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Abstract

Aeroelastic instabilities have always constrained
the flight envelope and thus are considered important
during design optimization. As we strive to reduce
weight and raise performance levels using directional
material, thus leading to an increasingly flexible air-
craft, there is a need for reliable (less conservative yet
accurate) analysis tools, which model all the important
characteristics of the Fluid-Structure interaction prob-
lem. Such a model would be used in preliminary design
and control synthesis. A theoretical basis has been es-
tablished for a consistent analysis which takes into ac-
count, i) material anisotropy, #) geometrical nonlinear-
ities of the structure, i) unsteady flow behavior, and
iv) dynamic stall. The paper describes the formulation
for aeroelastic analysis of aircraft with high-aspect-ratio
wings. Preliminary results are presented and validated
against the exact flutter speed of the “Goland” wing.
Further results have been obtained which give insight
into the effects of the structural and aerodynamic non-
linearities on the trim solution, flutter speed, amplitude
of limit cycle oscillations, and effect of rigid body mo-
tion (fight dynamics).

Introduction

The field of aerospace engineering is entering an
era of high technology. Over the past decade there has
been a great deal of progress in almost all the sub-fields
in aeronautics. Control is becoming an integral part
of all the sub-disciplines, thus leading to areas of re-
-search like control of flexible structures, flow control,
and fly-by-wire concept. Also with the rise in the mod-
eling accuracy and production reliability, the designer
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is approaching what could be called an absolute limit.
Optimization is the center of all analysis and design.
The aim in all of the above is high performance and
safety at a lower cost.

Traditionally, designers sought to optimize the de-
sign for individual disciplines. For example, the design
of the load-carrying member of a wing was the responsi-
bility of the structural engineer, who had to do it within
the constraint of an airfoil shape optimized by an aero-
dynamacist. The flight control system designer would
then work on this design for the best performance and
stability norms. Such a design does not always approach
the global optimum, the solution to a coupled optimiza-
tion problem.

Coupled optimization with realistic models is com-
putationally very expensive. One could depend on his-
torical data to constrain the system to the point that
it is solvable. An alternative way out is to go for low-
order, high-fidelity models which contain most of the
higher order/ nonlinear effects and couplings of the air-
craft. This would not necessitate constraining of the
system, thus leaving it open to newer designs for current
flight requirements. Such a system model would also
give physical insight into the behavior of the problem,
thus highlighting the kind of coupled behavior which
is sometimes favorable but can be disastrous at other
times. g

The last decade has seen an expansion of the
flight envelope as well as an increase in the variety of
flight missions. Aeroelastic tailoring of composite wings
opened an era in which structural coupling was used fa-
vorably, making new concepts such as forward swept
wings possible. Unmanned aerial vehicles would take
the human out of the loop. An increase in flight per-
formance is likely but would have to be accompanied
by very robust and intelligent controllers. Here flight
maneuvers which were once discarded due to their un-
certainties, could be used if the aircraft model (analysis)
possesses all the physical characteristics of the aircraft.
Then stall could be a regular part of the flight trajec-
tories, and control reversal could be used effectively as
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control augmentation. Again the need is for a model
which takes into account the higher-order, nonlinear ef-
fects and the various couplings.

Background

Aeroelasticity is a vast field. Aeroelastic instabil-
ities such as divergence and flutter have been the lim-
iting factors for high speed flights. The development
of theories for aeroelastic analyses, which started with
simplistic models of linear modal analysis for structures
and one-dimensional (1-D) quasi steady aerodynamics,
have come a long way to the point that tools based on
coupling the Finite Element Method (FEM) and Com-
putational Fluid Dynamics (CFD) are in current use.
An overview of recent and ongoing research in related
fields is presented in detail in an earlier paper!

