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Abstract

In the new ultra-light helicopter, just now
designed in the Institute of Aviation, a light-
weight supercritical tail rotor drive shaft will
be used. This paper presents a nonlinear
dynamic model of such a shaft for the analysis
of its flexural vibrations.

The model assumes that the shaft has
several deformable supports with elastic and
damping elements and is loaded by external
forces caused by its local unbalance.

The equations of motion have been
obtained making use of the finite element
method and dividing the shaft into several
elements between successive supports.

In order to ensure easy crossing through a
resonance region, a nonlinear dry friction
damper has been applied in the shaft structure.
Depending on the parameters of this damper,
we can obtain various bending vibrations of the
shaft under consideration. There can be
regular or chaotic vibrations of the shaft.

1. Introduction

The dynamics of a supercritical tail rotor drive
shaft is an interesting nonlinear problem of
easy crossing through a resonance region [1]-
[6].

The dynamic model considered in this
paper assumes that the shaft is a continuous
structure having several deformable supports
with elastic and damping elements and is
loaded by external forces caused by its local
unbalance [1]-[3], [6].

The equations of motion have been
determined by making  use  of  the finite element
method. Displacements of elements axes have
been obtained by means of Hermite’s
polynomials and elements with four degrees of
freedom have been determined in every of  both
considered planes [6].

Equations of motion of particular elements
obtained from the virtual work principle, have
been transformed into complex form and matrix
equation of the whole shaft structure has been
obtained including shaft supports.

A nonlinear dry friction damper has been
applied in the shaft structure to ensure easy
crossing through the resonance region.
Depending on the parameters of the damper,
various bending vibrations of the shaft can be
obtained, which can be regular or chaotic ones
[4], [5].

2. Equations of the Problem

Let us consider a supercritical tail rotor drive
shaft moving with variable angular speed Ω  and
composed of a structure with continuous mass
and elasticity distribution, having several
deformable supports with elastic and damping
elements and loaded by external forces caused
by its local unbalance (Fig.1).

The equations of shaft motion can be
obtained in a fixed  orthogonal system of
coordinates 0xyz where the x-axis determines the
position of a non-deformable shaft axis.

The equations of shaft motions will be
developed making use of the finite element
method and Hermite’s polynomials for
describing displacements of an element axis.
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Fig.1. Sketch of the shaft.

By way of example we can show the
equations of motion for a j-finite element
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are  examples  of  the displacement vectors of
j-finite element in the yx and zx planes,  and

zj1-zjyj1
 , , , uuuu

yj−  are dimensionless displace-

ments, which are referred to L-length of the
shaft, while zj1-zjyj1  , , , θθθθ −yj are angles of

rotations of both edges of j-finite element in yx
and zx planes.

ojjjj IImB    ;1+=    are inertial matrices,

jc  is external damping matrix

jK is stiffness matrix,

ezjeyj FF ,  are edge forces vectors and
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are external, unbalance forces vectors, Poj is
vector of the amplitude of  unbalance forces.
   If we introduce a complex vector of the
element displacements
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Eqs. (1) can be presented in the complex form
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If we make the sum by adding together Eqs.
(1) or (5) for nj ,..,2,1= , where n is the number
of finite elements into which the shaft is divided,
we obtain the matrix equations of the whole shaft
structure.
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or in the complex form
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Equations (8) or (9) enable us to study the
dynamics of shaft rotation with variable angular
velocity Ω  and to determine a method of easy
crossing through a resonance region.

3. Dry Friction Damper

A nonlinear dry friction damper has been applied
in the tail rotor drive shaft structure in order to
ensure easy crossing  through the resonance
region. Its sketch is presented in Fig. 2.

Fig.2. Sketch of the damper.
A disk with a central hole of D-diameter is

the essential part of the damper. The disk is
located in a housing, which causes a dry friction
on both sides of the disk by means of the
controlled
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press. It results in a resisting force f of the
damper.

The shaft passes through the central hole
of the damper and there is a gap between the
hole and the shaft

)(5.0 dDs −=     (10)
where d is the shaft diameter.

The shaft can move the damper disk in the
yz-plane after overcoming the resistance force f.
Tangent friction between the rotating shaft and
the damper disk is neglected in the damper
model and it is assumed that the force F of
interaction between the shaft and the damper is
acting along the line conecting their centers
(Fig. 2). The mass of the damper disk is also
neglected.

It is assumed that the damper disk has an
elastic zone of Ds diameter in which the force F
is varying from zero to f (Fig.3).

Fig.3. The force F of interaction.

The damper disk can move together with
the shaft under its pressure when the force F
has its maximal value.

The characteristic parameters of the
damper are :
f maximal force,
s = (D - d)/2 gap,
h = (Ds - D)/2 width of elastic zone,
a(0), b(0) initial position.

The mathematical model of the damper is
the following
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The force F is introduced into Eqs. (8), (9)
as an additional edge force.

