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Abstract

The longitudinal stability of a symmetnc
aircraft, is exhamined beyond the well known
linearization about a sleady mean stale, leading to
the phugoid and short-period modes. The exact
equations of longitudinal motion of a symmetric
gircraft are considered, i.e. balance of longitudinat
and transverse foroe (without side forcej and balance
of pitching moment; the drag terms included are
friction and lift-induced drag, plus non-symmetric lift-
drag polar; the mass densiy is taken as a constant,
as well as thrust along the flight path. Elimination
would lead to e fourth-order non-inear differential
equation for the angle-of-attack relative (o the angie
of zero pitching moment, if the acceleration of fight
path angle is neglected, and the flight path angle is
maoderate. in the case of small flight path angle, it
simplifies to a third-order differential equation,
containing a set of non-linear corrections, to a
second-order linear equation, specifying sinusoidal
asciffation of the relative angie-of-attack. it is shown,
by a small perturbation method, that forced
oscillations occur at its harmonics (viz. double or
triple frequency), and free osciilations can have
decaying or growing amplitude. In the case of
statically stable aircraft, the oscillations have a short
period and grow or decay slowly. In the case of
stafically unstable aircraft the growth is rapid, as in 2
PIO,

List of Symbols

Constant parameter defined by eq. (8b)
Amplitude of free zerc-order ascillation
Thrust-to-mass ratio, eq. (13a)

Wing span {m)

Amplitude of free first-order oscillations, eq.
(44a)

NMean aerodynamical chard (m)
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[2]

Copyright © 1998 by ICAS and AIAA. All rights reserved

ZZTIX T T@T

C4,C2,Ca Amplitudes of forced first-order
oscillations, eq. (39)

C i,c‘ Amplitudes of free first-order
oscillations, €q. (45)

Cp  Drag coefficient

Cpo Drag caefficient at zero angle of attack

Cpa  Slope of drag coefficient

Cpt  Friction drag coefficient

Cr Lift coefficient

Cro  Lift coefficient at zero angle-of-attack

CLa  Slope of lift coefficient (rad -1)

CM  Pitching moment coefficient
Cmo  Pitching moment coefficient at zero angle-

of-attack

Cmo,  Slope of pitching moment coefficient

D Drag Force (kN)

t Corf‘stant parameter defined by eq. (21a),
(m™h)

b Cor;stant parameter defined by eq. (13hb),
(m™) i

fo Parameter in thrust as functlon of
airspeed, eq. {14a)
Non-linear return force, eq.(34)
Acceleration of gravity (9.81m s-2)
Constant parameter defined by eq. (21b)
Conslant parameter defined by eq. (13¢)
Transverse moment of inertia (Kg m2)
Coefficient of lift-induced drag, eq. (5)
Lift force
Mass (Ka)
Pitching moment -
Number of cycles to double or halve
amplitude

r Constant parameter defined by eq. (31)

] Reference or wing area (m?)

t Time

T Thrust (kN)

U airspeed {(nvs)
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Weight

Angle-of-attack (rad)

Angle-of-attack for zero lift (rad), eq. {4b)
Angle-of-attack for zero pitching moment
(rad), eq. (6b)

Flight path angle (rad)

Constant parameter defined by eq. (21c)
Constant parameter defined by eq. (13d)
Angle-of-attack relative to angle-of-attack
for zero pitching moment {rad), q. (18b)
Relative angle-of-attack for fundamental
oscillation (rad), eq. (32a)

o1 Relative angle-of-atlack for first-order
perturbation (rad), eq. (36a)

Relative angle-of-attack for free, first-order
osciliation, eq. (442)

Coefficient in non-parabolic lift-drag polar,
eq. (5

Constant non-linearity parameter, €q.(35)
Frequency of oscillgtion (rad s~1), eq.
(36b)

wp Frequency of fundamental oscillation {rad
: &), eq. (29)

8 | meo= 3895

8% > §g

o Perturbation of frequency of oscillation,
eq, (36b)

O« Frequency of angle-of-attack oscillations,
eq. (28b)

p Mass density (Kg m™3)

T Time to double or halve amplitude (s)

10 Period of escillation (s)

6 Angle-of-attack relative to angle-of-attack
for zero lift (rad), eq. (9a)

01 Angle-of-attack for zero pitching moment
relative to angle-of-attack for zero lift (rad),
eq. (16b)

v Growth or decay rate of oscillations (s*h,
eq. (46)