Aeroelastic analysis of composite wings is a subject
of an ever increasing body of literature. The interest
stems from the possibility of using directional proper-
ties of composites to optimize a wing (i.e., aeroelas-
tic tailoring). Shirk, Hertz and Weisshaar® presents a
historical background of aeroelastic tailoring and the
theory underlying the technology. Librescu and his co-
workers were among the first to use a more realistic
cross-section; a box beam model made up of various
composite laminates for the wing? as opposed to lami-
nated plates. This type of model was analyzed for static
aeroelastic instabilities. Banerjee? Chattopadhyay® and
Patil® have investigated the influence of ply angle layup
on the static and dynamic aeroelastic characteristics of
composite box beams.

Aeroelastic characteristics of highly flexible aircraft
is investigated by van Schoor and von Flotow” The
complete aircraft was modeled using a few modes of
vibration, including rigid-body modes. Waszak and
Schmidt® used Lagrange’s equation to derive the non-
linear equations of motion for a flexible aircraft. Gen-
eralized aerodynamic forces are added as closed form
integrals. This form helps in identifying the effects of
various parameters on the aircraft dynamics.

Nonlinear aeroelastic analysis has gathered a lot of
~momentum in the last decade due to understanding of
nonlinear dynamics as applied to complex systems and
the availability of the required mathematical tools. The
studies conducted by Dugundji and his co-workers are
a combination of analysis and experimental validation
of the effects of dynamic stall on aeroelastic instabili-
ties for simple cantilevered laminated plate-like wings?
Virgin and Dowell have looked into the nonlinear behav-
ior of airfoils with control surface free-play and investi-
gated the limit-cycle oscillations and chaotic motion of

airfoils!® On the other hand more insight into nonlinear
dynamics itself using nonlinear aeroelastic behavior of
an airfoil as an example is investigated by Strganac and
co-workers!!

The authors® have analyzed the nonlinear behav-
ior of cantilevered box beams in subsonic flow. The
result include the structural nonlinearities arising due
to large displacements and aerodynamic nonlinearities
due to stall. Aeroelastic characteristics of the wing were
analyzed from the standpoint of stability. A brief de-
scription of the models used is presented below. A more
detailed formulation of the aeroservoelastic analysis of
a complete aircraft is given in an earlier paper by Patil,
Hodges and Cesnik!

Formulation

The theory is based on two separate works, viz.
i) mixed variational formulation based on exact intrin-
sic equations for dynamics of moving beams!? and, i)
finite-state airloads for deformable airfoils on fixed and
rotating wings!® * The former theory is a nonlinear in-
trinsic formulation for the dynamics of initially curved
and twisted beams in a moving frame. There are no
approximations to the geometry of the reference line of
the deformed beam or to the orientation of the cross-
sectional reference frame of the deformed beam. A com-
pact mixed variational formulation can be derived from
these equations which is well-suited for low-order beam
finite element analysis based in part on the original pa-
per by Hodges!? The latter work presents a state-space
theory for the lift, drag, and all generalized forces of
a deformable airfoil. Trailing edge flap deflections are
included implicitly as a special case of generalized de-
formation. The theory allows for a thin airfoil which
can undergo arbitrary small deformations with respect
to a reference frame which can perform arbitrary large
motions. g

Structural theory

During the last seven years, a comprehensive
framework has been developed for modeling of gener-
ally nonhomogeneous, anisotropic beams with arbitrary
cross-sectional geometry and material distribution!® 16
With the modeling power of the finite element method,
it takes a two-step modeling approach which facilitates
the accurate treatment of complicated, built-up beam-
like structures with a very small number of states. It
is based on 3-D elasticity and is capable of modeling
complex cross-sectional geometry (solid, built-up, or
thin-walled; open or closed; airfoil shaped if necessary),
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including all possible couplings and deformation in an
asymptotically correct manner.

The framework of structural analysis also gives rise
to a set of geometrically-exact nonlinear equations for
the beam structural dynamics}? Thus, it provides a
concise but accurate formulation for handling built-up,
beam-like structures undergoing large motions with ge-
ometrically nonlinear deformation. It has been success-
fully applied to rotary-wing static and dynamic aeroe-
lastic stability problems!? and aircraft composite wing
aeroelastic analysis! This formulation is ideally suited
for large motion and geometrically nonlinear deforma-
tion of wings structures and will be used here. It can
be easily augmented to include fuselage motion, by con-
sidering the corresponding energies.