4. Simulation of the crossing through the
resonance region

The crossing through the resonance region is
investigated under assumption that the shaft is
homogeneous and has the following parameters :
L = 3.32  m       length,
ρ = 2700  kg/m3   density,
A = 0.00022  m2    cross-sectional area,
E = 0.7·1011  Pa   Young modulus,
I = 59.3·10-9  m4   moment of inertia,
e = 0.001  m       mass excentrity,
c = 0.5  Ns/m       external damping,
kp = 106  N/m       rigidity of supports,
cp = 0  Ns/m       damping in the supports.
The shaft is divided into four finite elements of
the same length. Equations of motion (8) have
been solved by means of the Runge-Kutta
method.
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In order to present the damper parameters
and results of computation in a dimensionless
form an approximated mass m0 and rigidity k0

of the shaft have been determined making use
of Rayleigh method :

ALm ρ5.00 ≈  ; 30

48

L
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k =     (15)

It results that the first frequency of the shaft is:
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Dimensionless parameters of the damper are:

em

f
f 2

00

*
Ω

=  ; 
e

s
s =*  ; 

e

h
h =* .      (17)

Calculations have been performed for the
following variants of the gap: s* = 1, 2, 3 ,4.
It has been also assumed that:
a(0) = b(0) = 0 ; h = f·10-5 [m].      (18)

Displacements of the shaft have been
analyzed for the point located in the center o
the shaft (x/L = 0.5). The damper was located
in the same point (Fig.1). The velocity of
rotation of the shaft was assumed as:

ttt 10)0()( =+Ω=Ω ε .      (19)
Results of calculations have been presented in
the form of dimensionless displacement R/e
depending on dimensionless velocity of
rotation Ω/Ω0 for variable parameters: s*, f*,
h*. Results are presented in the next Figures.
In Fig.4 we can see the vibrations of the shaft
without damper (s* = f* = h* = 0).

Fig.4  s* = 0 ; f* = 0 ; h* = 0.

In the Figs. 5 to 10 we can see vibrations for the
shaft with the damper without gap (s* = 0) and
variable f*, h*.

Fig.5  s* = 0 ; f* = 0.183 ; h* = 0.01.

Fig.6  s* = 0 ; f* = 0.367 ; h* = 0.02.

Fig.7  s* = 0 ; f* = 0.734 ; h* = 0.04.
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Fig.8  s* = 0 ; f* = 1.468 ; h* = 0.08.

Fig.9  s* = 0 ; f* = 2.935 ; h* = 0.16.

Fig.10  s* = 0 ; f* = 5.871 ; h* = 0.32.

In the next Figs. 11 to 16 we can see the course
of vibrations for the shaft with the damper with
the gap  s* = 1 and variable f*, h*.

Fig.11  s* = 1 ; f* = 0.183 ; h* = 0.01.

Fig.12  s* = 1 ; f* = 0.367 ; h* = 0.02.

Fig.13  s* = 1 ; f* = 0.734 ; h* = 0.04.
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Fig.14  s* = 1 ; f* = 1.468 ; h* = 0.08.

Fig.15  s* = 1 ; f* = 2.935 ; h* = 0.16.

Fig.16  s* = 1 ; f* = 5.871 ; h* = 0.32.

In the Figs. 17 to 22 the shaft vibrations are
presented for s* = 2 and variable f*, h*.

Fig.17  s* = 2 ; f* = 0.183 ; h* = 0.01.

Fig.18  s* = 2 ; f* = 0.367 ; h* = 0.02.

Fig.19  s* = 2 ; f* = 0.734 ; h* = 0.04.
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Fig.20  s* = 2 ; f* = 1.468 ; h* = 0.08.

Fig.21  s* = 2 ; f* = 2.935 ; h* = 0.16.

Fig.22  s* = 2 ; f* = 5.871 ; h* = 0.32.

In the next Figs. 23 to 28 the shaft vibrations are
shown for s* = 4 and variable f*, h*.

Fig.23  s* = 4 ; f* = 0.183 ; h* = 0.01.

Fig.24  s* = 4 ; f* = 0.367 ; h* = 0.02.

Fig.25  s* = 4 ; f* = 0.734 ; h* = 0.04.
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Fig.26  s* = 4 ; f* = 1.468 ; h* = 0.08.

Fig.27  s* = 4 ; f* = 2.935 ; h* = 0.16.

Fig.28  s* = 4 ; f* = 5.871 ; h* = 0.32.

From this pictures we can see that for small
values of force f* we have resonance peaks
independent of gap s* and width h*.

For sufficiently high values of the damper force
f* resonance peak can be completely destroyed.
From these pictures we see that for sufficiently
large gap and force and Ω/Ω0 irregular vibrations
can appear (Figs. 19,20,21,22,27,28). The course
of these irregular vibrations is shown in Figs.29-
31, for the data of Fig.27 and Ω/Ω0 = 2,5.

Fig.29 Trajectory of the shaft center for: s* = 4 ; 
f* = 2.935 ; h* = 0.16 ; Ω/Ω0 = 2.5 ; ∆t ≈ 5sec.

Fig.30 Poincare map for uy ; s* = 4 ; f* = 2.935 ; 
h* =0.16 ; Ω/Ω0 = 2.5.
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Fig.31 Poincare map for uz ; s* = 4 ; f* = 2.935; 
h* =0.16 ; Ω/Ω 0 = 2.5.

From pictures in Figs. 29 to 31 we see that
vibrations of the shaft center in this case are
completely chaotic.

5. Conclusions

Results of analysis enable us to state that dry
friction damper under investigation effectively
limits the shaft vibrations during crossing
through the resonance region and it increases
critical velocity of shaft rotation. We can
distinguish two characteristic cases:

1) for small gap s* < 1.5,
2) for large gap s* > 1.5.
Value of s* = 1.5 is the border between

two cases, because far away from the first reso-
nance peak, the settled amplitude of mentioned
shaft center equals R/e ≈ 1.5 (Fig.4). 

In the first case the shaft vibrations are
regular but it has steady contact with the
damper what is undesirable in practice.

In the second case for small values of
force f*, the shaft after resonance crossing, can
rotate without contact with the damper. For
greater values of f* the contact with damper is
steady and irregular vibrations can appear.
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