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Abstract

The free bending vibrations of orthotropic base
plates or panels with a bonded central and non-central
stiffening plate strip are analyzed and are compared with
each other. In both cases, the base plate or panel and the
stiffening . strips are made of dissimilar, orthotropic
Mindlin plates and they are joined together by a very

thin, yet flexible adhesive layer. The governing system of

partial differential equations are first reduced to a special
first order form and then, integrated by the “Modified

Version of the Transfer Matrix Method”. The effects of

the bonded central and non-central stiffening strip on the
mode shapes and natural frequencies of the two
composite plate system are investigated. It is shown that
the position of the stiffening plate strip greatly influence
the mode shapes and natural frequencies of the composite
plate or panel system.

introduction

Rapid developments in “Composite Materials”
technology, together with the progress in the very strong
epoxy-based “Adhesive Bonding” methods are making
the “composites” more and more feasible in the
aerospace vehicle, marine vehicle and mine sweeper
structures, structural panels and components. Also, the
composites are gradually finding a place in other areas
such as automative engineering technology, too[1,2]. In
the design of flight vehicle structures, theoretical as well
as experimental knowledge and information are needed
on the free and forced vibrations of the stiffened
composite plates or panels. This kind of knowledge is
extremely important in the studies of panel flutter, sonic
fatigue, and sound transmission in panels of the complex
structural systems used in aircraft structures.

Some of the most important studies which can be
found in the engineering and scientific literature on the
free vibrations on the stiffened isotropic or anisotropic,
thin plates are in [3,4,5,6,7,8,9]. In [3] and [4], isotropic

T
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thin plates with a central stiffener are analyzed. The
vibration analysis of anisotropic thin plates with a central
stiffener are presented in [5]. The free vibrations of
isotropic thin plates with two or more stiffeners are
considered in [6,7,8,9]. In some papers such as [3,7,8] the
stiffeners are beams with rectangular cross-sections.

In aforementioned studies, either isotropic or
anisotropic, Classical Thin Plate Theory (CPT) are
employed to develop dynamic equations. These put very
severe restrictions on the usefulness of the natural
frequencies and mode shapes obtained in these studies.
Also, in the deformation of multi-layer composite plates,
the importance of the transverse shear deformations are
shown in [10,11].

The main objective of this study, therefore, is to
analyze free, flexural vibrations, of relatively thick,
composite base plate or panel stiffened by a central or
non-central, narrow plate strip in terms of “two cases”. In
both cases, the base plate and stiffening plate strip are to
be dissimilar orthotropic plates connected by a relatively
very thin, yet deformable adhesive layer. In this study,
the dynamic equations of relatively thick, orthotropic
Mindlin plates are developed by means of the ‘variational
methods. Thus, the dynamic equations are obtained as an
extension of the Mindlin Plate Theory of isotropic plates
[12] to the case of orthotropic plates. In literature, several
Higher Order Shear Deformation Theories of Plates
(HSDT) [13,14] are also available. However, the natural
frequencies obtained by the First Order Shear
Deformation Theories (FSDT) such [12] and by (HSDT)
are quite similar [14]. Therefore, in this study, the
Mindlin Plate Theory for orthotropic plates is used.

Theoretical Analysis

The “two cases” of the stiffened composite plate
or panel system to be analyzed here are given in terms of
their two general configurations and longitudinal cuts in
Figures 1 a, b and Figures 2 a, b, respectively. In the
“First Case”, the orthotropic, composite base plate with a
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central stiffening plate strip and their longitudinal cross-
section are given in Figure 1 a, b. In the “Second Case”,
the orthotropic, composite base plate or panel with non-
central stiffening plate presented in Figure 2 a, b. In both
cases, the stiffening plate strip is bonded to the base plate
by a very thin, elastic adhesive layer. The adhesive layer
is considered to be an elastic continuum with transverse
normal and shear deformations. The system of coordinate
axes are shown in Figures 1 and 2. The entire stiffened,
composite plate or panel system of “two cases”, are
divided into 3 regions in the y-direction. These are Part.
L, Part. II and Part. III as shown in Figures 2 a and 2 b,
respectively.

For the “First Case”, the equations of motion of
the orthotropic Mindlin Plates are as follows:

For Part. I region (two-layer plate),
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where the underlined terms are the coupling terms
between the upper stiffening strip and the lower base
plate due to the in-between adhesive layer. And E,and G,
are the adhesive layer elastic constants.