Introduction

The equations of the longitudinal motion of a
symmetric aeroplane, are usually solved in the
literature [1-10], using the method [11] of linearization
of the fourth-order system about a mean state of
steady flight, to obtain the frequency and damping of
the phugoid and short period modes. An even older
approach {12] , is to solve exaclly the non-linear
‘eguations of motion, as shown by the phugoid [13].
The fuli system of non-linear equations of longitudinal
stability is quite complex, and its solution has been
approached by the method of bifurcations, together
with numerical methads, viz. in the investigation of
spins [13-20]. Explicit analytic solutions are rare, e.g.
one example is the inverse phugoid problem,
concernig the non<inear perturbation of flight along a

constant glide slope, [21-24}; there is fight test data
support the latter theory of non-linear stability with
glide slope constraint [25] as there is for parameter -
identification methods [26-28]; this case involves only
one degree-of-freedom, and and can be extended to
include atmospheric effects [30-33]. in the present
paper, the problem of non-linear stabllity with three
degrees-of-freedom is addressed directly, by
elimination between the fourth-order system of
equations of motion, to obtain a single higher-order
equation for the angle-of-attack. The approach is thus
quite different from the phugoid, in the assumptions
made, viz.. (i) the phugoid assumes flight at constant
angle-of-attack, with drag equal to thrust, and
unrestricted flight path angle, e.g. the loop is Included;
(i) the present analysis restricts the flight path angle,
and concentrates on the dynamics of the angle-of-
attack, without requiring drag to balance thrust. Thus
the present non-linear analysis of longitudinal aircraft
stability is, in a sense, complementary to the theory of
the phugoid.

The exact balance of lift, drag, weight, thrust
and inertia force is taken, together with the pitching
moment equation, under the assumptions of flight at
low Mach number, away from the stall, for constant
air density, and constant thrust along the flight path .
This leads to a fourth-order system of coupled non-
linear differential equations, which can be written
using time as the independent variable; the
dependent variables are the flight path angle, angle of
attack and airspeed. Elimination between these
equations, with neglect of the acceleration of flight
path angle, leads {Case |} to a rather complicated
non-inear, fourth-order differential equation for angle-
of-attack. By restricting the flight path angle yto (Case
i) moderate values y < 300 (so that y2«<1 in radians),
the flight path angle equation” decouples, but the
fourth-order non-linear differential equation for angle-
of-attack, still remains fairly complicated . 1t is
simplified further for (Case lil) small flight path angle
¥ £ 4°1 0’ {or ¥ <<1 in radians), when it becames a
third-order differential equation for angle-of-attack,
consisting of: (i) finear terms, forming a second-order
differential equation, with constant fundamental
frequency, independent of airspeed, as for the short-
period mode; (ii) one set of non-linear terms,
assodiated with non-parabolic lift drag polar and lift-
induced drag, which introduce respectively quadratic--
and cubic powers of the angle of attack; (iii) the other
set of non-linear terms consists of products of powers
of derivatives of angle-of-attack, which arise from the
elimination among the equations of motion, and thus
could be loosely interpreted as a coupling to the
phugoid motion,
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The method of solution which is used for ¢ase
i, and would apply as well (with more tedious
algebra) fo cases | and |1, is to consider a perturbation
of the simple fundamental mode, with constant
amplitude A and frequency g, It is found that the
non-finear effects do not cause a change in oscillation
frequency, and induce oscillations at multiples the
fundamental frequency. The calculation, to the lowest
order in the perturbation parameter, of the amplitude
and phase of the oscillation induced at the harmonics
of the short-period frequency, can be made by
perturbing the fundamental mode, and linearizing the
third-order differential equation for angle-of-attack.
The forced solution then specifies an excitation at the
double and triple of the fundamenta! frequency,
whereas the free oscillations lead to a cubic equation
for the frequency . The roots of this cubic equation
are, besides the fundamental period, a complex
frequency whose imaginary part specifies an
amplified or damped mode. The fundamental
frequency Is short, and the number of cycles to
double amplitude long, for statically stable aircraft,
whether of fighter or transport type. In the case of
statically unstable aircraft, the roles of frequency and
damping are interchanged, and thus the time scales
for instability are short, leading to a rapid growth of
angle-of-attack oscillations, as in PIO's (Pilot-Induced
Oscillations).

