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Abstract

Aeroelastic instabilities are an important factor in
the design of modern high-speed, flexible aircraft. The
current trend is toward the creative use of composites
to delay these instabilities. To obtain an optimum de-
sign, an accurate as well as efficient model is required.
As a first step towards this goal, aeroelastic analysis is
carried out for a swept composite box beam, using a
linear structural model and a linear 2-D. unsteady aero-
dynamic theory. Structurally, the wing is modeled as
a thin-walled composite box beam of rectangular cross
section. Theodorsen’s theory is used to get the 2-D un-
steady aerodynamic forces, which are integrated over
the span. The flutter solution is obtained using the V.g
method and divergence speeds are calculated by using a
very low reduced frequency in the flutter analysis. The
variation of critical speeds with composite ply layup is
plotted for various sweep angles. These trends are com-
pared with those available in literature.

Nomenclature

b = semi-chord w.r.t beam axis
C.Cij = 4 x 4 cross sectional stiffness matrix
g = artificial damping parameter

h = airfoil plunge motion

[K] = stiffness matrix

L = aerodynamic lift

M = aerodynamic pitching moment
[M] = mass matrix

4,3, = generalized coordinates

Q = applied load (aerodynamic)
Q= genéra.lized aerodynami loads
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T = kinetic energy of the beam

u,%; = displacements of the beam

U = strain energy of the beam

Z; = cartesian coordinates

@ = airfoil pitch motion

7 = strains in the beam

& = curvatures of the beam

w = frequency of oscillation

(2] = displacement modeshape matrix
[8*] = strain modeshape matrix

8,8; = rotations of the beam

(T] = free-vibration modeshape matrix
Supersripts .

( Y = derivative w.r.t beam axis

(") = time derivative

Introduction

Aeroelastic tailoring is defined in Ref. 1 as

“Aercelastic tailoring is the embodiment of direc-
tional stiffness into an aircraft structural design to con-
trol aervelastic deformation, static or dynamic, in such
a fashion as to affect the aerodynamic and structural
performance of that aircraft in a beneficial way.”

Aeroelastic tailoring is not a new concept; a simi-
lar design concept was used as early as 1949 by Munk?
to design “propellers containing diagonally disposed £-
brous material.” The grain (fibers) of wood were ori-
ented in the blade so as to twist it elastically and favor-
ably as the thrust changes.

In recent years there have been lot of studies in
aeroelastic tailoring with the advent of composites. Ad-
vanced composite materials combine vastly superior
specific stiffness and strength characteristics and can be
designed (tailored) to meet specified directional stiffness
requirement. Thus, tailoring with composites is now a
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natural part of the design process. The best exapmle
of the creative use of composites in design stage is the
X-29 Research Aircraft with forward-swept wing. Un-
til recently such an aircraft design was unconceivable
due to the very low divergence speed of forward-swept
t

The reintroduction of swept-forward wings is due
to N. J. Krone? who showed that divergence of swept-
forward wing could be avoided with no weight penalty
using tailored composites. This brought about a
renewed interest in aeroelastic tailoring, and conse-
quently, this configuration has been the focus of much
of the research. Among the more notable are a series of
studies by Weisshaar®6 dealing with static aeroelas-
tic problems including spanwise lift redistribution, lift
effectiveness and aileron effectiveness. The papers also
include a discussion on the various techniques used in
literature to reduce a laminated plate to an equivalent
beam model and introduce a bending-twist coupling pa-
rameter K to be used in tailoring. Sherrer et al? ex-
perimentally demonstrated the principle of aeroelastic
tailoring through low-speed wind tunnel tests on a vari-
able sweep cantilever wing model.

One of the earliest parametric studies was done by
Housner and Stein® they presented a computer program
for flutter analysis, which calculated the variable stiff-
ness properties by using a laminated, balanced ply, fila-
mentary composite plate theory. The parametric stud-
ies included the effect of filament orientation upon the
flutter speed for wings with various sweep, mass ratios
and skin thickness. Recently, Hollowell and Dugundii®
did an analytical and experimental investigation of flut-
ter and divergence behavior of unswept, rectangular
wings made of graphite/epoxy, cantilevered plates with
various amounts of bending-twist coupling. Lottati'?
did an analytical investigation to determine flutter and
divergence speeds of a cantilevered, composite, forward-
swept rectangular wing, again by varing the bending-
twist coupling. Green!! concentrates on the aeroelstic
problems of a transport aircraft with high aspect ratio
aft swept wings.

