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Abstract

The paper is concerned with the development and
validation of a 3-D flow simulation capability
which would allow the calculation of flowfields
over realistic launch vehicle configurations. The
formulation here implemented uses the Chimera
technique together with block structured grids to
discretize the computational domain. The current
approach is based on the solution of the 3-D Eu-
ler equations in curvilinear coordinates. A finite
difference method is applied to these equations
and a centered spatial discretization is used. Ar-
tificial dissipation terms, based on a scalar, non-
isotropic model, are added. The time march pro-
cess is accomplished with a 5-stage, 2nd-order
accurate, Runge-Kutta scheme. The methodol-
ogy is validated through the simulation of flows
inside a 3-D convergent-divergent nozzle within
which a cylinder has been inserted. The simu-
lation capability is applied to study the flowfield
over the first Brazilian Satellite Launch Vehicle,
VLS, during its first-stage flight. VLS results are
compared to available experimental data.

1 Introduction

A substantial amount of work in the institutions
here represented has been devoted to the devel-
opment of reliable computational tools for flow
simulation in the context of the aerodynamic and

Fig. 1 Schematic representation of the complete
VLS configuration.

aerothermodynamic design of the VLS system,
the first Brazilian satellite launcher. Examples of
this development work can be found in Refs. [1]–
[4]. The VLS has a fairly complex configuration,
consisting of four strap-on boosters around a cen-
tral core and with a hammerhead-type payload
shroud. A schematic representation of the vehicle
is presented in Fig. 1. For such a configuration,
it is nearly impossible to generate good quality
single block structured grids. Hence, flow sim-
ulation using a structured grid technology has to
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resort to multiblock techniques. There is strong
interest in the institutions here represented to de-
velop the capability of numerically simulating
flows over vehicles as complex as the VLS since
this can reduce the need for wind tunnel tests,
which typically have to be performed overseas in
the Brazilian case. On the other hand, the interest
for structured grids can be justified since most of
the relevant physical problems that can arise in
these vehicles are associated with turbulent flows
and flow separation. For these cases, structured
grids are usually more suitable and they produce
better correlation with the experimental data.

The group has already developed a fair
amount of experience in the simulation of ax-
isymmetric flows relevant to the VLS operation
and in the simulation of 3-D flows of isolated
configurations[5]–[7]. However, this is the first at-
tempt of calculating the flow over the complete
vehicle. The decision was to use overset multi-
block grids, i.e., the Chimera approach[8]–[10].
The Chimera technique is a very useful tool in
Computational Fluid Dynamics (CFD), since it
offers more versatility for different types of prob-
lems with complex geometries. Hence, the ob-
jective of work here described is to extend the
implementation, which was performed for the
two-dimensional case by some of the present
authors[11; 12], in order to develop the capability
of simulating 3-D flows over the complete VLS
configuration. The 3-D extension is validated
considering a simpler problem, namely that of a
cylinder inside a transonic convergent-divergent
nozzle. Although this problem considers a 3-
D formulation, its solution is actually 2-D for
the case of an inviscid formulation. Hence, the
calculations are compared to previous 2-D solu-
tions for the problem, in the effort of validating
the methodology implemented. The capability is,
then, applied to flow simulations over the com-
plete VLS vehicle. One should observe that the
validation effort is an extremely important aspect
of the present work, since there is no meaning in
computing flows over such a realistic configura-
tion without prior assessment of the correctness
of the code at hand.

The flowfields of interest are assumed to be
governed by the 3-D Euler equations. These
equations are written in conservative form for
general curvilinear coordinates and they are dis-
cretized in a structured, finite difference context.
The spatial discretization scheme is based on cen-
tral differences with the addition of scalar, non-
isotropic artificial dissipation terms. This spa-
tial discretization scheme is 2nd-order accurate
in smooth regions of the flow. Time march uses
an explicit, 5-stage, 2nd-order accurate Runge-
Kutta time-stepping scheme. Convergence accel-
eration for steady state problems uses a variable
time-stepping technique. One of the most impor-
tant aspects in the implementation of a Chimera
scheme concerns the interpolation of informa-
tion across the various overlapping meshes. The
interpolation process needs a previous analysis
in order to define the neighboring points in the
other meshes which will be used in this process,
since it is necessary to identify all the bound-
ary points in the overlapping region together with
their neighboring points. Details of the particu-
lar interpolation scheme adopted in the present
case are discussed in the paper. The forthcom-
ing sections discuss the theoretical formulation
together with the relevant aspects of the Chimera
technique which are used in the present context.
Validation results are presented for the simpler,
convergent-divergent nozzle problem, and calcu-
lations for the complete VLS system are also pre-
sented and discussed.