Balan force) and pitchi

moment,

Considering the lengitudinal motion of a
symmetric aircraft (Figure 1), under lift L, drag D,
thrust T (along the flight path) and weight W,
balancing the inertia force, and the forces [12, p. 540]
along the tangent (1a) and normal (1b) to the flight
paths can be written:

mU=T-D- Wsiny, (1a)
mUy =L ~Wcosy, (1)
where m is the mass, and the scceleration is written
in tangential U and centripetal Uy components, U is
the velocity, y the flight path angle, and dot denotes
time derivative, e.g. it appears twice applied to angle
of attack o in the pitching moment M equation: )
fsafrat: a+i)=M @
where | denotes the moment of inertia relative to an
axis transverse to the plane of motion {defined by the
tangent and binormal to the trajectory).
The system of equations of motion (12, 0:2) is

of the fourth-order, and its couplings and non-
linearities are specified not only by the dynamics of

-3 -

rigid bodies, but also by the aerodynamic laws, for lift
L, drag D and pitching moment M:

L=1pSUC (o} (3a)
D=1pSUCp{ar) (3b)
M= 2pcSU Cya), (30)

where p Is the mass density, S the reference area
and ¢ the mean aerodynamic chord, all taken as
constant (no change in aircraft configuration and
small altitude excursions), and for flight at low Mach

number the lit C_, drag Cp and pitching moment Cy

coefficients, depand only an angle-of-attack, viz., for
flight away from the stall: (i) the lift coefficient is &
linear function of angle-of-attack:

C {o}=Cro+aCyy = Cm(“"%)- (42)
with value Cyp at zero angle-of-attack, and slope
Ci.,, thus vanishing at the angle o, of zero lift

0 5~Cio/Cyg: (4b)
(i) the drag coefficient is due to friction drag Cyy, and
lift-induced drag with coefficient k, and a non-

parabolic lift-drag potar term is included with
coefficient A:

Cofe)=Coo +2 Cufo)+ & (o] (5)
(iii the pitching moment coefficient is again a linear
function af angle-of-attack:

Cu{0t) = Cuig + & iy = Cur( 0~ 014), (6a)
with value Cpg at zero angle-of-attack, and slope
CMa thus vanishing at the angle:

0y = ~Cyp / Cpge {6b)

of zero pitching moment.

upli irspeed. angle-of- igh

angle
Starting with the radial force batang¢e (1b);
FHg/U) cosy=LmU=(pSI2m)Cy , (0-c1p }U (7)
use of (3a,4a) leads to:
y=—gU ' cosy+als, (8a)
where a is a constant:
a=pSC,/2m {8b)

and 0 is the angle-of-attack relative to the angle of
zero lift; -
0= o=y, (9a)
in terms of which the lift coefficient (48) can be
written;

C.(8)=Cue®. (9b)
(e} Similarly, in the tangential force balance

a):
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Usgsiny-Tim=-Dim ={pS2mU°Cy, (10)
{3b,5,9b} can be used:

Urg siny~Tim=—{pS2m)Lf

(CorthCra@4CE,6?) (1)
to obtain:

U=b-gsiny-?u2(1+ﬁe+§e?) (12)
where:

b=T/m (13a)
F=pSCpo/2m, (13b)
h=sAC, /Cpo, {13¢)
E=kC, 2/ Cphys (13d)

the last two (13c,d) are dimensionless constants,
(13b) is the ballistic coefficient associated with friction
drag, and {13a) is the thrust per unit mass; the latter
is assumed to be also constant, implying either no
throttle movement, or siow response compared with
other time scales of the problem. The analysis would
remain valid for a thrust per unit mass dependence on
airspeed like:

T{U)/m=b-f 1, (14a)
\«_rhere the constant f, adds to (13b):
f=1fy+pSCp/2m, (14b)

and (13a) is unchanged, with b defined by (14a).
tn the remaining equation of motion, for pitching
moment (2¢):

&+ =(pSe/ 2)U7Cy(ct), (162)
can be used (3¢, a):
Cu(a)=cm(a—{x1 ):CMa((a—ao Hmﬂq)) (15b)

and also the angle-of-attack relative to the angle-of-
attack for zero iift (9a):

Cu(8) = Cua (0 -81). (16a)
which ig distinct from the angle-of-attack for zero
pitching moment:

0y =0t~ 0g; {16b)
substitution of (9a,16a) in (15a) yields:
O=d+7+jU*(0-8,) (17a)
where j is again a constant.

j=—pcSCy, /2l (17b)

in the fourth-order non-linear coupled system of
differential equations of motion (8a, 12, 17a), the
airspeed U, flight path angle y and angle-of-attack
relative to the angle of zero lift 8, appear as functions
of time.