Most of the work cited above use a very simpli-
fied and unrealistic structural model, like, a plate-beam
model or a box beam composed of two rigidly attached
plates. These models proove the concept of aeroelastic
tailoring but are useless for design of real wings. In liter-
ature one does find design studies using more detailed
formulations, like numerical solution of 3-D unsteady
Euler/Navier-Stokes equation!? but are computation-
ally two expensive for preliminary design.

A large aspect-ratio wing can be modeled accu-
rately as a thin walled beam. Librescu and Song!3
analyzed the divergence instability of a swept-forward,
composite wing modeled as a thin-walled, anisotropic,
composite beam. The model incorporates a num-
ber of non-classical effects, including, anisotropy of
the material, transverse shear deformation and warp-
ing effects. The present work uses a similar struc-
tural model, though warping effects are not consid-
ered. The cross-sectional stiffness coefficients are de-
rived from an variationally and asymptotically consis-
tent theory for anisotropic thin-walled beams, devel-
oped by Berdichevsky et al.l* The theory gives closed
form expressions for the beam stiffness coefficients.
The stiffness coefficients, static response and dynamic
response!® are in agreement with finite element predic-
tions, other closed-form solutions and test data.

The 2-D unsteady aerodynamic theory in the fre-
quency domain (Theodorsen’s theory) is used for get-
ting the aerodynamic loads. The aerodynamic lift and
moment expressions for a swept wing are available in
the aeroelasticity text by Bisplinghoff et al.!6 The V-g
method is used for flutter analysis, divergence speed is
obtained by tending the reduced frequency to zero.

Structural Model

A comprehensive beam modeling framework has
been developed over the past decade which breaks up
the complete 3-D elasticity problem into two less com-
plicated problems. Firstly, the 2-D cross-section is
modeled using a asymptotically correct cross-sectional
analysis tool, followed by the 1-D beam analysis using
the cross-sectional stiffnesses calculated earlier. It is
based on 3-D elasticity, thus, asymptotically correct 3-
D strain/stress can be recovered at any point within the
structure. :

Cross-sectional Analysis

A coordinate system £ = {£; %, £3} is defined
along the undeformed wing with #; along the elastic
axis. The displacements, rotations, strains and curva-
tures are denoted by u, 8, v and & respectively

uy 6, m K1
u=Qux p =062 v=0272 p K=4 K2
u3 63 2713 K3

(1)
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where, the strains and curvatures are related to the dis-
placements and rotations as

m | U} 4
T=19 212 p =< 27112 and K=<6;, (2
2113 ) {273 b3

3
now, for small rotations,

Gy=—uf and 6 =1 (3)
Thus,
4
1
K= { —ug } 4)
U

Berdichevsky et al.}* used asymptotic analysis on
two-dimensional shell theory to get the strain energy
per unit length (®,), for a beam, in terms of four strain
parameters, uj, 6], u3 and u}. Transverse shear strain
is not included as a strain parameter in the energy ex-
pressions, but is consistently removed from the formu-
lation in terms of other parameters.

3 [Cra(u))? + C22(6})? + Cas(uf)? + Cua(u)?]
+Chout 6] + Craujuf + Craujuy
+0239£u§' + Cueiug + C'34u§'u§’.

&,

(5)

The constitutive relationships can be written in
terms of stress resultants and kinematic variables by
differentiating the above equation with respect to the
associated kinematic variable. Thus we get an asymp-
totically correct constitutive law (cross-sectional stiff-
ness) as,

F Cu Ci2 Ciz Cul (v}
My _[Ci2 C2 C;z Cin 61 (6)
M, Ciz Cy3 Caz Ca| | 4
M, Cuu Co4 Caq Cygd \uf

where F is the force along the wing and M;, M;, M;
are the torsional and two bending moments. [Clqxq
is the cross-sectional stiffness matrix. The analytical
expressions for the Cj;’s can be calculated easily for a
box beam?5

Beam Energy Formulation

Langrange equations of motion can be written in
terms of the kinetic energy(T), the strain energy(U)
and the external load(Q) as,

El (a(T—U)) _aT-U) _

ot \ . g 9g; @

(7

Kinetic energy is given by

1 m. mé @

0 m§ i ||é
where m is the mass per unit lenth, £ is a matrix of
center of mass offset from the elastic axis and ¢ is the
matrix of polar moment of inertia. For our problem,

the rotational kinetic energy due to beam bending in
neglected, thus Eq. (8) becomes