2 Theoretical Formulation

2.1 Governing Equations

The flows of interest in the present work are sim-
ulated using the Euler equations in three dimen-
sions. One can correctly state that actual flows
over a configuration such as the VLS are neces-
sary viscous and turbulent. However, in the in-
terest of developing the capability of simulating
such 3-D flows over complex, realistic configu-
rations, there was a decision to limit the present
investigation to inviscid flows. The 3-D Eu-
ler equations can be written in conservation-law
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form for a curvilinear coordinate system as

∂Q
∂τ

+
∂E
∂ξ

+
∂F
∂η

+
∂G
∂ζ

= 0 , (1)

where Q is the vector of conserved variables, de-
fined as

Q = J�1
[ρ;ρu;ρv;ρw;e]T . (2)

In these equations, ρ is the density, u, v and w are
the Cartesian velocity components and e is the
total energy per unit of volume. The E , F and G
are the inviscid flux vectors. For instance, E can
be written as

E = J�1

8>>>><
>>>>:

ρU
ρuU + pξx

ρvU + pξy

ρwU + pξz

(e+ p)u� pξt

9>>>>=
>>>>;

, (3)

and similar expressions can be obtained[13] for F
and G. The expressions for the inviscid flux vec-
tors in general curvilinear coordinates give rise to
a new set of velocity components, the contravari-
ant velocity components, which can be written as

U = ξt + uξx + vξy + wξz ,

V = ηt + uηx + vηy + wηz , (4)

W = ζt + uζx + vζy + wζz .

In the previous equations, J is the Jacobian of
the transformation, which can be represented as

J =
�
xξyηzζ + xηyζzξ + xζyξzη

� xξyζzη � xηyξzζ� xζyηzξ
�
�1 . (5)

Expressions for the various metric terms can be
found in Ref. [13], among other references. The
pressure can be obtained from the equation of
state for a perfect gas as

p = (γ�1)

�
e�

1
2

ρ
�
u2 + v2 +w2�� . (6)

A suitable nondimensionalization[14] of the gov-
erning equations has been assumed in order to
write Eq. (1). In particular, the values of flow
properties are made dimensionless with respect
to freestream quantities, as described in Ref. [14].

2.2 Numerical Method

The governing equations were discretized in a fi-
nite difference context on structured hexahedral
meshes which would conform to the bodies in
the computational domain. Spatial derivatives are
discretized using 3-point, central difference op-
erators and, therefore, artificial dissipation terms
must be added to the formulation in order to con-
trol nonlinear instabilities. The artificial dissi-
pation terms used here are based on Turkel and
Vatsa’s scalar model[15]. This model is nonlinear
and non-isotropic. The scaling of the artificial
dissipation operator in each coordinate direction
is weighted by the spectral radius of the corre-
sponding flux Jacobian matrix, thus allowing for
a better control of the explicitly added artificial
dissipation terms. In the present implementation,
the residue operator is defined as

RHSn = �∆t
�
δξEn + δηFn + δζGn� , (7)

where E, F and G are numerical flux vectors.
Here, the δξ , δη and δζ terms represent mid-point
central difference operators in the ξ, η and ζ di-
rections, respectively. The numerical flux vectors
at the mesh mid-points are defined as

Ei�1=2; j;k =
1
2

�
Ei; j;k + Ei�1; j;k

�
� J�1

i�1=2; j;k di�1=2; j;k ,

Fi; j�1=2;k =
1
2

�
Fi; j;k + Fi; j�1;k

�
� J�1

i; j�1=2;k di; j�1=2;k , (8)

Gi; j;k�1=2 =
1
2

�
Gi; j;k + Gi; j;k�1

�
� J�1

i; j;k�1=2 di; j;k�1=2 .

The artificial dissipation operators, di�1=2; j;k,
di; j�1=2;k and di; j;k�1=2, are defined precisely as
described in Ref. [15].

