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Abstract

This paper presents the numerical model developed for
rotor blade aerodynamics loads calculation. The model is
unsteady and fully three-dimensional. Helicopter blade is
assumed to be rigid, and its motion during rotation is
modeled in the manner that rotor presents a model of rotor
of helicopter Aerospatiale SA 341 “Gazelle” (the blade is
attached to the hub by flap, pitch and pseudo lead-lag
hinges). Flow field around the blade is observed in
succession of several azimuth locations. Flow field around
helicopter rotor is modeled as fully three-dimensional,
unsteady and potential. Blade aerodynamics is modeled
using a lifting surface model. Rotor wake is generated
from the straight elements of constant vorticity, released
from the trailing edge, at fixed azimuth angles. These
vortices represent both trailed and shed wake components,
and are allowed to freely convect along local velocity
vectors. Wake is modeled as free one, and its shape at
certain moment can be calculated from simple kinematics
laws applied on collocation points of the wake. Wake
distortion is calculated only in the rotor near-field, ie. in
finite number of rotor revolutions. Vortex elements are
modeled with vortex core. The radius of the vortex core is
assumed independent of time, and it depends on
circulation gradient at the point of vortex element released
from the blade.

Introduction

Helicopter rotor aerodynamic flow field is very complex,
and it is characterized by remarkably unsteady behavior.
The most significant unsteadiness appears during the
forward flight. In that case the progressive motion of
helicopter coupled with rotary motion of rotor blades
causes drastic variations of local velocity vectors over the
blades,. where the advancing or retreating blade position is

of great significance. In first case, the local tip transonic

flow generates, while in second, speed reversal appears.
Also, in forward flight, blades encounter wakes generated
by forerunning blades and so encounter non-uniform
inflow. The wake passing by the blade induces high
velocities close to it causes changes in lifting force.
Besides that, in horizontal flight blades constantly change
pitch, i.e. angle of attack at different azimuths. Such angle
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of attack variations are very rapid, so that dynamic stall
occurs, specially in case of retreating blades.

Dynamics

In this paper the rotor of helicopter SA 341 “Gazelle” 1s
modeled, at which the blades are attached to the hub by
flap, pitch and pseudo lead-lag hinges.

Blade motion in lead-lag plane is limited by dynamic
damper, which permits very small maximum blade
deflection. Due to such small angular freedom of motion,
we can assume that there is no led-lag motion at all.

Pitch hinge is placed between flap hinge and pseudo lead-
lag hinge. In derivation of the equations of motion, the
following was assumed:

e the rotor does not vibrate, and its rotation velocity
Q is constant,

o the blade is considered absolutely rigid.

F,

z

H,

z

. |
v =Q

~

Fig. 1: Coordinate systems

According to the above mentioned, the following frames
have been selected for use:

e fixed frame F, with x-axis in the direction of flight,
and z-axis oriented upwards;
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e frame H, connected with the rotor and rotates
together with it; it is obtained by rotating the F
frame for a certain azimuth angle y;, keeping the
common z-axis

e frame P, connected to the flapping hinge, so that
the y-axis is oriented along the blade; its origin is
displaced from the rotating axis for the value eg4,

while it is rotated for the angle f with respect to
the frame H;

o frame B, connected to the blade, displaced for the
value e, from the origin of P, and tilted for the

value @ (pitch angle) with respect to the P.

Aerodvnamics

Analvtical model

The flow field is assumed to be potential (inviscid and
irTotational) and incompressible. In that case velocity
potential satisfies the Laplace equation:

AD=0

The equation is the same, both for steady and unsteady
flows. Owing to that, methods for steady cases can be
applied for the solution of unsteady flow problems, as
wéll. Unsteadiness is introduced by unsteady boundary
condition:

7-7.)i=0
of the Kelvin theorem:
or_
Dt
and the unsteady form of the Bernoulli equation:

P~ P =V£_Vz_23£

% Po ot

where: @ - is velocity potential, V- is absolute fluid
~ velocity, I7T - is lifting surface velocity, # - is the normal

of the lifting surface at a certain point, and T -is the
bound circulation.

