and (quasi-)Newton
methods, utilize gradient information. The gra-
dient ∇ I of the objective function (6) is defined
through taking the directional derivative in the δξ
direction:

δI = h∇ I;δξi= lim
s!0

���� I(ξ+ sδξ)� I(ξ)
s

���� ; (8)

where δξ is an arbitrary variation of the shape. To
supply gradient information to a quasi-Newton
algorithm, we use the adjoint equation approach.

In [3] we derive, by use of standard perturba-
tion analysis applied on the objective function (6)
and the state equation (4), an expression for the
gradient in terms of the solution to an auxiliary
problem, the adjoint equations. Here we only
state the final expressions for the gradient and the
adjoint equations for subsonic in- and outlet con-
ditions:

∇ I(ξ) = ψT g in L2(0;1); (9)

where ψ is the solution to the adjoint equations

�JT ψx +KT ψξ+ θ(p� pt
) = 0; in (0;1);

lTeJT
ψ = 0; at x = 0;�

jT
1

jT
2

�
ψ = 0; at x = 1:

(10)

Here, l is a vector consisting of data computed
from flow quantities on the boundary and total
quantities assuming isentropic process. The vec-
tor θ is the pressure differentiated with respect to
w,

θ=

�
∂p
∂w

�T

:

The matrices J, K, and eJ are defined as

J =
∂f
∂w

; K =
∂g
∂w

;
eJ =

∂f
∂v

;

and j1, j2, and j3 are the column vectors of eJ.
Note that in the case of subsonic in- and outlet

conditions, the Euler equations have two down-
stream and one upstream characteristics. For the
adjoint equations we have the opposite situation:
one downstream and two upstream characteris-
tics due to the negative sign on the Jacobian.
This is consistent with the boundary conditions
in (10); there are two conditions supplied at x = 1
and one at x = 0.

This all summarizes into the following proce-
dure to compute the gradient of I:

1. Solve the state equation (4) given a design
ξ.

2. Solve the adjoint equations (10) using the
solution obtained above.

3. Compute the gradient from expression (9).

Note that to compute the gradient we basically
have to solve only two equally expensive, mea-
sured in computer time, systems of equations re-
gardless of how many design parameters we are
using.
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3 Discretization

A cell-centered finite-volume scheme is applied
for the spatial discretization. The step size is
constant and denoted ∆x = 1=Nx where Nx is the
number of cells in the domain. The stationary
problem is solved by marching the correspond-
ing non-stationary problem to steady state using
a five step Runge–Kutta scheme.

The solution vectors, for the whole domain,
for conservative and primitive variables are de-
noted fwig

Nx
i=1 and fvig

Nx
i=1, respectively. We also

define

fi = f(wi);

fi�1=2 =
1
2
(fi + fi�1);

gi = g(wi);

(11)

where f and g are the functions of (2). Integer
index i denotes cell-centered values and i� 1=2
denotes node-centered values.

The discrete state equation is

fi+1=2� fi�1=2

∆x
+ ξigi = d i = 1; :::;Nx;0

@ ρ0

u0

p0

1
A=

0
@ 2ρ1=2�ρ1

2u1=2�u1

2p1=2� p1

1
A

;

0
@ ρNx+1

uNx+1

pNx+1

1
A=

0
@ ρNx

uNx

2pout � pNx

1
A

;

(12)

where the vector ξh = fξig
Nx
i=1 now is our design

variable.
Data for the boundary conditions are supplied

through the back pressure pout and through ρ1=2
and p1=2, which are computed from the isentropic
assumptions:

ρ1=2

�
1+

γ�1
2

M2
1

�1=γ�1

= ρs; (13)

p1=2

�
1+

γ�1
2

M2
1

�γ=γ�1

= ps; (14)

where ρs and ps are the given stagnation density
and pressure respectively. The symbol d on the
right-hand side of equation (12) represents artifi-
cial dissipation which is needed to stabilize cen-
tral schemes of this kind. We use the Jameson-
style combined second- and fourth-order dissipa-
tion.

