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NON-REFLECTING BOUNDARY CONDITIONS
FOR NON-LINEAR EULER CALCULATIONS
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Chair of Heat and Power Technology
S -100 44 Stockholm, Sweden

In numerical calculations of the fiow through
turbomachinery blade rows, it is often essential to
introduce artificial boundaries to limit the area of
computation. These artificial boundaries and
boundary conditions must affect the solution in a
manner such that it closely approximates the free
space solution which exists without these
boundaries. In practical, it means that the
amplitudes of waves reflected from these artificial
boundaries have to be minimized and hopefully
eliminated. In concept, they correspond to the non-
reflecting boundary conditions used in time-
linearized methods.

» Accurately predicting the behavior of complex
unsteady flows with explicit computational analysis
can require enormous computer resources. In order
to decrease it and make the solver feasible for
single processor use different methods are used.
Implicit numerical analysis and dual time step
marching are some of them.

In the present paper, numerical solutions are
presented for two-dimensional Eulerian gasdynamic
equations using an implicit approach for the flow
field and for the boundary conditions. For the field a
first order implicit scheme of Beam-Warming type
on a second order Van Leer flux vector splitting is
used. The boundary conditions are based on the
characteristic form of the linearized Euler equations.
With selected test cases, the importance of a
correct simulation of the boundary conditions for
stability margin of the blade rows is clearly
demonstrated. It is shown that the result of
numerical fiow calculations is depend more on
quality of boundary conditions, and less on the size
of computational domain.

Introduction
Modern trends in turbomachinery design involve

more loaded and longer blades, and new, often less
forgiving, materials. It is thus that aeroelastic

" Graduate Student .

problem of High Cycle Fatigue (HCF) character will
become of larger importance in the future.

A lot of research on High Cycle Fatigue in
turbomachines has been performed with time-
linearized flow solvers. It has been known for many
years that the correct simulation of the inlet and
outlet boundary conditions for cascades is important
to establish the flutter boundaries for specific blade
geometry and operating conditions. The inlet and
outlet boundary conditions have to be “non-
reflecting” in the sense that a far-field analytic small
perturbation solution has been matched to the field
solver to let all perturbations move out of the
computational domain in a non-attenuated way.
With assumption that the waves are parallel to the
boundary, with uniform pressure and prescribed
total enthalpy and/or velocity, the approximate two-
dimensional inlet and outlet conditions have been
developed?®. Certain limits towards application of
inlet/outlet boundary conditions exit. But recently it
has been shown” that a time-accurate explicit
method can, with the proper formulation of the
boundary conditions as two-dimensional highly non-
reflecting, give results that agree with the small
perturbation models also close to’ the acoustic
resonance.

Physical model and mathematical description

The physical model in this study considers time-
dependent flow, with negligible body forces, of a
perfect gas through a two-dimensional cascade
(compressor or turbine) (Fig.1).
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FIGURE 1 - General blade cascade

The unsteadiness in the flow is assumed to be
caused by blade vibrations. The form of these
vibrations are prescribed by function of space co-
ordinates, {x,y ), and time ¢ .

To describe the flow around the vibrating cascade
.the  time-dependent Euler two-dimensional
equations are considered. The strong conservation-
law form of these equations in a curvilinear
boundary-fitted coordinate, (&,77), along the axial

circumferential direction respectively, is given as
follows

where Q is the vector of conservative variables, F
and G are the inviscid flux vectors

0=0/7
F=(E&Q+EF+EG)])
G=(mQ+nF+n,G)/J].

The Jacobian of the transformation from physical
(x,y) to computational (£,7) co-ordinates is

J=Xey, = yexy
and the metric terms are

S =y,]/J
nx =—)’§/J

S =_x7l/']
my =x¢/J.

’

In the Cartesian co-ordinate system, the conserved
variables and inviscid flux vectors are

WY IS

0 =(p.pu.pv.e)
2 T
F =\pu,pu” + p, puv,(e+ p)u)

G= (pv,puv,pv2 +p,(e+ p)v)T

The pressure p is related to density p and total
energy e through the equation of state for an ideal

gas, p= (}'— 1)[e - p(u2 +v2)/2].

Solution Algorithm

An implicit unsteady Euler solver with first order
accurate upwind biased second order flux difference
splitting scheme is employed. The inviscid fluxes
are discretized according to the Van Leer flux-vector
splitting‘s). An alternative direction, approximate-
factorization technique based in the Beam-Warming
scheme® is used to compute the time rate changes
in conservative variables.