In order to define the aerodynamic characteristics of
blades, two models should be established: blade model and
wake model.

The blade is modeled as a thin lifting surface, which
enables a complete 3D modeling around helicopter blades.
Unfortunately, it can not deal with compressible and
viscous flows.

Numerical modeling of the wake must be done very
carefully due to it’s high influence on the lift force
generation. The free-wake model, which is applied in this
paper, is one of the most advanced, sifice it can cover all
relevant problems connected with the wake influence.

BENG /N

Unsteady Kutta condition

In case of inviscid problems, it is necessary to satisfy
Kutta condition at the trailing edge.

On the basis of unsteady Brenoulli equation, the pressure
coefficient for unsteady flow is defined as:

2

P~ Do V
Cp=——F2_—]

T Y vz via

According to that, the difference between upper and lower
surface pressure coefficients is:

. A _Vg-vE o200
AC, =Cp —CPL~~———~—-—-V2 “‘I‘/-Z—E(CI’U_CDL) M

where subscripts U and L denote upper and lower surface
values.

In case of the thin lifting surface, with the assumption that
spanwise velocity components are small, the potential
difference can be written as an integral from leading edge
to a certain point M at the surface:

M

D, - D, = J'(VUT v,
LE

where the tangential velocity difference is the local bound
vortex distribution:

Y =(VU, _VLT)

Final equation defining the potential difference is:

M
®U~®L=jyd1 | @
LE '

If we assume that spanwise velocities are small, the
difference of velocity squares can be calculated as:

VE-VE=2, .y 3)

By substituting (3) and (2) in (1), the following equation
can be obtained:;

2 aM
AC, =—2 AV y+2 [
P Vj["’y at-f J

The Kutta condition can be expressed as the uniqueness of
pressure coefficients at the trailing edge, which,
mathematically expressed, takes the form:

I
2 F
AC, =V y +—Jyd1 =0
P V2 i a
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Since it is impossible to be V,, = oo, the relation within the
parentheses must be equal to zero:

TE

8

v, +—Idl=0

Y1E o g @)
LE

The integral in the upper equation is, in fact, the contour
circulation which covers the lifting surface: ‘

f:j'ydz
LE

so. the equation (4) can be written as:

ar
V., +——=0
oY TE ar

The expression for unsteady Kutta condition comes out

directly as:
o
— =,
Y YrE

If the right hand-side part is substituted with (3) written for
the trailing edge, we obtain:
o _ Vi, Vi

T Viia i
ot 2

= —(VU TE _Van 2
From this equation it can be clearly seen that the variation
of the lifting surface circulation in time can be
compensated by releasing vortices, of magnitude
(Vum -V, ] at the velocity fVum +V )2

Discretization and Numerical Solution Procedure

The method for the solution of this problem is based on
the coupling of the dynamic equations of blade motion
with the equations of aerodynamics. It is not possible to
obtain an analytical solution of this problem, so
discretization and numerical approach must be accepted.

Dicretization in time is done by observing the flow around
the blade in a series of positions that it takes at certain
times #,(k=0,1,2...), which are spaced by finite time
intervals At at different azimuths.

Discretization of the thin lifting surface is done by using
the panel approach. By this method, the lifting surface is
divided in a finite number of quadrilateral surfaces —
panels. Vorticity distribution is discretized in a finite
number of concentrated, closed quadrilateral linear
vortices, whose number is equal to the number of panels,
in such a way that one side of the linear vortex is placed at
the first quarter chord of the panel,; and represents the
bound vortex of the comresponding panel. The opposite
side of the vortex is always placed at the trailing edge.,

fSN

while the other two sides are parallel to the flow. The
wake is represented by quadrilateral vortex in the airflow
behind the lifting surface. One side of it is connected to the
trailing edge, while the opposite one is at the infinity. The
other two sides (trailing vortices), which-actually represent
the wake, are placed parallel to the airflow. The vorticity
of the quadrilateral vortex is equal to the sum of the
vorticities of all bound vortices of the panels that
correspond a certain lifting surface chord, but opposite in
direction. Then the trailing edge vorticity is equal to zero.