The variational formulation is derived from Hamil-
ton’s extended principle and can be written as,

/t2 [6(K —U) + W] dt =5A (1)

[31

where K is the kinetic energy of the system, U is the
potential energy of the system, 6W represents the vir-
tual work done on the system, 64 is the virtual action
at the end of the time interval, § is the variational op-
erator, and tj, ty specify the time interval over which
the solution is required.

- The kinetic energy of the aircraft can be repre-
sented as,

K =} i (mVTV - 2mQVe + QTi0) day, @

where m, £, i are, respectively, the mass, mass offset,
and inertia matrix per unit length, z; is the running
axial coordinate along the wing, £ is the wing length and
column matrices V' and 2 represent the total velocity
and total angular velocity in the deformed frame.

The gravitational potential energy represented by
G can be written as

G = f(f mgej C* (u + C°B¢) dx; 3)

where C* and C*Z denote the rotation matrices, and 1,
a, B represent the inertial, aircraft and wing deformed
frames.

The strain energy due to elastic deformation of the
wing is given by,

o=3f {1 e

(4)

where v and & are one-dimensional strain measures, and
[S] is the 6 x 6 cross-sectional stiffness matrix.

Now taking the variation of individual energies, we
get the expressions for momenta and forces. The ex-
pressions for linear momentum P, angular momentum
H, and internal force and moment, F', M are given by!”

P=(% T=m(v—éﬂ)

H= ()" =i+ mév ¥
{ﬁ}={§:§:}=[5]{1} ©)

The virtual work done on the system can be written
as, :

(™

where f, m are the external force and moment vectors.

W = [y (6u"f + 50" m) day

Now using the kinematic relationships derived in
Hodges!? the expressions for the velocities and the gen-
eralized strains can be derived?!

In the mixed formulation, the variable expressions
are enforced as additional constraints using Lagrange
multipliers. Denoting the expressions of all the variables
by ()*, Hamilton’s equation becomes,

Rl [W*TP +60°TH — 64*TF
—65*TM + 64T f + 59" m
+6vT(F — F*) + 65T (M — M*)
—§VT(P ~ P*) — 6QT(H — H*)
+6FT (y = v*) + 6M7T (k — K*)

~8PT(V = V*) — 6H"(Q - )] da1 } dt = TA
(8)
The expressions for various quantities and their varia-
tions can be substituted in the above equations to get
a complete expression for the Hamilton’s equation.

The external forces and moments in the above ex-
pressions are the various loads acting on the aircraft,
including aerodynamic and propulsive loads. Propul-
sive loads will be assumed as given. The aerodynamic
loads will be calculated as described in the following
section.
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Aerodynamic theory

In order to have a state-space representation of
the aerodynamic problem with a low number of states,
the finite-state aerodynamic theory of Peters and co-
workers'® is a natural choice. It accounts for large
frame (airfoil) motion as well as small deformation of
the airfoil in this frame, e.g., trailing edge flap deflec-
tion. The theory has been extended to include com-
pressibility effects'4, and gives good dynamic stall re-
sults when complemented with ONERA stall modell3

The aerodynamic loads used are as described in de-
tail in Peters and Johnson!® The theory calculates loads
on a deformable airfoil undergoing large deformation in
a subsonic flow. Certain aerodynamic parameters for
the particular airfoil are required and are assumed to
be known empirically or through a CFD analysis. The
generalized force measures are given as,

225 {Ln} = =620 { B + 03 |

—~buo[C] {n +vn = Ao} —u?[K] {ha} (g

—b[G] {liohn + upln — UoUn + 'u,o)\g}

where p, b are the air density and semichord respec-
tively, h,,, v, are the generalized deformation and ve-
locities, and Ag is the inflow. The matrices denoted by
(K], [C], [G], [S), [H], [M] are constant matrices!3

The inflow is obtained using the finite-state inflow
theory!® The inflow (\g) is represented in terms of N
states A1, Ao, ..., Ay as

1 N
Ao = angbnxn

where the b, are found by least square method, and
the A, are obtained by solving a set of N first-order
differential equations!®

(10)

/‘\0 — %/.\24-%;5)\1 =2f

] (11)
r

3

& (act = dnst) + 2, =

The airloads and inflow model can be extended to
include the effects of dynamic stall by augmenting the
model with the ONERA stall model given below.