Mesh movement

The mesh of the computational domain is body fitted
such that mesh lines follow the actual boundaries
(Fig.1). The mesh is of H-type with inlet and exit at
the constant axial co-ordinates. As the blades
vibrate, the computational grid must be modified to
follow the blade motion. In the present study the
mesh at one instant of time is computed by applying
deflections to the nodes of the steady state mesh.
These deflections are obtained through sine
function interpolation along the grid lines of the
deflections at the upper and lower boundaries. This
method is fast and works well for small amplitudes
of any type of motion. For larger amplitudes,
however there is a risk of getting inverted cells and
some other method should then be used.

Boundary conditions

The inlet and exit boundary conditions used in this
study are based on a characteristic analysis of the
linearized Euler equations. In the present analysis,
quasi-two-dimensional  characteristic  boundary

conditions are solved implicitly along with inlet and~ --

outlet part of the computational domain®,

The standard procedure is used to establish the
non-penetration conditions. It gives for the unsteady
case a flux-vector on the wall, which is completely
determined if the wall pressure is known.

The periodic boundary is implemented with a direct
store method®.
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Inlet and Exit Boundary Conditions

These boundary conditions are in the present
analysis solved as a part of the implicit solution
procedure. The algorithm for the boundary condition
has been proposed by Chakravarthy” and can be
regarded as a two-dimensional approximation.
Consider an approximate factorization scheme,
written in semi-discretized form as

[1 + A" (agﬁ" )][1 + A" (a,lé" )]AQ =

=—(1-s"/")o" - A" (agF‘ + a,,é)"

A

(1)
. O . . ,
where A =——, B = — are Jacobians matrices.

a0 x

Defining the right handside part of equation (1) by
AQ" and [1+A:J"“ (@?‘)]AQ" by AQ", the

solution in time is given by solving the two coupled
tridiagonal systems

[1 +a™(9,8" ){a0" = A0" @)

[1 + A" (aéé" )]AQ = ZE (3)

The boundary conditions are applied to the equation
(3) under assumption that only the waves
transported normal to the boundary (in our case this
boundary is a & = const. surface) are considered.
First, the equation (8) is transformed to
characteristic form by multiplying by the left

eigenvectors, T; ', of the A matrix

Tg‘[l + A" ((953")]AQ =17 E (4)

The equation (4) is the starting point to apply the
desired boundary conditions. Outgoing waves,
which are propagating from the inner computational
domain towards the boundary are completely

determined by the interior field solution. For these -

waves the equation (4) remains unchanged.
Incoming waves, on the contrary, are to be replaced
by non-reflecting boundary conditions. It means that
all incoming waves are suppressed which is
expressed by vanishing time derivative of the

corresponding characteristic variables of the A
matrix. Finally, the equation (4) with non-reflecting
conception of boundary conditions looks like

ﬁ'f/’lﬁl” G2 d ﬁﬂ/,(/’/ﬁ

~1 n+l -1 “n —l_n
{T§ + AtJ LT; (a"éA )]AQ=T§ AQ

where L matrix is depended on the flow situation at
the boundary (subsonic or supersonic) and on which
boundary it is applied (inlet or outlet). So, there are
following possibilities to define the L matrix:

- for subsonic case

at the inlet at the outlet
0000 1000
0000 0100
L=19 00 0 L=1o 010
00 01 0 0 0O

- for the supersonic case
at the inlet
L=0

at the outlet
L=1

The implicit boundary conditions outlined above are
made for waves that approach the boundary at
normal incident and represent approximate, quasi-
two-dimensional, nonreflecting boundary conditions
which can be used for steady and unsteady flow
simulations.

Surface Boundary Conditions

For the moving blades the non-penetration or
kinematic boundary condition, for inviscid flow,
requires that the velocity component of the flow
normal to the blade surface must equal to the
velocity component of the blade normal to the blade
surface

U-n=uy,,  n

where 7 is the normal to the blade surface.
The generalised G -flux at the wall becomes

0

é= 77x17
n,p
=D

The pressure is obtained by extrapolation (in
transformed space) from the interior of the field to
the boundary along a grid line. The velocity
component parallel to the blade is set through zero-
order extrapolation from the closest interior celi and
density and energy are set by linear extrapolation.

e
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Periodic Boundary Condition

Periodic boundary condition is applied in the blade-
to-blade direction. The calculations are carried out
in an area just containing a single blade passage
but by this periodic condition they are simulating a
cascade containing an infinite number of blade.