The time march is performed based on a 5-
stage, 2nd-order accurate, hybrid Runge-Kutta
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time-stepping scheme, where

Q
(0)
i = Q

n
i ,

Q
(`)
i = Q

(0)
i �α

`
RHS(`�1) , `= 1, : : : , 5 ,

Q
n+1
i = Q

(5)
i ,

(9)
and α1 =

1
4 , α2 =

1
6 , α3 =

3
8 , α4 =

1
2 and α5 = 1.

It should be emphasized that only the convective
operator inside the RHS term indicated in Eq. (9)
is actually evaluated at every time step. The ar-
tificial dissipation term is only evaluated in the
first and second stages of the time-march proce-
dure. It can be shown that this provides enough
damping to maintain nonlinear stability[16] and,
on the other hand, it yields a more efficient nu-
merical scheme.

Since steady state solutions are the major in-
terest of the present study, a variable time step
convergence acceleration procedure has been im-
plemented. In the present case, the time step is
defined as

∆ti; j;k =
CFL
ci; j;k

. (10)

The characteristic velocity ci; j;k is defined as

ci; j;k = max
�
jU j+a

q
ξ2

x + ξ2
y + ξ2

z ,

jV j+a
q

η2
x +η2

y +η2
z ,

jW j+a
q

ζ2
x + ζ2

y + ζ2
z

�
i; j;k

, (11)

where a is the speed of sound and U , V and W
are the contravariant velocity components.

3 Details of the Chimera Implementation

The mesh point distribution over the physical do-
main in which the flow is to be computed is al-
ways a critical aspect for a successful calcula-
tion. Grid point distribution must be balanced
enough to cover the entire flowfield, avoiding re-
gions with excessive grid coarseness. On the
other hand, points must be clustered in regions
in which phenomena such as expansions and
shock waves occur without exceeding the avail-
able computational resources. The computational
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Fig. 2 Transonic convergent-divergent nozzle
grid with 40� 37� 12 points in the ξ, η and ζ
directions, respectively.

meshes used in the present work were all gen-
erated by algebraic methods within each block.
In particular, the multisurface algebraic grid gen-
eration technique described by Fletcher[17] has
been implemented in a fairly general code for
the rocket configurations. The code allows for
grid clustering at various regions and for a fair
amount of control in the grid point distribution
along the normal direction. Both hyperbolic tan-
gent and exponential grid stretching functions are
used in order to obtain the desired grid clustering
and coarsening over the body.

The convergent-divergent nozzle test case
used two component meshes. The first mesh dis-
cretized the interior of the nozzle whereas the
second one was the cylinder mesh. These in-
dividual grids are shown, respectively, in Figs.
2 and 3. For the complete VLS configuration,
five component meshes were generated, one for
each body which comprises the complete config-
uration. It should be emphasized that, although
the present work is mainly concerned with Eu-
ler solutions, some of these meshes have a fair
amount of grid stretching towards the wall. This
is the result of an attempt to capture details of the
shock reflection phenomena which are expected
to occur in the cluster region of the VLS config-
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Fig. 3 Cylinder grid with 53� 9� 12 points in
the ξ, η and ζ directions, respectively.

uration. Another important aspect, still for the
VLS case, is the need for a sufficiently large num-
ber of points between the lateral boosters and the
central rocket body for an adequate behavior of
the Chimera hole-cutting process. In this process,
points of both meshes are eliminated from the set
of active points in the domain either for being
outside the flow region of interest or in order to
avoid an excessively large region of overlap. This
is performed with sufficient care in order to al-
low the formation of an interpolation area among
the points of adjacent meshes. The existence of a
larger number of points in those overlapping ar-
eas brings an improvement in the precision of the
information exchange among the meshes at the
expense of increasing the computational costs.

The present work uses trilinear interpolation
in order to pass information at each mesh inte-
rior boundary point. It should be emphasized
that there was no attempt to satisfy conservation
in this interpolation process. Since shocks may
be crossing the interface between grid blocks, it
would be interesting to have the enforcement of
some conservation statement at grid interfaces.
However, this was not implemented in the present
case due to the high computational costs asso-
ciated with such an implementation, especially
in the 3-D case, and because the present effort
should be seen as an evolutionary step towards
a more complete simulation capability. Further-

more, the use of a conservative interpolation pro-
cess would certainly increase the code’s mem-
ory requirements, which the authors would like
to avoid at this time. A conservative method at
the interfaces among Chimera meshes that sat-
isfies the conservation laws was developed by
Wang and Yang[18]. A detailed discussion of the
approaches for handling these interior boundary
conditions can be seen in Ref. [19].

