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Abstract

In the present work the flow in a diffuser
mounted at the exit cross-section of an air-
conditioning system fan has been studied. In
the first step, the exit flow condition of the fan
has been studied and then, for various diffuser
divergence angles, the flow parameters and
the seperation regions have been examined
using the wool-tuft method. For the
quantitative examination of the diffuser flow
at various divergence angles, wall static
pressure distributions have been measured
using a pressure scanning valve with a
PCL818 A/D card. The diffuser exit mean
flow condition and the turbulence level have
been measured using pitot-static tube with an
electronic micromanometer and the same A/D
card. All these investigations show that the
flow is not uniform at the exit of the diffuser
-and the turbulence level shows important
variations from point to point. On the other
hand, the flow in the diffuser is seperated at
all diffuser divergence angles except less than
five degrees for which the flow of the duct is
considered approximately uniform.

LIntroduction

Diffusers are geometrically simple fluid
mechanical devices, having many applications
such as in aircraft jet engines, wind tunnels,
air-conditioning, electrostatic precipitator etc.,
in order to reduce the speed of fluid flow.
Basic characteristic of a diffuser in
incompressible flows is that its cross-sectional
area increases from the entry to the exit plane.
Another purpose of a diffuser in an internal
flow system is to produce an increase in static
pressure without external energy input, by
converting the dynamic pressure associated
with the inlet velocity profile.

Patterson has investigated flows in ducts,
duct losses and duct design for various
geometries and types and has given about
rules to be followed for the reduction of
internal and external drag. Cockrell and
Markland® have investigated incompressible

L

diffuser flow, and have given an experimental
review of the current work. Runstadler et al®®
have prepared a diffuser data book as a
technical note for Creare Inc. Sci. and Tech.
This study includes a lot of experimental
results. Bower® has investigated the attached
and seperated subsonic diffuser flows, and he
has given an analytical technique for
calculating the boundary-layer characteristics
and the static and total pressure distributions
in plane-wall and conical diffusers. Mehta®
has studied the acrodynamic design of blower
tunnels with wide-angle diffusers. In this
work, there are a lot of experimental results
about wide-angle diffusers and flow control
techniques in wide-angle diffusers. Farell and
Xia® have investigated screen-filled wide
angle diffusers. In this study, they have given
some analytical techniques and experimental
results.

Sahin and Ward-Smith” have studied the
flow in a diffuser and established the geometry
of the seperated flow region, velocity
distributions and flow angles across the
diffuser. Sahin and Ward-Smith®  have
investigated the application of blanking
techniques to vary screen porosity and to study
its effect on the performance of plate diffuser
combinations. Sahin et al®? have studied
pressure distributions and pressure losses in
plate diffuser combinations as influenced by
systematic variations of screen location, type
of screen and diffuser geometry.

The principal aim of this paper is to
investigate the flow downstream of a diffuser
used for an air-conditioning system. The
diffuser was taken empty, in other words
without flow control devices, and experimental
techniques were used. The results shown here
are examples of a much larger range of
information which can be found in Ref 11.
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2. Experimental Arrangement

The diffuser having a rectangular cross-
section was made of plexiglass material of 10
mm thickness. The side walls were parallel
and vertical walls diverged between zero
degree and fifty degrees. The diffuser was
placed outlet of the fan. The tongue region of
the fan was closed for these experiments since
reverse flows were observed under the tongue
of the fan, after qualitative investigations
using wool-tuft method. Consequently, the
entrance of the diffuser was faced with the fan
outlet region above the fan tongue. The length
of the duct was 42 cm.

Air conditioning system has a fan, driven by
an electrical motor of 1HP power and 3000
RPM.

The diffuser walls were equipped with the
static pressure taps. The arrangement of the
pressure taps is presented in Fig. 1. First the
static pressure holes were drilled of 5 mm
depth and 0,5 mm diameter in internal side of
the walls, then the holes in 5 mm depth and
1,5 mm diameter were drilled in the external
side of the walls in order to place injector
.needles of 1,5 mm diameter. The needles were
connected with elastic tubes to an Electronic
Pressure Scanning Module (EPSM) of
Scannivalve ZOC. This EPSM was used with
a PC and a PCLS818 data acquisition card.
Detailed informations about this card and the
use and the calibration of the EPSM can be
found in Ref 10. Especially designed
miniature pitot-static tube was wused to
measure the velocity distributions at exit
cross-section of the diffuser. It was connected
to an electronic micromanometer and the data
was acquired by the PC. A DISA traversing
mechanism equipped with a Stepper Motor
and controlled with a Sweep Drive Unit were
used to traverse the pitot-static tube.