The standard treatment is to make the boundary as
a part of the field by adding ghost cells outside the
boundary. For steady flow, the values in the ghost
cells along the upper boundary are copied from the
values in the cells at the bottom of the
computational domain and vice versa at the lower
boundary

Que = Qu
Q16 = Qu

where UG refers to “upper ghost” and LI refers to
“lower ghost”. However, for unsteady flow, if the
blade have the phase difference, ¢, in their motion

the values in the ghost cells must be phase lagged
accordingly

Qug () = Q) (ax — (27 — ¢))
Q1 (ax) = Oy (ax — §)

Applying the so called direct store method®
requires that the time history of the flow for at least
one cycle is saved. In the present method, under
relaxation is applied to the periodic boundary to
improve stability.

Results and discussion

To show the general performance of the present
method comparisons have been made with other
numerical prediction methods. The codes used for
comparison are LINSUB" and INST™. LINSUB is
potential flow solver for calculating the subsonic flow
around flat plates. It is based on a linear singularity
theory. INST is a two-dimensional non-linear Euler
solver for flow through vibrating blade cascade. The
flow algorithm employed in this code is based on
Van Leer vector splitting® and on explicit predictor

corrector type integration. There are several kinds of -

boundary conditions, which are implemented in this
code: steady, Giles one- and two-dimensional® and
highly non-reflecting®. The last one uses the
Fourier decomposition in both time and space and
are truly non-reflecting for all waves. More details on
these boundary conditions can be found in .

For the unsteady results the first harmonic of the

dimensionless pressure Cp is presented

fox

Cp(x,y,t) = Cp(x,y) + Cp(x,y)e™

Tf'/r;l‘ R n A s I/Z e

The pressure is non-dimensionalized using the
difference between total and static' pressures at the
inlet and has been scaled linearly for torsion to the
amplitude of one radian and for the bending to the

amplitude of one chord length. Since Cp is a

complex variable, it can be represented either as
phase and magnitude (real amplitude) or as
imaginary and real parts. Here, to plot the unsteady
pressure along chord, the last representation will be
used. For the flat plate cases, the plot over chord
rather shows the unsteady pressure difference,

ACp, of lower and upper surfaces.

For each boundary conditions, the calculations were
done for the short and long axially truncated domain
with otherwise identical data. For the short domain,
calculations with inflow and outfiow ducts extended
one axial chord length up- and downstream of the
cascade, while for the long domain calculations the
length of outflow was doubled (Fig.3).

Thus, the difference in the solutions for short and
long domains can be consider as a measure of the
reflectiveness of a particular boundary condition.
And also the length of propagating waves, A, must
be taken into account, otherwise if the boundary
conditions are not good enough, the result of the
calculation will be the same on each domain
extended wave length (Fig.2, point AA) in axial
direction from an initial one (Fig.2, point A).

A-wave iength

TE - fralling edge
A - outlet boundary of
inifial domain
A, B - outlet boundaries of B
extended domains
7\' -
N
N

L1 I~

T

BLADE

AA

FIGURE 2 - Wave propagation

If the initial domain is extended to another value
(Fig.2, point B) it is difficult apriori to say anything
about the quality of the solution on this domain - it
could be better or worse with the same probability. If
the boundary conditions are correct this kind of
problem does not appear.

N
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All calculations have been made with small vibration
amplitudes in order to be compared with numerical
data, which are given by linearized solver LINSUB.

Flat-plate cascade

With comparison to cases with steady loading,
where a considerable part of the unsteady loading
can be result from the motion of the blades through
a spatially non-uniform steady pressure field, for a
flat-plate cascade all of the unsteady loading is
directly affected by far-field boundary conditions.
The calculations have been made on the cascade
with a pitch-to-chord ratio of one, stagger angle of
45 degrees and a uniform steady mean flow with
Mach number of 0.7. The cascade performed
torsional vibrations around mid-chord with amplitude
of 0.5 at reduced frequency of 1.0, based on full
chord and inlet velocity.

Results are shown for interblade phase angles, o, of
0 and 90 degrees. Comparisons have been done for
unsteady pressure difference distributions and
aerodynamic moment coefficients.

Fig.3 and 4 shows the unsteady pressure contours
for o=0°and o =90, respectively. As can be
'seen from these plots, for the blades vibrating in-
phase (Fig.3) there are no significant waves in its
downstream far-field, while for the blade vibrating
out-of-phase (Fig.4) very strong waves are existent.
So, for the second case correct far-field non-
reflecting boundary conditions are demanding,
because the pressure waves could be reflected by
poor boundary conditions and the calculated
pressure distribution along the blades would be far
from the real physical one.
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(A) Chakravarthy's 2D (B) Highly Non-Refi.

FIGURES - Unsteady pressure contours (o = 0°)
for the short domain.

Totiernricrolir S .

(A} Chakravarthy's 2D (B) Highly Non-Rel.
FIGURE 4 - Unsteady pressure contours (o = 90°)
for the short and long domains.