* For Part. II and Part. II] regions (one-layer plate),
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where in (1) and (2) ¢, ¢y and ¢y indicate the length

of the two-layer and one-layer plate regions in Figure 1.
b.

Similarly, for the “Second Case”, the equations of
motion of the orthotropic Mindlin Plates are:
For Part [ region (two-layer plate),
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where the underlined terms are the coupling terms of the
upper stiffening strip and lower base plate due to the in-
between adhesive layer.

For Part. II and Part. I regions (one-layer plate),
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where, again, in (3) and (4), ¢{, ¢} and ¢} correspond
to the length of the two-layer and one-layer plate regions
in Figure 2. b.

Since the boundary conditions at x=0,a are simple
support conditions, then, the displacement field (or
transverse displacements and angle of rotations) which
satisfy the support conditions at x=0,a can be expressed
in the classical “Levy Type Solutions” for both the
stiffening strip and the base plate in the x-direction.
Therefore, in the “First Case”, the “Levy Type Solutions”
in the x-direction are :

For Part. I region,
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where “barred” terms are the dimensionless transverse
displacement and the dimensionless angle of rotation
quantities with (j=1) corresponding to the upper plate
strip and (j=2) to the lower base plate. Also, O, IS the
dimensionless natural frequency of the entire composite
plate or panel system.

For Part. II region,

0

wgz)(naénst)= 2

Ms
€|
EIO)

(é ") cos( m-rm)eia""'t

—

=
[

—

s 3
Ms
<
LI

—

(E_, I ) sin(mnn)ei‘D mnt s

\ugz)(mén’t) =

—

tMs 7

hl\_V&z)(é “) sin( mnn)eiam"t

W(z)(milht)= i

m=1

=
i
—

(0<;<ey) 6)
For Part. IIf region, a similar equation to (6) may be
written by replacing &,~&,, fy— ¢y in (6). In the
above equations (5), (6) for Parts I, II, I appearing
n=x/a, Er=yi/or, Ey=yn/tw, Em=ym/m are
dimensionless coordinates in the x and y directions.
Similar expressions to (5) and (6) may be written
for the “Second Case”, too, by replacing

Er=>&i=y1/0, Su—~> & =yu/t » Em~ & = ym/ G -
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are eliminated from the
governing equations of the “First Case” in (1) and (2) and
similarly for the “Second Case” in (3) and (4).

After some algebraic manipulations, the equations
(1) and (2) for the “First Case” in combination with the

stress resultant- displacement expressions can be put into

a special “first order” form in -:E. Then, the governing

system of coupled ordinary differential equations in the
“First Case” are reduced to the following in matrix form
or state-vector form (see also Figure 1. b.).
For Part. I region, (two-layer plate)
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For Part. I] region, (one-layer plate)
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For Part. I} region, (one-layer plate)
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where the column matrix or the state-vector {?,9)}

includes  “dimensionless  fundamental
variables” of the problem such that,

{70} - (0,70 w0:m0, M9 20} 612 (o)
corrésponding to the upper stiffening plate strip (j=1) and
to the lower base plate (j=2). Again, the “barred”
quantities are the dimensionless quantities. The
coefficient matrices in (7), (8), (9) include dimensionless
natural frequency parameter @, together with the
dimensionless geometric and material constants.

In the “First Case”, in the above system of
equations in (7), the arbitrary boundary conditions for the
stiffening plate strip at £=0,1 and the continuity
conditions for the lower base plate in the y- or E-
direction at £=0,1 have to be satisfied. Also, in (8), the
arbitrary boundary conditions at £,;,=0 and the continuity
conditions at &,=1 in the y- or &- direction are to be
considered. Similarly, in (9), the arbitrary boundary
conditions at £;;=1 and the continuity conditions at Eu=0
are to be satisfied.

‘ In a similar manner, the goveming system of
coupled ordinary differential equations (7), (8), (9) with
the corresponding arbitrary boundary conditions and the
continuity conditions in &-direction can be written for the
“Second Case™.

dependent

Solution Method

The above system of the first order ordinary
differential equations in the state-vector form for the
“First Case” can be integrated by making use a “Modified

Version of the Transfer Matrix Method” which is, with
some modifications, used by the present authors in
[15,16] and in {17,18]. Similarly, for the “Second Case”
the same solution technique may be employed.