Model established in such a manner corresponds to the
steady flow case. On the other hand, it can be very easily
spread in order to include the unsteady effects.

Fig. 2: The steady panel scheme

Vortex releasing model

The variation of the lifting surface position in time induces
variation of circulation around the lifting surface as well.
According to the Kelvin theorem, this variation in
circulation must also induce the variation around the wake.
According to the unsteady Kutta condition, this can be
achieved by successive releasing of the vortices in the
airflow.

A= I‘i;(_m/\z)—zr{:(ﬁ
% i=1

i=1

zri;(z) S~ Fi;(t)
i=1

Fig. 3: Vortex releasing

Suppose that the lifting surface has been at rest until the
moment £, when it started with the relative motion with
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respect 1o the undisturbed airflow. The vortex releasing, as
a way of circulation balancing, is done continually, and in
such a way a vortex surface of intensity »(¢) is formed.

At the next moment ¢+ As | the flow modet will look like
in Fig. 3. The circulation of the vortex element joined to
the trailing edges equal to the difference in circulations at
moments /+Af and f.

Fig. 4: Unsteady panel scheme

We will discretize the vortex “tail” by replacing it with the
quadrilateral vortex loop, whose one side is at the trailing
edge, and the opposite side is at the finite distance from
the trailing edge (shed vortex). By this we can obtain the
final model for unsteady case.

Discretization of Wake

The established vortex releasing model is appropriate for
the wake modeling using the “free wake " approach.

During the time. by continuous releasing of the
quadrilateral vortex loops, the vortex lattice formed of
linear trailed and shed vortices is created.

The collocation points of the vortex lattice are node points.
The wake distortion is achieved by altering the positions
of the collocation points in time, by application of a rather
simple kinematics relation: 7 (t +Ar)=7 ()+V()Ar . The
velocities of the collocation points are obtained as sums of
the undisturbed flow velocity and velocities induced by
other vortex elements of the flow field. Induced velocities
are calculated using the Biot-Savart law. In order to avoid
the problems of velocity singularities, line vortex elements
are modeled with core,

The core radius varies with the gradient of the bound
circulation at the position where vortex is released, from
the value », =0.00275R (where R is the rotor diameter)
for the elements at the end of the wake (high gradient
positions), to the values », =0.05R inside the wake (low
gradients). The existence of the vortex core has
remarkable influence in blade-wake interactions, since in
this way large velocity irregularities on the blade close to
the wake are avoided.

Be GIN

INNER WAKE: '““.“r‘,’;”“n”c‘i;“‘“
linc vortices with

farger core radius

" ROOT:
line vortices with
smaller core radius

Shed and trailed

vortices

line vortices with
smaller core radius

Coliocation
points

Fig. 5: Dicretized wake

The wake influence at large distances from the blade is
negligible. so it is possible to neglect the wake distortion
at a sufficient distance from the rotor. The area in which
distortion is relevant depends on the helicopter flight
regie, and it can be determined by the advance ratio z.:

0.4
m=—-

7
where m — is the number of revolutions for which it is
necessary to calculate the wake distortion. After that, the
wake shape is “frozen” in achieved state, and it moves
through the flow field keeping it for the rest of the time
(velocity of collocation points is equal to the flow field
velocity).

The “frozen™ part of the wake still influences the adjacent
area in which it is still being distorted. After some
distance, even the influence of the “frozen” part becomes
negligible, and then it is eliminated from the model.

In this way. a dicretized wake model. consistent with the
panel model of the lifting surface and vortex releasing is
obtained.