imination for small or i ngle

Subsequently three aproximations will be
considered, as concemns the flight path angle, viz. (i)

ye<i, {ii) y?<<1 and (i) y<<T/W, whose"
implications are discussed next. The assumption (1) of
acceleration of flight path negligible relative to
acceleration of angle-of-attack ¥ << restricts the
kind of flight manouevers allowed, e.g. it holds for. (a)
a descent on a nearly constant glide slope, in which
case some pitch activity may be required to keep the
flight slope; (b) horizontal flight, e.9. accelerating or
decelerating. It would not hold for other manguevers,
like rapid climbs or descents. The assumption (i) of

moderate flight path angle v2 <<1, i.e. not exceeding
v < 30°, exciudes steep climbs or descents, 8.9. a
loop would be excluded. A more restrictive
assumption is (if) small flight path angle refative to
the thrust-to-weight ratio ¥ << T/W. This assumptian
is not met by existing aircraft in all conditions, and
thus is again a resfriction on manouevering, as will be
shown by considering two examples. For a modern
high-agility fighter the thrust-to-weight ratio in air
combat configuration may reach TAN~1 to 1.3; these
air superiority fighters can climb vertically y=80°, so
that y=n/2=1.57 radians and y << T/W is not met
generally, but only for flight path angles
corresponding to v50.16 or y<10°. For a large jet
transport T/W~0.2 to 0.5, and the assumption
vy << T/W is even more restrictive,viz. y<0.04 or
ys4°. Thus the range of flight path angles is

restricted, though less so for high-agility fighter case.
In spite of this, it is still worthwhile to study non-linear
effects, since the methods used extend from case (iii)
to (ii) or (i), with greater analytical complexity.

In order to facilitate the elimination of the
system of equations of motion, the pitching momemnt
equation (17a) can be put in the simplest form:
Fe<§: §+jUPo=0, (18e)
by introducing the angle-of-attack relative to the angle
of zero pitching moment:
¢=0-0 =0, (18b)
besides neglecting the acceleration of the flight path
angle ¥<<@ relative to the acceleration of the angle-

of-attack; in terms of the angle-of-attack relative to the
angle-of-aftack for zero pitching moment, which will
be calfled henceforth ‘refative angle-of-attack’, the -
force balance equations (8a,12) become;

7+gU " cosy =alfo+6;}

U= b—gsiny—ﬂlz(1+hqa+6(pz).
where;

(18a)
(19b)
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f(1+ hcp+scp2) = ?(1+F9+'ée2) =
= f{1+'ﬁ(cp + 61)+ g(q, + 91)2}’

so that the new constants f, h, € are specified in terms
of the old (13b, ¢, d) by:

20)

f=f (1+91ﬁ+9$§} (213)
M f(fi+20) (21b)
feefs (210)

By substitution of (13b, ¢, d) in (21a) it follows that fis
given by:

f = (pS/2m) (Coo +1 CraB +k c.8f)=

=(pS/2mjCy(8;)
where (5) was used.
The elimination among the equations of motion
{18a; 18a, b}, for the relative angle-of-attack without
any further restriction {case i) would lead to a non-
linear fourth-order differential equation, which is
rather complicated. The deduction is simpler case (i)
of moderate flight path angle y<30°, but still leads to a
fourth-order differential equation. If the flight path is
small y €10°, in the precise sense (case ili) of
negligible compared to the thrust-to-weight ratio:
ye<< big=T/img=T/W: {=alko+6,}-g\) (22)
the flight path angle is specified by the radial force
balance equation (22), which decouples from the
other equations, viz. the tangential force balance and
pitching moment equations:

b =-jo, (238)
U=b—ﬂ)2(1+hq>+eq>2}. (23b)

which lead to a non-linear third-order differential
squation for the angle-of-attack, as follows next.

(21d)

Third-order non-lineag differential equations for the
relative angle-of-attack

In order to perform the elimination, of the
system (23a, b) for small flight path angle it is
sufficient to solve (23a) for U:

Wyj = " 2972, (24a)

» ¥2|U\/; =y V2 g2 - 2"2, (24b)
and substitute in (23b), leading to a third-order non-
linear differential equation for the relative angle-of-
attack:

0= 6 ~¢~1¢¢i—2|bﬁ ‘p1!2('p112 i-2|(fIJi)

A2 (25)
(1+h¢+9¢2)¢ 1/2("3:2;

once this is solved for the relative angle-of-attack o(t),
the velocity U(t) and flight path angle y(t) are
determined, respectively from (24a) and (22). .
inusoidal oscillati i i
pon-tinear terms
in order o interpret the differential equation for

the relative angle-of-attack (25), it can be re-written in
the form:

('p[1+ h(p+£(p2] +(bj/ f)o=

= sfufir2r) o i o ook %)
From {2, 3c, 62) it follows that

el &-(pcscmuzlzi) (o-0n)-0. @7
80 that (18b):

$+uwlp=0, (28a)

where @+ is the frequency of the oscillation of the

relative angle-of-attack for constant airspeed U:

0% & ~poSCy L 12 = LA (28b)

in the present problem the airspeed is not constant,

and the role of frequency of oscillation of the relative

zngle-of—attack or fundamental frequency is played
v

wolebyf={ T JpoS Cyyof2=-CTCyo ACo (8 ) (29)

which corresponds to (28b) with the substitution U? &
T/mf and can be simplified using (13a, 17b, 21d). The
value of ag is weakly dependent on airspeed as for
the short period frequency.

Since the oscillation frequency concerns the
relative angle-of-attack, and involves the rotational
inertia 1, it corresponds, loosely speaking, a kind of
short-period mode; strictly speaking, this 12 not the
short-period mode in the original sense, as the laiter
arises from linearization of the equations of motion.
Therefore it may be better instead to designate o, as
fundamental frequency of the osciflation of relative
angle-of-attack, henceforth refered to simply as the
fundamental frequency. Substituting (28) in (26) it
follows that the linear terms are similar to (28a), ie.
represent an oscillation with constant amplitude and
frequency .

@[1+h¢+w2]+m§:p=
= ﬁ{@”é’”iﬁ - ¢"4¢f§”) 0.
although this is modified by the non-linear terms,
involving h, £ and:

r= j12f=ﬁll2f CSCye /2 =

=[mICD(91 ~Cae G/ 208, @n
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where it has been taken into account that static pitch
stability requires CM <0 and (17b, 21d) were used.
The sinusoidal oscillation mode (28a) ressembles a
finear or harmonic oscillator in classical mechanies,
but in the present case (30), besides the linear part,
thera are two sets of non-linear terms. The first, in
square brackels, resembles a non-linear or
anharmonic oscillator, in that it involves powers of the
oscillation variable, i.e. the relative angle-of-atack, but
they multiply § rather than @; they are due, from h ¢

(21a, b, ¢), andf, g, h (13b, ¢, d) to the non-constant
terms in the lift-drag polar, i.e. the lift-induced drag
k0 and non-parabalic A=0 fift-drag polar. The second
set of non-tinear terms, on the r.h.s., involve products
of powers of derivatives of the osclllation variable,
and the coefficient involves r (31) and is out of phase
by % /2; since these terms arise from the elimination,
for relative angle-of-attack, between the pitching
moment and force equations, they represent, In a
loose terminology, a sort of coupling between the
‘short period’ and ‘phugoid modes’. Again we are not
concerned with a trua phugoid mode, in the original
sense, since the restriction to small flight path angle,
limits the phugoid motions possible. It may be mare
unambiguous to refer to the non-linear terms, as
perturbations of the fundamental sinusoidal oscillation
of relative angle-of-attack.

angle-of-attack and frequency

The linearization of (30}, viz:

$o + 059 =0, (32a)
leads to an oscillation of relative angle-of-aftack, with
constant amplitude A and fundamental frequency og:

9oft) = A expiogt) (32b)
The sinusoidal function also satisfies the non-linear
terms in curved brackets in (30), viz.:

0tk 6;% B = 057 G0 97, (32¢)
and thus the non-linear differential equation:
orodog=tie off; o0y e0dl’ ) (3)

also has the simple solution (32b); however, this
simple solution does not extend to (30), on account of
the terms in square brackets. The latter act like a non-
~ linear return force:

b =—ofp/(1+ho+2o*) =F(o) (34)

We may take £ as a parameter measuring the
importance of non-linear effects:

p=hle: [1+€m((p+u)}if>+m2tp=

S YA 35
=iir(¢5q>)év-v’4w’é) 9

and u accounts for a non-parabolic lift-drag polar.
Note that if the lift-drag polar is parabelic p=0, and
the term in square brackets in (35) simplifies to -
1+, involving the fift-induced drag. Thus the non-
linearity parameter € is defined from the lift-induced
drag, and can be used whether the lift-drag polar is
parabolic or not. The solution of (35) is sought as a
perturbation expansion:

Q=g +EP + 0(52), (36a)

m=m0+ew1+0(ez} (36b)

both in the relative angle-of-aftack (36a) and in the
fundamentat frequency {36b).