Solving equation (12), we obtain grid func-
tions like the pressure pi, i = 1; : : : ;Nx. There-
fore, it is reasonable to approximate the objective
function (6) with

Ih(ξ) =
1
2

∆x
Nx

∑
i=1

(pi(ξ)� pt
i)

2
; (15)

where fpig
Nx
i=1 is obtained from the finite-volume

solution below and pt
i � pt((i�1=2)∆x) approx-

imates the target pressure.
The discrete counterpart to optimization

problem (7) is

Find ξ�i 2 Uad, i = 1; : : : ;Nx, such that

I(fξ�i g
Nx
i=1)� I(fξig

Nx
i=1) 8ξi 2 Uad.

(16)

3.1 Gradient computations in the discrete
case

One approach to compute the objective-function
gradient is to directly discretize the adjoint equa-
tions (10) and the gradient expression (9). How-
ever, once discretizations of the Euler equa-
tions and the objective function are selected, this
implicitly defines the discrete adjoint equations
from which we obtain the expression for the ex-
act gradient of the discretized objective function.
This “discrete” adjoint equation may not coincide
with a straight-forward discretization of equa-
tion (10), particularly not in the implementation
of the boundary conditions. Using this discrete
gradient minimizes numerical errors in the gra-
dient directions. This may be important since
highly accurate gradient directions are typically
needed in the quasi-Newton algorithm. However,
note that artificial dissipation needs to be added
in the adjoint equation for stability and these ef-
fects are not taken into account in the derivation.

The discretized equations are derived in de-
tail in [3]; here we merely state the results. The
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discrete gradient is

∇ Ih = ∆xf ψT
i gig

Nx
i=1; (17)

where f ψig
Nx
i=1 is the solution to the discrete ad-

joint equations

�JT
i
( ψi+1� ψi�1)

2∆x
+ ξiKT

i ψi =� θi(pi� pt
i);

Tl ψ0 = Ml ψ1;

Tr ψNx+1 = Mr ψNx
;

(18)

where i = 1; : : : ;Nx. The matrices T and M , de-
fined and derived in [3], consist of surprisingly
complicated algebraic combinations of flow data
at and around the boundaries.

4 Numerical experiments

For the optimization we used the limited-memory
quasi-Newton algorithm of Byrd et al. [1], pub-
licly available at Netlib/toms/778. Two flow cases
are considered, defined by the boundary data in
table 1. These correspond to a fully subsonic and
a shock-free transonic case, respectively, using
the area function of figure 1. This particular area
function is obtained from a cubic polynomial in
ξ = A=Ax using the coefficients in the second col-
umn of table 2. A 200 grid-point mesh is used in
all reported experiments.

Table 1 Boundary data for the simulated flow
types. All quantities are given in SI-units.

Flow ps Ts ρs pout

Subsonic 200000 300 2.32 174488
Transonic 200000 300 2.32 51159

As a first test, we define a target pressure from
solving the Euler equation with the area function
of figure 1 and the subsonic data of table 1. Then
the coefficients in the polynomial defining ξ are
perturbed (table 2), and we attempt to recover the
target area function by solving the optimization
problem (16). This problem is solved using two
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Fig. 1 Target functions for the area (upper) and
ξ (lower).

different parameterizations of the design variable
ξ: (i) the coefficients in a cubic polynomials, and
(ii) the value of ξ at each grid point. The dimen-
sion of the design space is 4 in the first case and
200 in the second. Note that the computational
effort needed for each quasi-Newton iteration is
essentially the same in the two cases, since the
adjoint-equation approach is used.

Figure 2 shows the value of the objective
function and the norm of the gradient versus it-
eration number. The convergence behavior for
the two different parameterizations of the design
are similar for about the 25 first iterations, af-
ter which the 4-degrees-of-freedom case appears
to enter a region of superlinear convergence for
the quasi-Newton method. Figure 3 compares the
pressure distribution using the different parame-
terizations at a few stages in the optimization.

The second test is the same as the first, ex-

245.5



Mattias Chevalier and Martin Berggren

Table 2 Initial and final values of the polynomial
coefficients α defining ξ. Here, k denotes the
degree of corresponding monomial.

k Initial α Target α
0 -0.9474 -0.8574
1 1.1376 1.2376
2 1.7380 1.5980
3 -1.4525 -1.3525

cept that the transonic boundary data of table 1
are used instead. Figure 4 shows the convergence
behavior for the different parameterizations and
figure 5 compares the pressure distributions at
different stages in the optimization. The conver-
gence behavior is similar to the subsonic case, but
the superlinear convergence appears later, after
about 35 iterations.