. LT,L =L, + puTFn

T, + 22T, + (22)2 0T, = (12)

2 3A . d
—wur Ao, w2€uTaz (urAcy)

where, T', is the correction to the circulation. The pa-
rameters Ac,, 1, w?, and e must be identified for a
particular airfoil.

The airloads are inserted into the Hamilton’s prin-
ciple to complete the aeroelastic model.

Solution of the aeroelastic system ’

Coupling the structural and aerodynamics models
one gets the complete aeroelastic model. By selecting
the shape functions for the variational quantities in the
formulation, one can choose between, i) finite elements
in space leading to a set of ordinary nonlinear differ-
ential equations in time, %) finite elements in space
and time leading to a set of nonlinear algebraic equa-
tions. Using finite elements in space one can obtain the
steady-state solution and calculate linearized equations
of motion about the steady state for stability analysis.
This state space representation can also be used for lin-
ear robust control synthesis. Finite elements in space
and time are used to march in time and get the dynamic
nonlinear behavior of the system. This kind of analy-
sis is useful in finding the amplitudes of the limit cycle
oscillations if the system is found unstable.

Thus three kinds of solutions are possible. i) non-
linear steady-state solution, i) stability analysis by lin-
earizing about the steady state. ii) time marching so-
lution for nonlinear dynamics of the system.

For steady-state and stability analysis, the formu-
lation is converted to it weakest form in space, while re-
taining the time derivatives of variable. This is achieved
by transferring the spatial derivatives of variables to the
corresponding variation by integration by parts. Due
to the formulation’s weakest form, simplest shape func-
tions can be used!? With these shape functions, the spa-
tial integration in Eq. (8) can be performed explicitly
to give a set of nonlinear equations!® These equations
can be separated into structural (Fgs) and aerodynamic
(F1) terms and written as B

Fs(X,X) - FL(X,Y,X) =0 (13)

where X is the column matrix of structural variables
and Y is a column matrix of inflow states. Similarly we
can separate the inflow equations into an inflow compo-
nent (Fr) and a downwash component (Fyy) as

~Fy(X)+ F(Y,Y) =0

The solutions of interest for the two coupled sets of
equations (Egs. 13 and 14) can be expressed in the form
X X X(t)

=¢ o+
Y Y

(14)

(15)
Y (t)
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where (7) denotes steady-state solution and (*) denotes
the small perturbation on it.

For the steady-state solution one gets Y identically
equal to zero (from Eq. 14). Thus, one has to solve a
set of nonlinear equations given by

FS(X')O)_FL(X7O)O)=0 (16)

The Jacobian matrix of the above set of nonlinear

equations can be obtained analytically and is found to

be very sparse!® The steady-state solution can be found
very efficiently using Newton-Raphson method.

By perturbing Eqgs. (13) and (14) about the calcu-
lated steady state using Eq. (15), the transient solution
is obtained from

17
8Fs _ 8F, _ 9F; X 0 a7
oX T ax oY —

[ 0 BF[ X=X
oY dv=0 |V 0

Now assuming the dynamic modes to be of the form
est, the above equations can be solved as an eigenvalue
problem to get the modal damping, frequency and mode
shape of the various modes. The stability condition of
the aeroelastic system at various operating conditions
(steady states) is thus obtained.

To investigate the nonlinear dynamics of the air-
craft a time history of aircraft motion and deformation
has to be obtained. To get such a solution space-time
finite elements are used. This requires that the formu-
lation be converted into its weakest form in space as
well as time. Thus, the spatial and temporal deriva-
tives are transferred to the variations. Again due to
the weakest form of the variational statement, constant
shape functions are used for the variables, and lin-
ear/bilinear shape functions are used for the test func-
tions (variations)?® With these shape functions, Eqs. 13
and 14 take the form,

Fs(Xi,Xf) — FL(Xi,Xf,Y) =0
(18)
—Fw(Xi,Xf) -+ FI(YZ',Yf) =0

where subscripts 4, f, represent the variable values at
the initial and final time. If the initial conditions and
time interval are specified, the variable values at the
final condition is obtained by solving the set of nonlinear
equations.