i multiple
frequency

f the fi

When substituting (36a, b), the zeroth-order
term, which is Independent of &, coincides with (33),
and hence vanishes; the firet-order term, ie. the
coefficient of ¢ is:

el 2{i)os 0. {1285 0or05'00)|
I I P
P¢ PPt

. ¥ Afe o m 3
ri(w)mg¢oz‘?§+{ﬁ)¢o1(¢o*¢o1(}’a¢o)]‘Pt @n
= ={itrf 20000 + aledia (o0 + 1)
which is a third-order differential equation for the
perturbation, with (32b) appearing in the coefficients:
B-wg(£VrH)prrwde; - (Vo=
= :L{mﬁ/r);‘\e‘“"°t [2m1-m°Ai°°‘ (m-l’\e“""t )}
Thus a forced solution is sought in the form of a

superposition of oscillations, at the fundamental
frequency plus two harmonics: -~

({!1(1) =C, elm‘,t +C, ezlm,t +C, e:m.t; (39)
on substitution of (39) into (38) yields:
0L, =2awiAlr, (408)

APy = -3(1F1r)C,,

A® = -§(1Fir)C,. (40¢)

From (404) it follows that w1=0, so that there is no
frequency shift e=cng in (36b),and no resonant term in
(39), i.e. the first term is included in (32b) with Cq
being absorbed into the amplitude A ; note that there
would be a frequency shift, for the anharmonic
oscilator (30), if the non-linearities in curved brackets

were absent.Thus the perturbation (39) is forced only
at the first two harmonics of the fundamental:

(38)

(40b)
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Pt) =-A2e2“°°‘{u/3+(Ns ‘”ﬂ‘]t(mr) @1
the real part is:

(8= A%(1%) sl cos(2e,tfrsin{2aqt)

’ H+(£18){)c],c{>:§m°t)¥rsir(3mot)ﬁf | “2)

and on substitution in (36a), together with (32b),
specifies the complete oscillation.

lativ le-0f- i i i

thin t
Conceming the free oscillations of (38), viz.:

g {£Vr+) Bea<h 3 {xvra)p.=0, (43)
a solution is sought in the form of a sinusoidal
oscillation:

7t} =Be", (44a)
m%;ﬁ the frequency o satisfies the cubic equation

(mz—mg)[m-n-(—1iw)mn]=0. (44b)
As it could be expected from (=0 and =g In (403,
36b), +@ are roots of (44b), and thus the third root
is easily found:
Dpt(ﬂo,—ma(Wf): 61( )"—'
C.e%t40 a0 C e otloett
i.e. the motion corresponds to oscillations at the
fundamental frequency with constant amplitudes C,
plus & term exponentially growing or decaying in time,
in proportion to (29, 31):

B=w,/r=2bf =24fT/m =0.693/7, (48)
where 1 defines the time scale for growth or decay
by a factor of 2.

(45)

Time to double or halve amplitude

The present method of solution of the
equations of longitudinal motion of a symmetric
seroplane, leaves in the elimination (24a, b}, an
uncertainty of sign, which persists through the first-
order perturbation up to (45), allowing for modes
growing or decaying amplitude, with time to double or
halve amplitude t given by (46) or, using (21d):

0.693/% =0—ag/r=2+/br=,2pS TCo{8, im @7
Thus unstable modes can exist, and an estimate of
their growth rate {47) is given by:

o= 291!TIm-JS!m(Cm+lCLu@ﬁkCEa9,Y§. (48)

in the latter the term in the third square roct is larger
for lower wing loading, which is a design feature of
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high manoueverability air superiority fighters; these
also have a high thrust-to-weight ratio, so that the
second square root is also larger for these alrcraft; .
the growth rate of instabilities is large for high-drag
coefficient (calculated for the angle 61 in the second
curved brackets), e.g. In tanding configuration or
curved flight at high turn rate.The fundamental

frequency @, and period 1, are given by (28, 13a,
17b, 47):

Rt THCya/Cof8  H2mto) (49)
and the number of periods to double or halve
amplitude by:

N=ﬂt°=0.110r={n100{91)w-c Cuo/20S! {50

where the dimensionless quantity r was used (31).
These quantities are calculated using data from [9,
34] in tables | for the F-4 and [l for the B747.

Examples of figh

The calculation for a fighter {the McDonnell
Douglas F-4 Phantom 1} in Table 1 concems three
flight regimes, namely, approach to land and subsonic
and supersonic cruise; the corresponding Mach
numbes, true airspeed and altitude are indicated.

