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Abstract

This paper appeared as an answer to a
practical question: which would be the
aerodynamic effects of an additional  "ventral
fin system" for an already built subsonic trainer
fighter aircraft?

The presence of the ventral fins influences
the lateral stability of the plane due to the
change of the lateral derivatives and the rotary
damping derivatives. During the first design
stage for a "classic" aircraft shape, the values
of the lateral and damping derivatives are
estimated with closed analytic formulae [5] or
using nomograms [10]. Using this kind of
approximation, there are taken into account
separately the influences of the main controls as
only the contribution of the horizontal tail for
the pitch maneuver, or only the contribution of
the vertical tail for the roll and yaw motions.
Afterwards, the influences of the fuselage and
wing are introduced "artificially" as a
correction of the results, near zero incidences,
and are reasonably only for an aircraft with a
"conventional" configuration.

For an aerodynamic shape with special
aerodynamic devices (e.g. ventral fins, winglets
or canard system), this kind of approach
becomes impractical and the solution is to use
more elaborate computational models (potential
models, models based on  Euler equations,
Navier-Stokes approaches) or wind tunnel
experiment. The problem of establishing the
experimental damping derivatives values is
quite difficult because the model must have a
rotation or oscillatory [6] motion during the
experimental records; that means a special
technical and financial support.

This paper is devoted to the numerical
evaluation of the lateral and rotary damping
derivatives for an aircraft of any configuration,
taken into account all aerodynamic
interferences. Also, is pointed out the
dependence of these values by the lift coefficient
CL, for a range of incidences for which the
aerodynamic phenomena are linear.

In the study of the lateral directional
stability of the aircraft, we used the small
disturbance movement equations, obtained
through the linearization of the general
movement equations around the solution
corresponding to a reference steady flight.

The evaluation of the lateral directional
dynamics is made for the purpose of
comparison. Also, the estimated values of the
modal parameters of the disturbed lateral
directional movement are compared to those
prescribed in regulations.

1  The aerodynamic model

The pressure distribution for a given
aerodynamic configuration (Fig. 1) was
obtained through the analysis of steady flow for
a perfect fluid over a tridimensional body of
known surface S.

Fig. 1 The geometry discretization
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Let Oxyz  be a cartesian axis system for
the configuration.

It is assumed a steady exterior flow, of
unitary value. This can be represented by a

vector ∞V
!

, of components xV∞ , yV∞ , zV∞ , with

the following relation:

1222 =++= ∞∞∞∞ zyx VVVV (1)

1.1   The potential equation

The velocity of the fluid in an arbitrary
point in space, around a body, is given by the
equation (2):

φgradV =
!

(2)

where φ  is the potential of the movement.
Taking into account the continuity

equation, the potential φ  must verify the
Laplace equation (3):
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in the R' region, at the exterior of S.
It is convenient to describe the potential

in two components:

ϕφφ += ∞ (4)

where ∞φ  is the steady undisturbed flow
potential and ϕ  is the disturbance potential due
to the presence of the body.

For ∞φ  the following expresion is taken
into account:

zVyVxV zyx ∞∞∞∞ ++=φ
(5)

1.2  Boundary conditions

The boundary conditions that the potential φ  in
equation (3) must  comply with, impose the
tangential flow at the surface of the body:
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on the S surface.
Also, at great distance the flow is

undisturbed:

∞=φφ  for ∞→r (7)

The conditions described through
equation (3), (6) and (7), applied to the
disturbance potential ϕ  are as follows:

in the region R' (8)
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1.3  The solving of the problem using the
"boundary element"method

The "boundary element" method is a specific
method, developed especially for differential
equations of Laplace or Poisson type.

The way to solve the potential equation
is by using singularities of source type, vortices
or doublets in order to form the integral
equation that describes the potential. By using
the Green theorem, we obtain that the potential
in a point P, exterior to the S surface, is given
by the expression (11):
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where n
!

 is the exterior normal to the surface in
the point q.

Let ( )qσ  be the intensity of a sources
panel in a point q on the surface of the non
lifting body, or on the skeleton of the wing and
( )kΓ  the intensity of the circulation of a
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horseshoe vortex in the point k  on the mediun
surface - considering zero thickness for the
lifting segment of the configuration.

Condition (9) and relation (11) give
equation(12):
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In equation(12), ( )pn
!

 is the "exterior
normal" vector to the surface S in the point p,
with lk identifying the semi infinite horseshoe
vortex.