Preliminary Results

Flutter and divergence results have been obtained
for a metallic wing used by Goland?! and compared
with published results (available for the linear case).
The results obtained indicate that the steady-state solu-
tion and the eigenvalues can be computed efficiently and
are accurate. Time marching scheme based on space-
time finite elements was found to be stable. The Goland
metallic wing was used as a test case since it is based
on a real wing and thus gives a realistic idea of the ef-
fect of non-linearities in wings. Aeroelastic tailoring of
composite box beam “wing” was conducted in an earlier
paper® and will not be repeated here.

Test case data

The Goland wing data?' is reproduced below.
Other aircraft data (tail data, fuselage data) was cho-
sen ad hoc and appended to the wing model to get a
complete aircraft model as described below:

Wing half span = 20 ft

Wing chord = 6 ft

Mass per unit length = 0.746 slugs per ft

Radius of gyration of wing about mass center
= 25 % of chord ;

Spanwise elastic axis of wing = 33 % of chord
(from le. )

Center of gravity of wing = 43 % of chord
(from Le. )

Bending rigidity (EI,) = 23.65 x 108 1b ft2

Torsional rigidity (GJ) = 2.39 x 106 1b 2

Tail position = 10 ft behind wing elastic axis

Tail half span = 4 ft

Tail chord = 3 ft

Control surface = 50 % of chord

Mass per unit length (tail) = 0.373 slugs per
ft

Radius of gyration of the tail = 25 % of chord

Center of gravity of tail = 50 % of chord (from
le.)

Mass of fuselage = 149.2 slugs

Radius of gyration of fuselage = 6 ft

Mass offset = 1 ft in ahead of wing elastic axis

The aerodynamic data for the airfoil is obtained
by curve-fitting the ¢, and ¢, data. Fig. 1 shows the
plot of the assumed linear and stall data. The coeffi-
cients for the dynamic stall model, i.e. 7, w and e for
a symmetrical airfoil are given as a function of Ac,!

As shown in Table 1, the current analysis gives the
flutter speed and flutter frequency results to within 1 %
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Figure 1: Linear and stall data for ¢; and ¢,

Flutter Vel. Flutter Freq.
(ft/sec) (rad/s)
Present Analysis 445 70.2
Exact Solution 450 70.7
Galerkin Solution 445 70.7

Table 1: Comparison of flutter results for Goland wing

of the “exact” linear flutter speed of the cantilevered
wing.

Effect of nonlinearities on flutter

Structural as well as aerodynamic nonlinearities
are’ known to affect flutter. One of the goals of this
research is to be able to determine up front those cases
for which nonlinear models are essential for accuracy.
As a first step towards that goal, flutter analysis is con-
ducted on the Goland cantilevered wing. The gravita-
tional forces and skin friction drag are neglected in these
results. Fig. 2 shows the variation of the flutter speed
with increasing angle of attack. The results show the ef-
fect of structural nonlinearities, nonlinear static experi-
mental aerodynamic data, and, dynamic stall model on
the flutter speed.

As the angle of attack is increased, the aerody-
namic load on the wing increases and so do the bending
and torsional displacements. The flutter speed is seen
to increase due to geometric stiffening. If experimen-
tal static aerodynamic data are included in the analy-
‘sis, then the flutter speed increases even more due to
the lower lift-curve slope in the experimental data (i.e.,
5.5 as compared to the theoretical value of 27). Again
there is a slight increase in flutter speed with angle of
attack due to geometric stiffening. The results including
dynamic stall model are markedly different from those
without. This is due to coupling between the structural
states and the stall states. The stall delay frequency of
around 25 rad/sec interacts with the first two structural

g
=]
8
o
w
% 1 Linear
& 3004 - - - Structural Nonlinearities
1 e Strc. NL + Static Stall
250._ _ Strc. NL + Dynamic Stall
200 +——————————
0 5 10 15
Angle of Attack (deg)

Figure 2: Variation of flutter speed with angle of attack

modes and leads to additional coupling and coalescence,
and change in flutter mode. The flutter mode frequency
shifts from around 70 rad/sec at 7° to 55 rad/sec at 12°.
Also as the angle of attack is increased wing stall occurs
at lower speeds thus leading to possibility of flutter at
lower speeds.