From the slope Cy, and value at zera angle-of-attack
Cyo ©f the pitching moment coefficient, follows (6b)
the angle-of-attack for zero pitching moment o; in
similar way, from the lift coefficient, follows (4b) the
angle of zero lift ¢, and hence (16b) the angle 9,0f

zero pitching moment relative to the angle of zero lift.
The drag coefficient at this angle, follows from the

slope Cp, and value at zero angle of attack Cp, of
the drag-coefficient: '

. .
Co(81}=Coo +Coa(8) - (51)
Using this, the mass m of the aeroplane, the
atmospheric mass density p and the wing area S,

specifies the parameter f (21d), which has the
dimensions of inverse length! [f] =1~" From the angle-

of-attack «, and drag coefficient CD(a). follows the

drag (3b), which equals the thrust in steady, straight
and level flight, viz. this will be exactly true for cruise,
and approximately so for a stabilized approach with _
small flight peth angle. The thrust T and the massm
specify b (13a) which has the dimensions of

acceleration. [b]=LT"%. The moment of inertia 1 is
needed to calculate the parameter j (17b), which has
the dimensions of inverse length squared [jj=L"" as
follows from (18a). The three parameters §f, b, |
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specify the fundamental frequency oy and period 7
(49), and the growth rate & and timescale t {47, 48)
and hence the number of periods to double amplitude
N (50). The calculations for a large transport (Boeing
747) in Table II, concern again three flight regimes,
viz. approach to land, and cruise at low or high
altitude. The calculations are similar to Table I, with
the simplification that the pitching moment is zero at
zero angle-of-atlack. In all cases the fundamental
period is short, viz. 1-3 s for a fighter and longer 10-
20 s for a transport; the growth time is much longer,
viz. 30-170 &, so that the number of fundamental
periads to double or halve amplituda is large, viz. N~3
fo 12 for the transport and N~10 to 69 for the fighter,
meaning that it is a slow growing instability, with
p!entg' of time for compensation, even by manual
control.

Example of a statically unstable aircraf;

Consideration as been given so far to statically
stable aircraft Cy, <0, for which (17b) the parameter
jis positive j> 0, and thus the fundamental frequency
{49) real. In the case of a statically unstable aircraft
Cyg > 0. then j<O;

Cye>0: I=-} (52a)
and the fundamental frequency is imaginary:
g = b = ol £ = oo} (520)

so that now the roles of o, and 4 are interchanged

explog(iz ‘Vr)t]=exp{¥‘m0[t+(|woyr)t]. (53)
i.e. 6°=]mo|lr is the oscillation frequency and

3 =[] the growth or decay rate, Taking as an

example data [35] for the £-16C, which has a take-off
mass m=12040 Kg, and afterburning thrust T=106.3
KN, corresponding to a thrust-to-weight ratio

TAN=T/mg=0.90. The wing area is 8=27.88m2, and
the span b =9.45m, carresponds to & mean chord
c=b?/5=320m. Taking Cp{6,)=0.25 as for the F-

4, the oscillation frequency is B, =|o|=0.460s™,
corresponding to a period Ty=2nw,=1378.

"Using =t Cy{01)|Cuel4 4x10°Kg m? as for the F-4,
the growth rate & =|u,|=0.88 s~ and time to double

amplitude T=0.693/9=0.79s show that the
instability is rapid.

The original analysis of the “phugoid” [1 3] uses
[12] the force balance equations (1a,b), with constant
thrust equal to drag and constant angle-of-attack:

mU=-Wsiny, (542)
mUy=L-Wcosy. {54b)

A complementary ‘short-period’ analysis would use ~
the pitching moment equation (2; 3¢; 6a):

fedt: 6~ (Crag pOS2) P (o) =0, (55)
and also the condition of thrust equal to drag (3b):
T=D=1pSU* Cp(a) (56)

The equation of angle-of-attack oscillations (55) is
non-linear, because the airspeed U depends on
angle-of-attack through (56). it is linearized by
evaluating airspeed at the ‘mean state’, i.e. angle of
attack of zero pitching moment:

Uy = 2T/ pSCpq{0 = ta). (67
Substituting in (56) in (55) yields:
o0y : @{cmcmca(e,)]wo. (58)

which coincides with (32a, 29) and specifies: (i) a
sinusoidal oscillation of frequency mg for statically .
stable aircraft Cpe<0; (i) an amplitude growth or
dacay with time-to-double or halve of 0.6934 g , for
a statically unstable aircraft CMg>0. The

determination of the other parameter r (31) or 1§ (47,
48) requires a nondinear analysls [38}, beyond the
simple deduction (55-57), which complements the
phugofd problem.