Discretization in Time of Unsteadv Kutta Condition

Let us consider the unsteady Kutta condition from the
aspect of the assumed discretized model. The condition
can be written as;
ar
Veyre +—=0
TETS,

&)

In case of transition to the discretized time domain. it is

- necessary to substitute the partial derivative with the finite

difference form:

o _T(+an)-T) _ar
o At Al

By substituting this equation in (5), we obtain:

T(e+a0)-T) _

Ve, +
YrE At

(6)

'
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In case of numerical solutions, it is customary to satisfy
Kutta condition in vicinity of the trailing edge. according
to that, the intensity of the distributed vorticity at the
trailing edge y,y is treated as equal to the intensity of the
distributed vorticity at the trailing edge panel y,. The
intensity of the distributed vorticity is constant at every
panel, so it can be written:

ey =1n
YIE =¥ 7

n

where y, is intensity of the distributed vorticity at the
trailing edge panel, and /; is the panel cord length.
Substituting this equation in (6), we have:

L, Tt +a0)-T() _

V(X)
/ At

n

i.e. the difference of circulations around the lifting surface
at the moments ¢+ Af and ¢ can be calculated by:
e+ A1)-T()= v, ll".n_m

n

Definition of equation set

The boundary condition of impermeability of the lifting
surface should be satisfied at any moment of time,
tk(k=0,1,2...) in a finite number of points of lifting
surface:

(17,. —17,,.).;7,. =0; i=12,...n

Points at which this condition must be satisfied are called
the control points. One of them is placed on each panel, at
the three-quarter chord panel positions. By this, at every
moment of time, the number of lifting surface
impermeability conditions is equal to the number of
unknown values of circulations of bound vortices.

~ The equations of motion of the lifting surface are known,
as well as the velocities 7; of all characteristic points,

and their normals #; as well.

At each flow field point, velocity can be divided to the free
stream velocity and perturbation velocity:

V.=V, +w,

? 0

The perturbation velocity is induced by lifting surface and
wake vortex elements. It is calculated by Biot-Savart law.
At every moment, the wake shape and circulations of it’s
vortex lines are known, and so the wake induced velocity
at every flow field point is known as well. On the other
hand, the circulations of the bound vortices are unknowns
(their positions are defined by the lifting surface shape).

BENG /)

N
“where BC bound circulation vector,

The boundary condition for the i-th control point can be
written as:

Za,] I;(6)=5,

where ¢;; are the coefficients depending of the blade

geometry, and b; are the coefficients containing the
influence of the wake and free-stream flows.

This way, by writing equations for all control points, the
equation set of the unknown bound circulations is
obtained.

Besides this equation set, the Kutta condition must be
satisfied. By adding the Kutta conditions to the equation
set, an overdetermined equation set is obtained. It can be
reduced to the determined system by the method of least-
squares. After that, it can be solved by some of the usual
approaches, by which the unknown values of circulations
T; at the time ¢ are obtained.

Determination of the aerodynamic force

After unknown circulations I; are obtained, velocity at

every point of the flow field is known, and we can use
them for the determination of aerodynamic forces that act
on the blade. The calculation aerodynamic force is
necessary for the defining of the blade position at the next
moment of time. The total aecrodynamic force is calculated
as the sum of forces acting on all panels.

- =iﬁ;
i=1

Aerodynamic force acting on a single panel ¢an be defined
by introducing the Kutta-Joukowsky law in a vector form:

—

ﬁ;’ =pl7<x: xri(ef.)BC

and effective
circulation can be defined by using:

i) =T +-—— Iyd

The integral should be calculated from the leading edge to
the quarter-chord position of the ith panel.

oz

I_‘x(ef i
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Results
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Conclusion

By analyzing the drawings of the blade wakes, it can be
concluded that model applied in this paper gives
reasonable simulation of actual wake behavior, specially in
the domain of wake boundaries, where wake roll-up
occurs (although it is slightly underestimated compared
with existing experimental data). Also, larger wake
distortion in the domains of the forerunning blades or their
wakes is noticeable.

The program results show the difference in circulation
distributions at different azimuths, as well as the
disturbances caused when blades are passing the wakes of
other blades, and the characteristic reversal flow domains.

At the same time, these results can define the suggestions
for the future model upgrading. Firstly, by incorporating
the transonic flow calculations, the advancing blade tip
simulation would be more appropriate. Secondly, viscous
interaction should be included as well, which would
improve the wake roll-up simulation. The viscous vortex
core simulation in time would improve the results
concerning the wake vanishing effects far enough from the
blade. Finally, introduction of the curvilinear vortex
elements would give better results from the aspect of wake
self-induction.
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