The tests above may give the impression
that parameterizing with low-order polynomials
is better than using many degrees of freedom for
the design variables. That this is not at all the
case in general is demonstrated in the next test.
Note that the cases above use target pressures that
are reachable by a cubic ξ, that is, one particu-
lar cubic yields exactly the target pressure. (This
means also that the objective function is zero at
the optimum.) In a third test, we picked a target
pressure distribution which is (most likely) not
reachable by any ξ, cubic or not. Figure 7 shows
the convergence behavior when using 4 and 200
design variables, respectively. Note that both the
convergence behavior and the final value of the
objective function is better when using a higher
degree of the design space. Figure 8 depicts the
target pressure and the pressure distribution at
different stages in the optimization.

In a last test case, using data from the first
test problem above with 200 design variables,
we test the influence of the boundary conditions
at x = 0 for the adjoint equation. We compare
the use of the “exact” form (18), derived by ex-
act transposition of corresponding boundary con-
ditions of equation (12) with one implementa-
tion in which the boundary condition at x = 0 in
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Fig. 2 The objective function (upper) and the
gradient (lower) as functions of iteration number
for both polynomial (green/dash-dotted) and full
(blue/solid) description of ξ for subsonic flow.

equation (10) are supplemented with “numerical”
boundary conditions: extrapolation of two of the
variables in ψ. From figure 6, we see that the dif-
ference in the convergence between using these
approaches is surprisingly small, considering the
elements of arbitrariness in the second approach
(which variables should be extrapolated, e.g.?).
Inaccuracies in the gradient direction will cer-
tainly be introduced in the second approach. That
this does not degrade the convergence rate more
than indicated in figure 6 somewhat contradicts
the experience of the authors from other studies
([7]), in which the convergence rate of a related
optimization problem was sensitive to small in-
accuracies introduced in the gradient directions.
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Fig. 3 Pressure distributions for polynomial
(upper) and full (lower) descriptions of ξ at 1
(blue/solid), 3 (green/dashed), and 10 (red/dash-
dotted) iterations for subsonic flow.

There are at least three possible reasons for
this. The cases in which we have formerly noted
significant effects on the accuracy of the gradient
by changes in the implementation have all con-
cerned parabolic or elliptic state equations. The
objective function in such cases is often quite in-
sensitive to small changes in the control (or de-
sign), which means that precise gradient infor-
mation is crucial since the objective function will
hardly decrease otherwise. In the present case,
the state equation is hyperbolic, and the objec-
tive function is quite sensitive to small changes
in the design. Thus, precise gradient information
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Fig. 4 The objective function (upper) and the
gradient (lower) as functions of iteration number
for both polynomial (green/dash-dotted) and full
(red/solid) description of ξ for transonic flow.

may be less important in this case, since even a
slightly off gradient direction may greatly reduce
the objective function.

A second reason could be that other inaccu-
racies dominate. For instance, we do not con-
sider the exact form of the artificial dissipation
of the state equation when deriving the adjoint
equations.

A third reason could be effects of the zeroth-
order extrapolation used for the Mach number in
defining the pressure and density at x = 0 (ex-
pression (14)). This affects the solution in the
form of small, local “kinks” close to x = 0. We
observed no spread of these disturbances down-
stream in the solution to the state equation. How-
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Fig. 5 Pressure distributions for polynomial
(upper) and full (lower) descriptions of ξ at 1
(blue/solid), 3 (green/dashed), and 10 (red/dash-
dotted) iterations for transonic flow.

ever, since the boundary conditions for the ad-
joint equation are derived from the actual bound-
ary conditions used in the state equation, it may
well be that the effects on the adjoint equations of
the zeroth-order extrapolation in the state equa-
tion is significant. Evidence for this claim is that
we noted oscillations in the solution of the adjoint
equations originating at the boundary x = 0. This
could cause an increase of the conditioning of the
discrete optimization problem (16) of purely nu-
merical origin.
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Fig. 6 The objective function as a function
of iteration number for the case when using
“exact” boundary conditions (green/dash-dotted)
and when using “numerical” boundary conditions
(red/solid) for the adjoint equations.

5 Conclusions and outlook

We have derived, implemented and tested a
quasi-discrete form of the adjoint equations to the
quasi-1D Euler equations for nozzle flow in order
to compute gradients in a shape optimization pro-
cedure. Physically relevant boundary conditions
are used. For the adjoint equations, we apply
corresponding boundary conditions, derived by
transposing the exact form in which the bound-
ary conditions for the Euler equations are imple-
mented.