The effects of structural nonlinearities seem to be
small in the above test case which is a low aspect ra-
tio conventional wing. The effects would be consider-
ably higher for a flexible high aspect ratio wings used in
UAVs. More work on different models will be presented
in a later paper.

Limit cycle oscillations

The flutter results obtained in the earlier section
give the velocity of onset of flutter. These flutter results
imply that small disturbances will grow exponentially
for velocities higher than the flutter speed. But as the
amplitude of oscillations grows, so does the additional
nonlinear stiffness. Thus, the vibrations do not grow to
infinity but instead converge to a limit cycle oscillation
(LCO). The amplitude of the LCO gives an idea of the
amount of stress/strain on the structure and thus is use-
ful in analysis and design. The amplitude, phase and
type of LCO can only be determined by time march-
ing the nonlinear differential equations of motion of the
aeroelastic system.
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Figure 4: Stability at various Initial conditions

The Goland wing at zero steady-state angle of at-
tack and a velocity of 500 ft/sec (Vr = 468 ft/sec) was
disturbed by a small disturbance and the time history
of oscillations was obtained. The tip displacement, tip
rotation and the total energy (sum of kinetic and poten-
tial energy) are plotted against time in Fig. 3. The tip
displacement and rotation increase exponentially when
the amplitude of vibration is small, i.e. the nonlinear-
ities are negligible. As the amplitude of vibration in-
creases, nonlinearities due to stall become important
and in fact dominant. The aerodynamic forcing func-
tion drops and thus can no longer pump the required
amount of energy into the structure and the amplitude
of oscillation and the total energy levels out.

Another way of looking at the history of oscilla-
tions is via a phase plane plot. Here two variables of
the system are plotted against each other to give an in-
sight into the modeshape of oscillation. Fig. 5A shows
the plot of tip displacement versus tip rotation. One
can clearly see the changes in the modeshape as the
amplitude increases, and eventually settles into a LCO.

Effect of large disturbances

Stability as calculated by eigenvalues is a linear
concept, and thus is valid for small disturbances about
the steady state. The flutter speeds calculated above
predict that small disturbances grow for speeds higher
than the flutter speed and decay for lower speeds. But
the disturbances encountered by an aircraft depend

completely on its mission and environment, e.g. ma-
neuvers, gust amplitudes. A nonlinear system found
to be stable under small disturbances may not neces-
sarily maintain stability for higher amplitudes of dis-
turbances. In fact the dynamics of the system can be
completely different for varying initial conditions.

Consider the Goland wing at 10° steady-state angle
of attack flying with a velocity of 450 ft/sec (Vr = 466
ft/sec). Fig. 4 shows the response of the system for
various initial conditions. The initial conditions are ob-
tained by deforming the wing with tip forces and mo-
ments. “S” denotes a stable response, “L” denotes a
a different modeshape which is either a LCO or very
lightly damped oscillation, and “U” denotes that the
initial modeshape is unstable, and thus the amplitude
of ascillation increases and finally settles into a new
higher-amplitude LCO. The reason to distinguish be-
tween the latter two responses is that the first one has a
small amplitude and most likely will not result in struc-
tural failure. The above plot shows that depending on
the disturbance, the wing may go into a flutter / LCO
even at speeds lower than the flutter speed.

The modeshapes in the phase plane are given in
Fig. 5. Plot B, shows the behavior of the system for
small disturbances. It is lightly damped and the mode-
shape is that obtained by linear eigenvalue solution.
Plots C and D, show the kind of responses for medium
level disturbances. The modeshape is nonlinear (non si-
nusoidal), and depending on the disturbance the damp-
ing is either zero or very close to it (C) or small (D).
Plots E and F show the initial and final modeshape for
high power disturbance. Two plots have been made for
easier visualization. Plot E clearly shows that the am-
plitude of vibration is increasing, and Plot F shows the
final converged large amplitude LCO.