1
T=3

u

F%F{e o

T

z'.zl m 0 0 0 1.:&1
L al o i me me| )b
2 /o Uus 0 mé& m 0 i3 y
173 0 m& O m Ug
(9)
Strain energy is given by
1T [
-G ee o
so that
. T rCu Ci C'13 Cus uj
U=l / 1 Ciz Cz Co3s Coa| )61\
2Jo | uf Cizs Ca3 Caz3 C3q| | uf !
uy Cia Czq Caq Cyqd \uf
(11)

Generalized coordinates are introduced to make it
a finite dimensional system (Rayleigh - Ritz type for-
mulation). We represent the deflections u and 8 with

finite number of modeshapes.
U
(a}={ 3 b =(8]{g} (12)
Uy
where .
{¢u10}1xn Y 0 g
8] = : {¢910}1xo {¢u:)}1xp 0
0 0 0 {Puz }1xq
(13)

Here, ¢u,’s, ¢a,’s, ¢us’s, Py, are the extentional, tor-
sional, vertical bending, and inplane bending mode-
shapes, respectively and n,0,p,q are the corresponding
number of each kind of modes. The normal modes for
axial and torsional vibration of a uniform beam are
known to be sinusidal. The analytical expressions for
the normal bending modes of a uniform beam derived
by Chang and Craig!? are used. The analytical expres-
sions of the modeshapes can be differentiated to get the

3
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corresponding modeshapes for u}, 8], u3 and u3. Thus
we can get,

Uy
(7E{ =0 (19
ul2'
where
{¢;1}lxn { % 0 g
* — 0 &, hxo 0
[é ]_ 0 901 {¢ }lxp 0
0 0 { Zz}b“l
(15

Substituting the expressions for [®] and [8*] in the
kinetic and strain energy expressions, the Lagranges
equatlons can be expressed as

M|{¢} + [K){q} = {Q} (16)
where \
. m 0 0 0 1
o= (87| 0 e ot 6| Bz (7
0 m& O m J
. gn gm gxs gm'
_ T {C12 Ca2 Coaz Cogf (zs
K= [ |G G r 24 @vlem (19
’ Cis Cy C3q Cyl

Calculation of {Q} will be discussed later. Analytical
expressions for the above integrals were also derived for
the case of uniform cross-sectional beams.

Aerodynamic Model

To model the 3-D unsteady aerodynamics of 2 wing
in a accurate way, for arbitrary motion, is a complex
problem in itself, requiring a lot of computational effort.
The goal of this excersise is to obtain an efficient aeroe-
lastic tool, to be used for aeroelastic tailoring during
preliminary design. Thus a simple 2-D aerodynamics
in used which would give useful trends to the designer.
The 2-D unsteady aerodynamic model is integrated over
the span to get the total unsteady lift and moments.

Two-Dimensional Unsteady Aerodynamics

Expressions for the unsteady aerodynamic lift (L)
and moment (M) on an airfoil undergoing simple har-
monic motions have been derived by Theodorsen. The
motion is restricted to a combination of plunge (h) and
pitch (a) motions. The lift and moment expressions

are derived in terms of the amplitudes of motion and
a non-dimensional parameter called reduced frequency
= wb/V. w is the frequency of oscillation, b is the
semi-chord and V is the freestream velocity. For a swept
wing the sweep angle (A) also effects the aerodynamics.
The expressions for the lift and pitching moment about
the elastic axis (axis of pitching) can be found in the
aeroelasticity text by Bisplinghoff et all6  ’

L = —rpb® {Zth +oLpp + @Lpe + B'T'Lhcx’}

b

(19)
M= 7rpw254 {%Mah + oMap + &My + ETMQG'}
(20)
where,
8h da
c==— and Tr=— 21
% %7 (1)

and p is the air density. The quantities with a bar (7)
are measured with respect to the swept wing coordi-
nate system. Thus, 7 is the spanwise distance along the
swept wing (elastic axis), b is the semichord perpendic-
ular to the elastic axis and & is the pitch angle measured
about the elastic axis. The expressions for Las, Laa,
Lo, Laaty Mahy, Man', Moo and My, can be written
in terms of the reduced frequency (k), the sweep angle
(A) and a the distance between the midchord and the
elastic axis.