The code which actually performs the hole-
cutting process is a tool developed in-house
by the group. The geometry of the computa-
tional domain is fairly simple in the convergent-
divergent nozzle case. Therefore, the discus-
sion that follows will try to concentrate on the
VLS grid preparation. In the case of the VLS
meshes, the code performs the logic elimina-
tion of the mesh points that are inside the other
bodies and, therefore, out of the calculation do-
main. One of the meshes is treated as the pri-
mary mesh whereas the others are considered
secondary meshes. In order to introduce the sec-
ondary meshes into the main mesh, a hole-cutting
procedure is implemented. The size of the hole
is determined by the size of the subdomain that
must be fitted into the main mesh. Once the ge-
ometric parameters at a given interface are deter-
mined, and the neighborhood information is de-
fined, one can concentrate in the particular appli-
cation at hand. The solution process in the flow
solver is essentially based on the following main
steps:

1. Initial condition is imposed for all meshes;

2. The order of operation throughout the var-
ious meshes is defined;

3. The residue is calculated in the first mesh;
4. A new solution is calculated for the first

mesh interior points;
5. Boundary conditions are updated for this

first mesh;
6. The points along the hole boundary are up-

dated in all meshes which have some over-
lapping with this first mesh;

7. The process is restarted from step (3) with
the next mesh.
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This process is repeated until all the meshes have
reached the new solution level at time (n+ 1)∆t.
Afterwards, convergence of the solution is veri-
fied. If the convergence criterion is not satisfied,
the process is restarted from step (3).

4 Results and Discussion

4.1 Convergent-Divergent Nozzle Results

Two physical problems were studied in the
present work. The first problem considers the
flow in a transonic, convergent-divergent nozzle
within which a circular cylinder is introduced.
The calculations for this case were mostly in-
tended to validate the simulation capability im-
plemented. The cylinder was introduced in the
convergent section of the nozzle for the present
case, although previous 2-D flow calculations[12]

have analyzed both the case in which the cylinder
is in the convergent section and the case in which
it is positioned in the divergent nozzle section.
The computational domain is decomposed into
two grid blocks for this case. The first block is the
nozzle grid, indicated in Fig. 2, which is treated
as the main grid for this case. The other block is
formed by the cylinder grid, which is shown in
Fig. 3. The nozzle grid has 40�37�12 points in
the longitudinal (ξ), contoured wall-normal (η)
and depth (ζ) directions, respectively. The cylin-
der grid has 53� 9� 12 points in the circumfer-
ential, wall-normal and depth directions, respec-
tively. A view of a typical composite grid for this
case can be seen in Fig. 4. All linear dimensions
were normalized by the nozzle throat half height.
The cylinder diameter was set to 0:3 length units,
and the cylinder centerline was located along the
nozzle longitudinal axis.

Several 3-D visualizations of inviscid flow
solutions for this case, with the nozzle back pres-
sure set low enough such that the flow is super-
sonic in the divergent section, were performed.
As an example of the quality of the solutions ob-
tained, Fig. 5 presents Mach number contours for
this composite configuration. Other flow visu-
alization plots for this test case are omitted for
the sake of brevity. However, all scalar property

X Y

Z

Fig. 4 Composite grid for cylinder inside the
convergent section of a transonic convergent-
divergent nozzle.

1

2

z

-4

-2

0

2

4

6

x-2

0

2
y

X Y

Z

M
1.9693
1.80519
1.64108
1.47697
1.31287
1.14876
0.98465
0.820541
0.656433
0.492325

Fig. 5 Mach number contours for transonic
convergent-divergent nozzle test case.
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Fig. 6 Comparison of dimensionless wall pres-
sure distributions for 2-D and 3-D calculations.

contour plots indicate good continuity of con-
tour lines across the block interface. Similarly,
velocity vector plots (not shown) also indicate
good continuity of velocity vector orientations
and magnitudes in the overlapping region. This
is a very good indication of appropriate handling
of the block interface communication as well as
of the adequate implementation of the interpola-
tion procedure. A comparison of the present 3-D
results with those obtained for the 2-D case[12]

indicate a perfect match. Clearly, one should
observe that the present test case is actually a
2-D problem run with a 3-D grid, which essen-
tially replicates the 2-D grid on 12 depth planes.
Hence, its results should be identical to those of
the 2-D problem described in Ref. [12]. Com-
parisons of flow properties along the nozzle con-
toured wall and centerline demonstrate this is in-
deed the case here. Hence, this validates the
present 3-D implementation. As an indication
of the type of agreement which is obtained be-
tween 2-D and 3-D results, Fig. 6 presents di-
mensionless pressure distributions along the con-
toured nozzle wall for both cases. As stated, it is
clear that the results are a perfect match.