Congclusion

The last two decades have seen major
progress in flight control technology, as witnessed by
improvement in handling qualities of the current
fighters (F-14 Tomcat, F-15 Eagle, F-16 Falcon,
F-18 Hornet) compared with the century series
(F-100 Super Sabre, F-101 Voodoo, F-102 Delta
Dagger, F-104 Starfighter, F-105 Thunderchief,
F-106 Delta Dart, F-111 Aardward and also F-8
Crusader and F-4 Phantom [1). Staticaly unstable
designs give improved manousverability, and allow a
smailer design for the same mission, and active
controi technology can provide gust alleviation and
load limitation, as well as protection from departure at
high angle-of-attack and/or sideslip, yielding an
expanded carefree manouever envelcpe. Modern
control technology also brought some partially
unsolved problems, like the PiO (Pilot induced
Oscillation), which has caused accidents of both-
manned (F-22, Gripen) and unmanned (Darkstar)
aircraft. Maybe the progress in fiight control
technology should be matched by advances in flight
dynamics, into the unsteady and non-linear regimes,
which have received less attention in the literature,
but may hold the key to a better understanding, not
only of spins, but parhaps also of PiOs.

-8 -
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Leaends for the Tables

Table | - Calculation of fundamental frequences and
growth rate for F-4.
Table Il - As Table | for Boeing 747.

Legend for the Figure

Figure 1- Balance of forces on the oscullating plane
of the flight path, and of pitching moment
orthogonal to this plane.

FIGURE 1

by the International Council of the Aeronautical Sciences (ICAS)

TABLE 1
McDonnell Douglas F-4 Phantom If
c=4.88 m $=49.2 m?
Cruise
Condition { Approach | subsonic | supersonic| Units
to land
M 0.206 0.900 1.800 -
z 0 35 55 X109F |
1] 70.1 287 531 me
Cmp | +0.020 +0.025 -0.025 |-
Cyy | 009 0.400 0.780 | rad-1
a"l“ +0.204 +0.0625 | -0.032 |rad
Cro 0.430 0.100 0.010 |-
C., | 280 375 280 |rad
o, 0.154 -0.0287 | -0.003567 |rad
(il +0.368 0.0892 0.0284 | rad
Cpy | 00269 0.0206 | 0.0439 |-
Cpo 0.555 0.300 0.400 |rag-1
CD (91 ) 0.226 40.'(')285 0.0326 |-
m 15060 17680 17690
p 1.203 0.400 0.143 kg My
f 477x1 | 158x10"2 | 6.46x10°6 | m?
04
o 11.7 26 33 1o
(7} 0.204 0.0454 1 0.0576 l{rad
CD(“) 0.050 00211 { 0.0452 |-
D= 7.815 148 448 |IN
b 0519 0.837 2534 [me2
| 1913 2.00 2.00 x1o52
m
] 7-9521 9.60x10-0 | 6.70x100 | m-2
0-
@, 0294 2.25 513 |5
Ty 2.14 2.79 123 |s _}
) 3.15:2<1 7.27x10 | 8.08x10-3 { &1
0-
T 220 94.9 859 s
N 10.3 34.0 694 |N
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TABLE|
Boeing 747
¢=8.32 m S=511 m?2
Cruise at
Condition { Approach low high Altitude
to land
M 0.198 0.650 0.900
z 0 20 40 x109 fi
U 67.4 208 265 P
0 0 i) -
Cuo
-1.45 -1.00 -1.60 [ad‘1
Mo
o 0 0 0 rad
0.62 6.21 0.29 -
Cro
C... 5.67 44 65 rad 1
%" 0162 | -0.0477 | -0.0627 rad
0 +0.162 | +0.0477 | +0.0527 tad
Cho 0.0269 0.0205 | 0.0439 -
C, 0.55% 0.300 0.400 rad-1
i+
0.117 00348 | 0.0650 -
Co(®y)
T Tyt it
m DEBB30 | 2887¢8 | 288778
) 1.293 0.608 | 0318 Eamﬂtﬁ"
f 1.54x10°4 | 2.42x10 | 1.82x102 | -1
88 25 24 0
o 0.148 0.044 0.042 rad
0.100 0.0188 0.313 -
¢ (@)
D= 150 124 178 kN
b 0.588 0.429 4816 me -
1 8.17 71 7-11 x107 Kg
m2
i 6.4Bx10°5 | 206x105 | 151x100 | o2
@, 0.500 0.646 | 0.715 o1
Ty 128 9.73 8.79 s
3| 1.88x102 | 6.03x10> | 6.70x103 | &1
T 36.0 115 103 3
N 2.04 11.8 11.7 -
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