Effect of maneuvers

Maneuvers change the system dynamics due to
atleast three effects, i) system configuration, i) sys-
tem steady state, i) maneuver induced loads. The
system configuration is altered for maneuvers, e.g. use
of ailerons or spoilers. One would have to do stabil-
ity analysis for all these configurations. The system
steady-state effect is the same as that discussed in the
section on the effects of nonlinearities. A high g pull up
is such an example. For this maneuver higher lift and
thus higher angle of attack would be essential and thus
the effects of nonlinearities may become dominant. In
the pull up maneuver the wing is also loaded by the g
loads but may be small for low ratios of wing to fuselage
mass.




Copyright © 1998, by the International Council of the Aeronautical Sciences (ICAS)
and the American Institute of Aeronautics and Astronautics, Inc.

80 44
43
Fy F;
= 4.2
o =
8 A=
g =
& & 4.1
R R
&= =]
4]
80— 34—
015 01 005 0 005 01 015 0.0625 0.063 0.0635 0.064 0.0645
Tip Displacement (% of beam length) Tip Displacement (% of beam length)
20+ 25+
15
~ 104 ~
60 ] o0
3 ] 2
= 34 ]
S 7 g
g ] g
g 0] g
a1 R
(& _5_5 =~
-104
-5t - 154+
0 002 004 006 0.08 01 0.12 0 002 004 006 0.08 01 0.12
Tip Displacement (% of beam length) Tip Displacement (% of beam length)
60
40
B CR
L8] L E
= 2 20
= [~ E
2 2 1
g g
& g o
- RS ]
b= = ’
220
'30-""l""l"“1"“l"" A
-0.04 0 004 008 012 0.16 - -0.1 0 0.1 02 0.3
Tip Displacement (% of beam length) Tip Displacement (% of beam length)

Figure 5: Phase-Plane Diagrams for various Initial Disturbances
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Figure 6: Variation in Flutter Velocity with Roll

Fig. 6 shows the variation of flutter velocity with
roll. In a steady roll, centrifugal force induces loads
proportional to the distance from the center and thus
are high on the wing. This force leads to increased
bending stiffness, thus higher flutter velocities.

Effect of rigid-body motion

To quantify the effects of rigid body motion and
flight dynamic interactions, the Goland wing model was
extended ad hoc to create an aircraft model. Fig. 7
shows the root locus plot of some eigenvalues of the
system with velocity. There are two sets of curves,
one for the cantilevered wing and another for the com-
plete aircraft. Again for the test case one does not see
much difference between the two results, except that
the phugoid mode is captured if the analysis includes
rigid-body modes. One can expect more flight dynamic
interactions for a flexible wing where the structural fre-
quencies will be lower and closer to the rigid body fre-
quencies.

Conclusions

A theoretical basis for nonlinear aeroelastic analy-
sis and flight dynamics of aircraft with high-aspect-ratio
wings has been presented. It takes into account struc-
tural geometric nonlinearities and aerodynamic stall
nonlinearities. The equations have been solved using
low order finite elements for nonlinear stability analy-
sis. The resulting code has been validated.
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Figure 7: Root locus plot of the aeroelastic aircraft
model

Preliminary results are interesting to say the least,
and complex at most. The results give deeper insight
into effects on nonlinearities on aeroelastic stability. Ef-
fect of flight dynamics (aircraft motion) on the aeroelas-
ticity solution, which may involve nonlinear couplings,
are also pointed out. The effects of nonlinearities are
much higher on a highly flexible wing as opposed to
a conventional wing considered here. Once a realistic
composite aircraft model is developed, interactions be-
tween high flexibility, directional properties and nonlin-
earities will be modeled and discussed. The effect of
flexibility on flight dynamics and control of aircraft is
in itself a separate topic and will be discussed in later
paper.
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