X

Y

Z

Fig. 7 Partial view of the central body mesh.

4.2 VLS Results

The other set of results here presented refers
to simulations of the flow over the VLS vehi-
cle during its first stage flight. The specific re-
sults included here consider only the case with
freestream Mach number M∞ = 2 and zero an-
gle of attack, which is representative of the sim-
ulations performed so far for this configuration.
Moreover, as the flight time in the lower atmo-
sphere for these satellite launchers is very short
and the vehicle is at supersonic speeds during
most of this flight, it seems appropriate to select a
supersonic flight condition for the present discus-
sion. Furthermore, the purpose of the present pa-
per lies mostly in the description of the capabil-
ity implemented instead than a detailed account
of the VLS aerodynamics.

The complete mesh system used in the
present simulations was divided into 5 compo-
nent meshes. One of these discretizes the com-
putational domain around the central body us-
ing 120� 65� 33 grid points in the longitudi-
nal (ξ), wall-normal (η) and azimuthal (ζ) direc-
tions, respectively. The central body grid does
not assume any symmetry in the vehicle and dis-
cretizes the complete central body. A partial view
of this grid can be seen in Fig. 7. Four identi-
cal meshes are used for the boosters. Each of
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Fig. 8 Visualization of the complete grid for one
booster.

them has 120� 36� 33 grid points in the lon-
gitudinal, normal and circumferential directions,
respectively. The grid for one booster can be
seen in Fig. 8. Since only flow conditions at
low incidence have been considered so far, one
could use only half of this grid and impose sym-
metry conditions along the pitching plane for
the present simulations. However, this has not
been done here and the complete vehicle is rep-
resented. Moreover, as one can observe in Fig.
9, which represents one longitudinal plane of the
complete grid which passes through the axes of
the central body and two boosters, the afterbody
portion of the vehicle has been simplified for the
simulations here reported. One should compare
the vehicle afterbody region as modeled in Figs.
7 and 9 with the schematic representation of the
vehicle in Fig. 1. This simplification is performed
because previous experience[3; 4] with afterbody
flows has demonstrated the need for a viscous tur-
bulent formulation for the adequate description of
such flows. In the future, an accurate description
of the afterbody will be included in the vehicle
model, but this is beyond the scope of the present
effort. Furthermore, the added complexity in the
afterbody region would not contribute to the ma-
jor interest of the present work.

Figure 10 presents a 3-D view of the VLS
mesh, showing the body mesh for all 5 bodies
and one longitudinal plane of the central body
mesh together with the downstream plane for the
same component grid. A detailed control of the
grid point distribution for all meshes was exer-

Fig. 9 Visualization of one longitudinal plane of
the complete VLS configuration after the hole-
cutting process. Particular plane selected in-
cludes two boosters.

X

Y

Z

Fig. 10 Three-dimensional view of the complete
VLS mesh.
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Fig. 11 Mach number contours on the central
body and two opposing boosters for the VLS at
M∞ = 2:0 and zero angle of attack.

cised in order to guarantee a good concentration
of points near the body solid walls. As previously
discussed, although the present work is mainly
concerned with Euler solutions, some of these
meshes have a fair amount of grid stretching to-
wards the wall. This is the result of an attempt to
capture details of the shock reflection phenomena
which are expected to occur in the cluster region.
Another important factor is the concentration of
points in the regions of grid overlap. It is impor-
tant to guarantee a sufficiently large point con-
centration in these regions in order to try to mini-
mize the errors from the interpolation process[19]

among the various meshes. In particular, there
was a definite attempt to guarantee a sufficiently
large number of points between the lateral boost-
ers and the central rocket body for an adequate
behavior of the Chimera hole-cutting process.