The total lift and moment can be written in terms
of the kinematic variables by recognizing that,

h=-us a=6 (22)

Development of Generalized Aerodynamic Forces

Lagrange’s equations were developed from kinetic
and strain energy formulations for a uniform, can-
tilevered, thin-walled, closed-section beam and are
given by

(M]{d} + [K] {q} = {Q} (23)

where, [M] is the n X n generalized mass matrix, [K]
is the n X n generalized stiffness matrix, {Q} is the
n x 1 generalized force vector, and {q} are the gener-
alized coordinates. The generalized aerodynamic forces
are developed from the principle of virtual work. The
virtual work done on a two-dimensional airfoil section
1s,

W =L -6us + M - 66, - (24)
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where, L, M are the section lift and moment, while 6us,
86, are the virtual displacements. The virtual work can
be written in a compact form as

&W = {P}" {éu} (25)
where P and éu are'4 x 1 column matrices given by

0 duy
M _ 56

P={% and é7= 6u; (26)
0 Sug

The virtual work can be expressed in terms of virtual
generalized displacements by expanding the column of
virtual displacements using the modal matrix (®), thus
we get ‘

W = (P)T [g—:;] {éa} = (P (8] {6} (2)

The coefficient of §q is the transpose of the general-
ized aerodynamic forces on the section. Integrating over
the wing span, we obtain the generalized aerodyanmic
forces as

L
@= [ B P} a (28)

The column matrix P can be represented in terms
of the displacements and their spanwise derivatives i.e
pitch & = 6,, plunge A = —u3, and the spanwise deriva-
tives o = % and 7 = %, using Theodorsen’s expres-
sions for lift and pitching moment,

0
M
{P}=17F
0
0 0 0 0
_ 210 wpbiMye —mpbPMy, O .
=w o] -szsLha .n.pBZth 0 {u} (29)
0 0 0 0l
0 1] 0 07
0 mpb My —mpb3Man 0 .
2 Haa 7 a ’
1 —7pbLpar  wpb?Lpn O {7}
0 0 ’ 0 0.

Now, the column matrices & and @' could be ex-
panded interms of the generalized coordinates as
{@}=[2]{g} and {@'}=[8{q} (30)

where, [3'] contains the first spanwise derivatives of the
modeshapes. Thus we get the generalized aerodynamic
forces as

(@ = [} (1917 (4] 0] + (917 (D} (1) d {q}

=w?[Q] {q} 51)

5

where,

o 0 0 0

T |0 —mwpbPLpe wpbPLnn O
0 0 0 0
0 0 0 07 (32

[D] = 0 WPEiMaa' -WP_EsMah' 0"

T |0 —wpbPLpyr WP Lpn 0

0 0 0 0
Aeroelastic Analysis

Analysis of the flutter problem is greatly simplified
when the mass matrix [M] and the stiffness matrix [X]
in Eq. (23) are diagonal matrix. The mass and stiffness
matrices in our analysis, however, contains off-diagonal
terms that account for inertial/stiffness couplings in the
beam. Inertial coupling arise when the center of mass
does not coincide with the reference line, while stiffness
coupling are due to the anisotropic nature of the com-
posite material. To solve this problem, the equations of
motion in Eq. (23) is recast in terms of a diagonalized
mass and stiffness matrix. To diagonalize the system,
the free vibration problem of the wing is solved first.

Free vibration analysis

For free vibration analysis, {Q} = 0, thus Eq. (16)

becomes
[M}{g} + [K]{g} =0 (33)

Now assumingq simple harmonic motion, i.e. {g} =
{g}e™*, we get an eigenvalue problem, whose eigen-
values give the frequencies and eigenvectors the mode-
shapes of vibration. :

[K}{g} = w’[M]{g} (34)

The eigenvectors ¢; and eigenvalues w? of this prob-
lem are obtained and used to simplify the equations of
motion in the flutter problem. This is done by defin-
ing a new set of genaralized coordinates in terms of the
coupled, free vibration modes.

{g} ={T]{g} (35)

where,

Ml=[a @ Zn ] (36)
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Pre-multiplying _ the  Langrange’s  equa-
tions, Eq. (23, by [Y]7 and using the above relation
for {q}, we get,

(7] a1 () {2+ X7 1K1 1] {2} =

ie. (M {§}+ [KP){@ -« [Q i@} =0 (39)
T [M][T] is the diagonalized
mass matrix, and the matrix [KP] = (1T [K][Y] is the
diagonalized stiffness matrix. Matrix [Q] =17 [T
is the new generalized aerodynamic force matrix.