3. Results and discussions

Qualitative  investigations with wool-tuft
method have revealed that there were
seperation regions and reverse flows in the
‘various regions of the diffuser. The
investigations stated also that for small
divergence angles, the flow was not
symmetric. Wall static pressure measurements
prooved the results of the wool-tuft method.
Static pressure measurements are presented in
Fig.2. The wall static pressure coefficient is
defined as Cp,
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where P is the local pressure, P, is the
reference pressure taken as average value of
the wall pressures while the divergence angle
is zero, and p is the air density. U is the
reference velocity taken as the average value
of the exit cross-section velocities of the fan
without duct. Its value was 14,80 m/s for these
experiments.
The  arrangement for the  velocity
measurements with pitot-static tube at the exit
cross-section of the diffuser is shown in Fig.3.
For the divergence angles smaller than five
degrees, the results of the wvelocity
measurements at the outlet of the diffusers are
shown in Fig.s 4. and 5.
The results in Fig.s 4, indicate that the
velocity profiles are alike and the flow are not
uniform. In order to clarify of the flow field
the same velocity distributions are given as
three dimensional diagrams in Fig.5. In these
figures U1 is the local velocity, and U is the
reference velocity as mentioned above.
The complexity of the flow ficld made
difficult the experimental studies for
divergence angles higher than ten degrees.
Therefore no data is given above ten degrees.
Comparison of figures 5a, 5b and 3¢ shows
that, the velocity distribution at ten degrees
divergence angles is some different from the
zero and five degrees divergence angles.
The variations of the velocities with time at
particular stations for zero and ten degrees of
divergence angles are given in Fig.6. RMS
values of the velocities measured at three
places of the diffuser exit cross-section are
given in Fig. 7. RMS values are defined as
RMS =V1/mZ(Ui-U)?
where Ui is the instantanous velocity and U is
the average velocity of these values.
These figures show that the RMS values have
roughly the same average value. In the lower,
middle and upper levels of the diffuser outlet
section. However there is a periodic change in
the middle level. RMS values vary generally
between 0,5 and 2,5 in the lower and middle
levels, and between 2 and 3 in the upper level.
As a conclusion of all the results presented in
these figures it can be stated that the flow is
far from the uniformity for nearly all
divergence angles. The flow uniformity
decision can be assessed using the method
proposed by the Industrial Gas Cleaning
Institute of America (Ref. 7). The rms% is a
measure of flow uniformity determined from a
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number of measurements of local velocity
distributed over the cross-section. Thus

st =100,[(V,., 17,)-1]

Vn is the mean velocity throuh a cross-section
and n is the number of readings. An
acceptable degree of flow uniformity
correspond to a value of rms% of 15% or less.

In our experiments the following results are
found,

Divergence angles rms%
At fan outlet section 17,80
0 degree 13,20

5 degrees 15,41

10 degrees 21,23

20 degrees 36,81

30 degrees 42,77

40 degrees 40,20

50 degrees 56,20

>These results show that the flow can be
considered nearly uniform only for less than
five degrees following the criteria of the Ref.7.

4.Conclusions

In this work the flow downstream of a diffuser
used for an air-conditioning system was
investigated. The flow was investigated with
wool-tuft method, wall static pressures and the
exit cross-section velocities were measured for
several diffuser divergence angles. The flow in
the diffuser was generally seperated for the
divergence angles higher than five degrees
and non-symmetric for all the diffuser angles.
The flow was highly turbulent in the exit
cross-section additionally RMS values showed
variations from point to point. The flow was
highly non-uniform for the diffuser angles
higher than five degrees.

“As a conclusion of these results, it can be
accepted that using only a diffuser at the fan
outlet section of an air-conditioning system is
not sufficient to decrease the losses. It can be
stated also such a system can be expected a
very noisy system because of high turbulence
level. Our results show that this type of system
is convenient only for divergence angles
smaller than five degrees: for industrial
applications.
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Figure 1 : Arrangement of the pressure taps on the diffuser walls
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Figure 2 { Wall static pressure distributions along the diffuser
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Figure 3 : Arrangement of velocity measurements places and directions.
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Figure 7: RMS variations at related places.
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