The “Modified Version of the Transfer Matrix
Method” is a combination of “Levy’s Method”, the
“Transfer Matrix Method” and the “Integrating Matrix
Method”. )

As a preliminary step, the first order governing
differential equations in the state-vector form are
discritized. For this purpose, the dimensionless dependent
variables and the coefficient matrices in equations N,
(8), (9) with respect to the dependent variables &b & €
[1I> respectively. This is done by dividing Part I, Part 1I
and Part III regions of Figures 2 and 3, into sufficient
number of segments along &-directions. Then, the
governing differential equations are multiplied by the
appropriate “Global Integrating Matrices” [ ] which

includes 12 square integrating sub matrices [q of

dimensions (i2n, x 12n,). Here, n, is the number of
discritizing points along Part I region. Then, this yields
for Part-I region,

e

where,
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and the subscripts "m" is dropped from the state-vectors
for convenience. The superscripts in (12) as before
correspond to the upper stiffening strip (j=1) and the
lower base plate (j=2), respectively in Part. 1 region.
Also, the notation “e" indicates the discritization of a
particular matrix along the &,-direction. The subscript “1”
in the state-vectors in (11), (12) indicates that the state-
vectors are evaluated at the “initial end point E1=0" in
Part I region. .
Furthermore, a relation between the state-vector at
a general station along the £j-directions and a state-vector
at the "initial end point £=0" is obtained by rearranging

(11) such that,

-1
Al ] e
where [3'1} is the discritized version of the "Transfer

Matrix" which is obtained from the integrating matrices.
Finally, in this method, the discritized “Transfer

Matrix” [ 2] transfers the state-vectors at the “initial end
point £;=0" and an arbitrary station along the Part. I
region. Therefore, a relation between the state-vectors at
the “initial end point £;=0" and the “final end point £1=1"
in Part. I region are obtained. Similar expressions can be
obtained for Part. II and Part. IIl regions. Then, by
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making use of (13) and similar expressions in
combination with the continuity conditions between the
regions, and the support conditions at initial and final
ends in the y-direction, one can obtain a homogenous
matrix equation in which the determinant of the

coefficient matrix yields the natural frequencies @, as
its roots where

= 4.2 [i2p(l

Omn = P12 ‘”mn/*'l BQ (m,;n=123...) (14)
Q

=6mn

Some Numerical Resuits and Conclusions

The theorical formulation and the method of
solution developed in this study are applied to some
numerical cases. These are shown in Figure 1 (for the
“First Case”) and Figure 2 (for the “Second Case”). The
geometric and the material characteristics of the
stiffening plate strip and the composite base plate or
panel are given in Table 1 and Table 2 for the “First
Case” and the “Second Case”, respectively. Only the
boundary conditions in the y-direction are given on
Figures. Thus, the first two letters indicate the conditions
for the upper stiffening strip, and subsequent two letters
show conditions for the lower base plate, both in the y-
direction.

In Figure 3, the first and third mode shapes and
the corresponding dimensionless frequencies are
presented for the “First Case”. Similarly, in Figure 4, the
first» and third mode shapes and their dimensionless
frequencies are given for the “Second Case”. It can be
seen from Figure 3 and 4 that the mode shapes and the
corresponding frequencies are considerably different in
the “two cases”. Also, in the “First Case”, there are
symmetric and antisymmetric modes following one after
the other, while, in the “second case”, the modes do not
show this property.

In Figures 4 and 5, the natural frequencies versus
the “Joint Length Ratio b,/b,” are plotted for the FFCC
boundary conditions for the “First Case” and for the
“Second Case”, respectively. It is obvious that there are
drastic differences in the frequencies depending on the
noncentrality or the eccentricity of the position of
stiffening strip. According to the mode shapes and the
natural frequencies for the same plate or panel system,
the one with a central stiffening strip is relatively stiffer
with consequently higher frequencies.
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TABLE 1. MATERIAL PROPERTIES AND DIMENSIONS (“First Case”)
Graphite - Epoxy Keviar - Epoxy Adhesive Layer Adhesive Layer

Upper Plate Lower Plate (soft) (hard)
Ex=11.71 Gpa Ex =5.50 GPa E, /B§|I)=10-5 E,/B{)=0.340
Ey=137.8 GPa Ey =76.0 GPa G. /B =105
Gxy=5.51 GPa Gxy=2.10 GPa attn G,/B=0.119
Gyz=2.50 GPa Gxz =1.50 GPa ha=0.15x10"3 m. 3
Gy =3.00 GPa Gy =2.00 GPa ha =0.15x10° m.
Vxy =0.0213 vxy = 0.024 E, =4.0 GPa
vyx=0.25 vyx =0.34
p, =L.6 gricm? p, =1.3 gr/em3 G,=1.4 GPa

h1=h2=h=0.007 m.
a=0.5m.
b=05 m.

h;=h,=h=0.007 m.
a=0.5m.
by=1.0 m.