Figure 11 exhibits Mach number contours
along the surface of the central body and two of
the boosters. One should observe that the booster
that would be in front of the central body, consid-
ering a lateral view, has been removed in order to
allow the visualization of the contours along the
central core. The several regions affected by the
detached shocks on the booster noses can be seen
in Fig. 11. Moreover, one can also clearly see that
the solution along the two boosters is symmetric,
as one should expect for this zero angle of attack
case.

The alternation of low and high speed regions
indicated in Fig. 11 is associated to an alternation
of high and low pressure regions, respectively, as
indicated in Fig. 12. This figure shows pressure
contours for a longitudinal plane along the vehi-
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2.99242

2.56807
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1.71936

1.29501

0.870657

0.446304

Fig. 12 Pressure contours for a longitudinal
plane which does not include the boosters for
M∞ = 2:0, α = 0 deg and azimuthal angle = 45
deg.

cle which does not include any boosters. This
longitudinal plane is formed by a cut in the com-
plete mesh at an azimuthal position which is a
symmetry plane between two boosters. The im-
print on this plane of the previously described
high and low pressure regions can also be clearly
seen in Fig. 12. A similar visualization is indi-
cated in Fig. 13, except that, in this case, a longi-
tudinal plane which contains the central body and
two boosters is selected. Both the solution in the
field and the solution over the bodies is presented
in the figure. The plots in both figures clearly in-
dicate the bow shock wave ahead of the vehicle,
the expansion which occurs at the forebody cone-
cylinder intersection, the expansion region along
the boattail, and the compression region ahead of
the boosters. The complexity of the flow in the
region of the boosters can also be appreciated in
Fig. 13. It should be noted, however, that the
grid resolution is not yet adequate to accurately
capture the shock reflections between the central
body and the boosters.

Figure 14 exhibits a comparison of the calcu-
lated pressure coefficient, Cp, distribution along
the vehicle central body with the experimental
data. In this case, a longitudinal plane which con-
tains the central body and two booster axes is se-
lected for the comparison. One can observe that
the agreement in the forebody portion of the vehi-
cle is very good. The agreement in the afterbody
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Fig. 13 Pressure contours for a longitudinal
plane which passes through the axes of two
boosters and central body (M∞ = 2:0 and α = 0
deg).
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Fig. 14 Comparison of central body pressure
coefficient distribution for a longitudinal plane
in which there is a minimum distance between
booster and central body (M∞ = 2:0 and α = 0
deg).

region, especially where there is a close proxim-
ity between central body and booster, is not as
good. For instance, one can observe that the ex-
perimental data does indicate the reflection of the
booster bow shock wave at x=L approximately
equal to 0:6. Apparently, the grid resolution was
not fine enough to capture this phenomenon in
the numerical calculations. The striking differ-
ence in the results downstream of x=L �= 0:92 is
due to the fact that the central body nozzle was
not modeled in the present calculations whereas
it was present in the wind tunnel model. There
is also a fair amount of difference in the Cp dis-
tributions in the 0:75 < x=L < 0:90 range. It is
believed that these differences are also due to the
lack of resolution of the computational mesh in
this region.

5 Concluding Remarks

The present paper is concerned with the de-
velopment and validation of a 3-D flow simu-
lation capability which would allow the calcu-
lation of flowfields over realistic launch vehi-
cle configurations. The methodology is vali-
dated through the simulation of flows inside a
3-D convergent-divergent nozzle within which a
cylinder has been inserted. Results for the noz-
zle flow have been presented and discussed for
the case in which the cylinder is located in the
convergent portion of the nozzle. A comparison
of the present 3-D results for the nozzle has in-
dicated very good agreement with previous 2-D
calculations under the same conditions. The sim-
ulation capability is, then, applied to the study
of flowfields over the VLS during its first-stage
flight.

Test cases which consider supersonic flight
for the VLS have been analyzed to date. The
qualitative behavior of the numerical solution is
very good for an Euler simulation. Agreement
with experimental data is also very good in the
forward portions of the vehicle, but the mesh
clearly lacks refinement for a better resolution of
the downstream portions of the flowfield. There
was no apparent degradation of the quality of the
flow solution due to the fact that there are shock
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waves crossing the boundary between overset
meshes. To the authors knowledge, this is the first
time that such accurate and detailed simulations
of the flow over the VLS are performed.
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