The gradient computed in this way could be
successfully used in an optimization procedure to
recover a reachable pressure distribution as well
as finding area functions that yield a pressure dis-
tribution that well approximates a nonreachable
pressure distribution. We demonstrated this in
the subsonic as well as the transonic, shock-free
regime. Numerical experiments, not reported
here, were also performed for cases with em-
bedded shocks. These cases worked surprisingly
well, considering that the important effects of the
artificial dissipation in the vicinity of the shock
were not considered at all in the gradient deriva-
tion. However, the convergence rate of the opti-
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Fig. 7 The objective function (upper) and the
gradient (lower) as functions of iteration num-
ber for both polynomial (green/dash-dotted) and
full (red/solid) description of ξ for a nonreach-
able target pressure distribution.

mization algorithm was not as good as in the re-
ported cases. To implement a dissipation mech-
anism in the adjoint equations in a similar “dis-
crete” way as the boundary conditions studied
here is an obvious, but nontrivial candidate for
a next stage in the development.

As discussed in section 4, we noted some os-
cillations in the solution to the adjoint equations
originating at the boundary x = 0. We conjec-
ture that the cause of this is the zeroth-order ex-
trapolation used for the Mach number in the state
equation at x = 0. Using instead a first-order ex-
trapolation of the Mach number, the local “kinks”
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Fig. 8 Pressure distributions for polynomial
(upper) and full (lower) descriptions of ξ at 1
(blue/solid), 3 (green/dashed), and 10 (red/dash-
dotted) iterations for a nonreachable target pres-
sure distribution. The target pressure distribution
is also plotted (light blue/thin solid).

in the vicinity of the boundary can be avoided al-
together. It would be interesting to see if this also
improves the smoothness of the adjoint solution
and the conditioning of the optimization problem.
However, the derivation of the corresponding ad-
joint boundary condition is complicated and te-
dious.

245.9



Mattias Chevalier and Martin Berggren

Acknowledgments

Part of the research was done when the first au-
thor was a student for Professor Roland Glowin-
ski which is greatfully acknowledged.

References

[1] Byrd R. H, Lu P, Nocedal J, and Zhu C. A lim-
ited memory algorithm for bound constrained
optimization. Technical Report NAM-08, EECS
Department, Northwest University, 1994.

[2] C. H. Numerical Computation of Internal and
External Flows, chapter Vol 1 and Vol 2. Wiley,
1990.

[3] Chevalier M and Berggren M. Accuracy of gra-
dient computations for aerodynamic shape opti-
mization problems. Technical Report TN 2000-
31, FFA, the Aeronautical Research Institute of
Sweden, P. O. Box 11021, S-161 11 Bromma,
Sweden, 2000.

[4] Cliff E. G, Heinkenschloss M, and R. S. A. An
optimal control problem for flows with discon-
tinuities. Tech. Rep. ICAM 95-09-02. Interdis-
ciplinary Center for Applied Mathematics, Vir-
ginia Polytechnic Institute and State University,
Blackburg VA 24061-0531, 1995.

[5] D. A. J. Modern compressible flow with histor-
ical perspective. Springer-Verlag, 1990.

[6] Giles M. B and Pierce N. A. Analytic adjoint
solutions for the quasi-1d euler equations. (ac-
cepted for publication).

[7] Högberg M, Berggren M, and Henningson D. S.
Numerical investigation of different discretiza-
tion approaches for optimal control. Technical
Report TN 1999-74, FFA, the Aeronautical Re-
search Institute of Sweden, P. O. Box 11021, S-
161 11 Bromma, Sweden, 1999.

[8] Ibrahim A. H and Baysal O. Design optimiza-
tion using variational methods and cfd. AIAA
Paper 94-0093, 1994.

[9] Iollo A, Salas M, and Ta’asan S. Shape opti-
mization governed by the euler equations using
an adjoint method. NASA Contractor Report
191555, pp 1–18, 1993.

[10] Narducci R, Grossman B, and Haftka R. T. Sen-
sitivity algorithms for an inverse design problem

involving a shock wave. Inverse Problems in
Engineering, Vol. 2, pp 49–83, 1995.

245.10