Upper plate (j=1) =Stiffening Plate Strip
Lower plate (j=2) =Base Plate or Panel

TABLE 2. MATERIAL PROPERTIES AND DIMENSIONS (“Second Case”)

h1=h2=h=0.007 m.
a=0.5m.

b1=0.3 m.

b=035 m.

h;=h,=h=0.007 m.
a=0.5m.
b2=1.0 m.

Graphit - Epoxy Kevlar - Epoxy Adhesive Layer Adhesive Layer
Upper Plate Lower Plate (saf?) (hard)

Ex=11.71 GPa Ex =5.50 GPa E, /Bﬂ)=10'5 E, /Bfll) =0.340
Ey=137.8 GPa Ey=76.0 GPa G. /8M=10-5
Gxy=5.51 GPa Gxy=2.10 GPa a G, /B =0.119 )
Gxz=2.50 GPa Gxz =1.50 GPa ha =0.15x10"3 m. 3
Gy;=3.00 GPa Gy =2.00 GPa ha =0.15x10°% m.
Vxy =0.0213 vxy = 0.024 E,=4.0 GPa
Vyx = 0.25 Vyx = 0.34
p; =1.6 gricm?3 p, =1.3 gr/em3 G,=1.4 GPa

Upper plate (j=1) =Stiffening Plate Strip
Lower plate (j=2) =Base Plate or Panel
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Figure 1. a. General Configuration and Coordinate System of Orthotropic, Composite Plate
or Panel with Central Stiffening Plate Strip (“First Case”)
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Figure 1. b. Longitudinal Cross-Section and Coordinate System of Orthotropic, Composite Plate
or Panel with Central Stiffening Plate Strip (“First Case”)
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a) First Mode with O = 44 =1097.508

b) Third Mode with O3 =@, = 1265.070

Figure 3. Mode Shapes and Natural Frequencies of Orthotropic, Composite Plate
or Panel with Central Stiffening Plate Strip (“First Case”)

(Plate 1= Graphite-Epoxy, Plate 2= Kevlar-Epoxy)
(“Hard” Adhesive, Joint Length=0.30 m.)
(Boundary Conditions in y-direction FFCC)
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a) First Mode with O =044 =306.736

b) Third Mode with Q3 =&44 = 773.662

Figure 4. Mode Shapes and Natural Frequericies of Orthotropic, Composite Plate
or Panel with Non-Central Stiffening Plate Strip (“Second Case”)

(Plate 1= Graphite-Epoxy, Plate 2= Kevlar-Epoxy)
(“Hard” Adhesive, Joint Length=0.30 m.)
(Boundary Conditions in y-direction FFCC)




Copyright © 1998, by the International Council of the Aeronautical Sciences (ICAS)
and the American Institute of Aeronautics and Astronautics, Inc.

2.0x10* T
I SRR R U HUR [ R SO U JRN PO [SSSR  YOQRPR, PRS e O U S M S
[ R B 1
' A e Sl e Tnlie Sl il i | FFCC i T S e Bl St ol il Hd
LV S O S S O T — oL
L N e [ [
LA S H e R B e e S e B i e R e S
B 3 [ S L S S S SO N N S ST S [N
| ! [ S
R e ®  Fourth mode | --r-1-/-
S U R I N S T - Third mode S N E S (A
L T e T [ S
'“i“]‘T‘i__x“T_:“ v Second mode T T T T
it bl K i o @] FirstMode,m=1-4—#~'——‘~‘
10x104 [ ! | ,

0.5x10*

Dimensionless Natural Frequency @

Joint Length Ratio b, /b,

Figure 5. Influence of “Joint Length Ratio b,/b,” on Frequencies of Orthotropic, Composite Plate
or Panel with Central Stiffening Plate Strip (“First Case”)

(Plate 1= Graphite-Epoxy, Plate 2= Kevlar-Epoxy)
. (“Hard” Adhesive, Joint Length=0.30 m.)
(Boundary Conditions in y-direction FFCC)
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Figure 6. Influence of “Joint Length Ratio b,/b,” on Frequencies of Orthotropic, Composite Plate
or Panel with Non-Central Stiffening Plate Strip (“Second Case”)

(Plate 1= Graphite-Epoxy, Plate 2= Kevlar-Epoxy)
(“Hard” Adhesive, Joint Length=0.30 m.)
(Boundary Conditions in y-direction FFCC)
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