The numerical solving of the second
kind  Fredholm integral equation (12) relies on
the aproximation of integrals as follows (13):
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are the induced velocity by an unitary sources
panel from the point j, or by a vortex shoe from
the point k in the point i on the surface.

In Fig. 1 is presented the geometry of the
jet trainer aircraft, used in the program. The
image was created using one of the
postprocessing modules of the input data.

2  The dynamic model

We use the dimensional small disturbance
equations system for the lateral directional

movement, obtained through linearization of the
general movement equations, the assumption
being that the motion of the airplane consists of
small deviations from a reference condition of
steady flight.

2.1 The small disturbance equations system

The system can be represented in the general
form:

BuAxx +="
(14)

where the state and control input vectors are:

[ ] [ ] T
ar

T ää;uöprâx ==

Since the controls are fixed we have:

Axx =" (14')

where A is the state matrix.
The eigen values of the state matrix are

as follows: conjugate pair of eigenvalues:

2
21 1 æjùùæë nDDD, −±−= (15)

with Dæ , nDù  being the damping ratio and the
undamped circular frequency, and two real
eigenvalues: Rë , Së .

2.2 The lateral directional movement

We make a comparative analysis over the modal
parameters of the lateral directional movement,
in the case of twin ventral fin layout, relating
them to the limits stipulated in the MIL-F-8785
regulations.
•  Dutch roll mode: it is related to the pair of

complex eigenvalues D,ë 21 . Regulations in

MIL-F-8785 prescribe minimum limits for
the undamped circular frequency nDù  and

the damping ratio Dæ .

•  Roll mode: it is related to the eigenvalue Rë .
MIL-F-8785 prescribes maximum limits for
the time constant RR ëô /1= .

•  Spiral mode: it is related to the eigenvalue

Së . MIL-F-8758 prescribes minimum limits
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for the time  to double the disturbance

S/ët 2ln=2 .

The above mentioned regulations are
correlated with specific flight phases (this case:
phase A) and aircraft class (this case: class IV).

3  Results

The aircraft analyzed here is a jet trainer aircraft
built in Romania, the IAR-99 Swift, presented
in Fig. 1.

The number of elements is 980. The
result of the numerical simulation is the
determination of the pressure coefficients on the
surface of the aircraft. By integrating the
pressure coefficients we obtain the aerodynamic
cofficients CL , Cm , CY , Cl , Cn and the induced
drag coefficient CDi.

The results of the theoretical evaluation
of the aerodynamic lateral derivatives CY•  , Cl•  ,
Cn• , the damping derivatives CYp , Clp , Cnp for
roll, CYr , Clr , Cnr for yaw and their dependance
on the lift coefficient CL are presented for:
•  the aircraft in reference configuration (A);
•  the aircraft with twin ventral fins (AVF).

The numerical results were processed,
leading to analitical expressions that were used
in the stability analysis. These results are
presented in the diagrams in Fig. 2 to Fig. 8.
Despite the fact that the lateral derivatives are
influenced by the lift coefficient through
nonlinear relations [5], we preffered a
mathematical linearization to emphasize the
tendency of the dynamic effects.

The analysis was made for both (A) and
(AVF) configurations.

The results for the lateral directional
stability analysis are presented in Fig. 9 and Fig.
10. The diagrams show relevant modifications
for the modal parameters in dutch roll.
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4  Conclusions

The presence of  ventral fins modifies the lateral
derivatives Cn• , CY•  to a maximum of 30% and
Cl•  with less.

The values of the damping derivatives
CYp, Cnp and CYr, Cnr are modified to maximum
40%, with Clp and Clr almost unchanged.

The ventral fins solution is rational way
to improve the lateral directional dynamics, with
minimum associated alteration of the structure
of the aircraft.

It seems that the ventral fins have the
effect of nearing the aircraft towards the Level 1
requirements of stability for dutch roll, not
meeting them entirely though.
•  Dutch roll mode: the aircraft is in Level 2 of

stability for dutch roll, the prescribed
condition 19.0≥Dζ  not being met.
Nevertheless, an increase of up to 50% of the
damping ratio is obtained due to the presence of
ventral fins (AVF).

•  Roll and spiral modes: the aircraft meets the
requirements in both configurations (A) and
(AVF) for Level 1 of  stability; 1≤Rτ  for

roll and sec122 ≥t  for spiral mode. The
ventral fins have little impact for these
modes.

The thoeretical results obtained were
confirmed by initial experiments, in the
subsonic wind tunnels of the National Institute
for Aerospace Research, for incompressible
flows.
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