The matrix [M?] = [1]

Structural Damping

The Eq. (38) gives the equation of motion of a wing
in an airstream. But, the aerodynamic model chosen
is valid only for simple harmonic motion. So to force
the system to undergo harmonic oscillations, an artifi-
cial structural damping term is added. The structural
damping is know to be a force proportional to the dis-
placement but in-phase with velocity. For a system un-
dergoing simple harmonic motion z = z¢e**t, the the
velocity is izqwe™?, thus the structural damping force
can be represented by Fp = i X const. = igK, where
K is a stiffness parameter and g is an ad hoc artificial
damping coefficient. Adding artificial structural damp-
ing to our system, Eq. (38) becomes

[MP] {8} +1g [KP] {2} + (K] @} - [@] (@} = 0
(39)

Flutter Solution

Eq. (39) gives the flutter equation to be solved. Af-
ter the addition of the artificial damping term the sys-
tem undergoes harmonic oscillations. Thus, § = ge**.
The flutter equation thus becomes,

() [MP] (g}+ig [KP) {g}+[KP] {22 [Q] {2} =0

(40)
Rearranging the terms, the above equation can be posed
as a eigenvalue problem,

(217 (2] + [Q])] fa} = =2 (@

If the reduced frequency k, is specified then the gener-
alized aerodynamic forces can be calculated, which in
general will be complex quantities. The above complex
eigenvalue problem can be solved to get the complex
eigenvalues, (1432), and eigenvectors for a given reduced
frequency. The eigenvalues give the frequency (w) and

(41)

1+14g
2

damping coefficient (g) of the motion. Knowing the
reduced frequency (k = “"’), the velocity is found. Sim-
ilar computations are done over a large range of reduced
frequencies and the variation of w and g is plotted. At

is reached, cause at that point no structural damping
is required to keep the system in harmonic oscillations.
The corresponding modeshape is the flutter modahape

Numerical Results

[TT] [ ] [(T] {d}the point where g of any mode becomes zero, the futter

A modular computer code has been developed
which is a direct implementation of the aforementioned
structural and aerodynamic theories. The code uses a
linearized beam model (solution based on the Rayleigh-
Ritz method) and 2-D Theodorsen’s unsteady aerody-
namic formulation (strip theory). First, a static aeroe-
lastic tailoring example is considered and compared
with available results. Next, flutter analysis of a test
wing is done for validation, followed by some dyna.mxc
aeroelastic tailoring results. ,

Static Aeroelastic Tailoring

Given a geometry and material distribution for
the wing cross section, the aeroelastician must have at
hand consistent stiffness constants to be used in the
beam analysis. Up to now, few asymptotically correct
cross-sectional analysis formulations are available. For |
our case of thin-walled single-cell composite beams, the
work of Ref. 14 is used. Even though not asymptoti-
cally correct, the work of Ref. 18 is also used in this
paper as a simple way to get approximate transverse
shear stiffness constants analytically.

Materiai: Graphite/Epo
Eq =30 Msi

Ep=Eg=0.75 Msi
Gq3 = Gp3 = 0.37 Msi
Gy = 0.45 Msi

Vi =Vp3=V43= 0.25

Fig. 1. Geometry of the box beam

As a first configuration test, the wing used in
Ref. 13 is considered for the present numerical study.
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The wing is prismatic, and the planform is shown in
Fig. 1. The structural model is a bax beam made of
Graphite/Epoxy (properties described in Fig. 1) and
the ply angle can be;varied from —90° to 90°, depend-
ing on the configuration of the cross section (Fig. 2).
The sweep angle A {s allowed to vary.

+9

+0

Fig. 2. CUS (left) and CAS (right) configurations (Ply
angle # measured w.r.t outward normal axis)

Fig. 3 shows the variation of divergence dynamic
pressure with ply angle for a circumferentially uniform
stiffiness (CUS) configuration, including different values
of the sweep angle A. The CUS configuration produces
extension-twist coupling and the fiber orientation in the
cross section is represented in Fig. 2 (left). When the
authors of Ref. 13 studied this configuration, they were
interested in the effects of transverse shear in the diver-
gence speed. The symbols showed in Fig. 3 are samples
of their numerical results without the inclusion of trans-
verse shear. As discussed in Ref. 19, there are basically
two ways to get a 4 x 4 stiffness model from a 6 x 6 stiff-
ness formulation for the anisotropic beam. The first is
achieved by just neglecting the transverse shear effects
all together from the stiffness matrix. This does not lead
to a correct 4 X 4 matrix, over-estimating some of the
stiffness constants (see dotted lines in Fig. 3). The sec-
ond approach is the consistent one, done by minimiza-
tion of the strain energy with respect to the transverse
shear measures (solid lines in Fig. 3). By doing so, the
important contribution of the coupling terms between
transverse shear and the classical measures are correctly
accounted for. This result can be directly achieved by
using an asymptotically correct classical formulation, as
done in Refs. 14.

7

4000
e Classical 4x4 Stiffness
------- Overconstrained 4x4 Stiffness
@  Theory of Librescu & Song
1 .
3000 -

5

P

2.

Normalized Divergence Dynamic Pressure

45
Ply angle (degree)

30

Fig. 3. Variation of divergence dynamic pressure with
ply angle for a CUS configuration (normalized with re-
spect to the divergence dynamic pressure for 0° ply an-
gle) ‘

For this particular example, the 6 x6 cross-sectional
stiffness constants were obtained by using Ref. 18. Even
though not described in Ref. 13, the results suggest that’
the authors used the first method of disregarding trans-
verse shear effects. As one can see from Fig. 3, when the
bending stiffness starts dominating the behavior of the
wing (large sweep angles and 15° < 6 < 60°), even the:
qualitative behavior changes from the two stiffness mod-
els. The missing effects that are totally associated with
transverse shear!3 are in part caused by the reduction of
the effective bending stiffness due to the bending-shear
coupling (present in a CUS configuration). This just
reinforces the fact that the aeroelastician has to have
available a consistent stiffness model to be used in the
analysis.

Flutter Tailoring

- For lack of published flutter results for composite
box beams, the code is validated by comparing the flut-
ter speed of Goland’s typical wing? Fig. 4 shows the
V-g plot obtained for this case. The flutter and diver-
gence point.can be easily spotted. The present theory
gives a flutter speed of 445 fps as compared to the exact
flutter speed of 450 fps, and the flutter frequencies are,
respectively, 70 rad/s and 70.7 rad/s (both with 1.0%
relative error).
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Fig. 4. V-g plot for Goland’s wing

Now for the composite box beam wing, consider the
variation of the divergence and flutter speeds with ply
angle for a circumferentially asymmetric stiffness (CAS)
configuration. The CAS configuration produces vertical
bending-twist coupling, the fiber orientation in the cross
section is represented in Fig. 2 (right). As for diver-
gence, positive ply angles produce a favorable bending-
twist coupling, leading to a very high divergence speed,
whereas a negative ply angle shows lower divergence
speed (see Fig. 5). The flutter results are more inter-
esting and thought provoking. Flutter involves dynamic
interaction of various modes. Also, the normal modes

of vibration of the composite beam change with ply an--

gle, thus Iéading to a change in the flutter mode shape.
In Fig. 5, only the lowest flutter speed is represented.
The plot is not smooth due to the changes of the lowest
flutter mode shape. Future work will include examining
these flutter mode shapes and its variation with ply an-
gle, which should provide a better understandm,, g about
the phenomenon.
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2 -
154
g [H
ol
g
o
= 4
2 14
EI
s
E -
=3 <
z -
0.5
........ Divergence boundary
— Flutter boundary _
O-r—rrr—rrrrrrrr—
-90 -60 -30 0 30 60 90
Ply angle (degree)

Fig. 5. Variation of flutter and divergence velocities with
ply angle for a box beam wing (CAS configuration) -
normalized with respect to the divergence velocity for
0° ply angle

Conclusions

Aeroelastic stability is an important factor in the
design of modern flexible wing aircraft. The possibility -
of using material couplings in the structural tailoring
process opens new frontiers to the design of a compos-
ite wing. As shown, both static and dynamic aeroe-
lastic stability can be altered by those couplings. The
present work discussed some basic analysis tools to be
used in preliminary design of high-aspect ratio compos-
ite wings.

Aeroelastic analysis has been implemented for lin-
ear models of anisotropic closed section beams using
Theodersen’s function. Goland’s typical wing is used
to verify the procedure. Box beam configurations with
different levels of vertical bending-twist and extension-
twist couplings are used to represent composite wings.
Results indicate the possibility of changing aeroelastic
characteristic of a wing by tailoring the composite struc-
ture. Unlike earlier parametric studies, this study used
a box-beam configuration which is a closer approxima- - -
tion of a wing. Due to the complexity of the possi-
ble couplings present in the structure, special attention
must be given to the cross-sectional stiffness constants
used in the analysis and their effects in the aeroelastic
response.
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