For flutter analysis the aerodynamic damping, Z,,

is an important characteristic. For torsional
vibrations it is given by the negative imaginary pan
of the moment coefficient.

Fig.5 shows the aerodynamic damping over
interblade phase angle for the short domain.

2.8

q_(<L_(-)

”_.OL"I')

2.1

0.7

..‘
H
fif
-
IS
TRV VRS YOO SR N O N U N IO S N N O T U0 A Y O O IO O A

C.0

180.0
ag

270.0 360.0

FIGURE 5 - Aerodynamic damping (short domain)

As can be seen the comparison between LINSUB
and the highly non-reflecting boundary conditions is
also good close to the resonance angles, at which
the pressure waves are perfectly perpendicular to
the boundary. The agreement with other boundary
conditions is poor and this especially around the
resonances.

Table 1 shows the aerodynamic damping for the
short and long domains with o = 0°.

ln
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Type of boundary conditions | Short Long
domain | domain
Highly non-reflecting 0.6509 | 0.6509
Giles 2-dimensional 0.6514 | 0.6516
Chakravarthy’ 2-dimensional | 0.7021 | 0.6717
LINSUB 0.6387

TABLE 1 - Damping of flat-plate cascade due to
torsional vibrations (o = 0°)

The results for all boundaries are quit close and do
not depend on the size of computational domain. In
this case vibrating blades do not generate any
significant waves in its downstream far-field (Fig.3)
and it can explain the quit good agreement for
damping. From the unsteady pressure contours
(Fig.3(A)) it becomes clear, why approximately two-
dimensional nonreflecting boundary conditions
produce good results. Upstream f{ar-field shows
waves, which are normal to the axial direction and
these Chakravarthy's and Giles boundary conditions
were made to capture such kind of waves.

For the 90 degrees interblade phase angle not all
boundary conditions produce equally good results.
,Table 2 shows that only the highly non-reflecting
boundary conditions give good agreement for
damping coefficient for the short and long domains.

Type of boundary conditions | Short Long

. domain | domain
Highly non-reflecting 0.6123 | 0.6139
Giles 2-dimensional 0.6325 | 0.7374
Chakravarthy’ 2-dimensional 0.5974 | 0.8407
LINSUB 0.6172

TABLE 2 - Damping of flat-plate cascade due to
torsional vibrations (o = 90°)

However, the results for other boundary conditions,
although they are both so-called approximately two-
dimensional, are different for different size of
domain. Reason for this is non-zero interblade
phase angle, which impose a periodicity over the
blade passages. It affect the wave pattern in the far-
field as to require not only axially propagating waves
(Fig.4). And highly non-reflecting boundary

conditions can capture all kind of incoming waves, -

but other boundaries are able to consider only
axially propagating ones. Moreover, for different size
of domain the results can be better or worse and it
is not apriori clear, that the result will improve with
extension of the flow domain.

Fig.6 shows the pressure difference distributions
with o = 0° for the short domain.
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FIGURE 6 - Pressure difference distribution of flat-

plate case due to torsional vibrations (o = 0°) for

the sort domain.

These distributions are quit close to each other and
such confirm the good agreement of the damping
data at o = 0°. The pressure difference distributions
for the long domain are not shown because they are
practically indistinguishable from the results for the
short domain. For o =90° it is interesting to note
that although all short domain calculations give
about the right damping, the pressure difference
distributions (Fig.7) and the unsteady pressure
contours (Fig.4) for the approximate two-
dimensional boundary conditions are quit different
for t8he short and for the long domains.
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FIGURE 7 - Pressure difference distribution of flat-
plate case due to torsional vibrations (o = 90°)

The results for Giles boundary conditions are not
shown because they are quit similar to the result for

o
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Chakravarthy's ones. It is clear to see that the
pressure difference distributions for Chakravarthy’s
boundary conditions has poor agreement with the
result for the highly non-reflecting boundary

conditions, which can be consider as exact
solution®,
Unfortunately it is not clear apriori where

approximate boundary conditions will be sufficient
and it depends more on the angle at which the
waves cross the boundary. If pressure waves go
almost parallel to the boundary then approximate
two-dimensional boundary conditions produce
reasonable pressure distribution along the blade.
But it is evident that these boundary conditions
cannot properly handle waves which are
perpendicular to the boundary.

Compressor cascade

Here the cascade has a comparatively light steady
loading. The blades of this cascade are 2.7 percent
thick, symmetric, sharp-edged airfoils with
maximum thickness at mid-chord. The stagger
angle of the cascade is 59.3° and the pitch-to-chord
ratio’ is 0.95. This cascade is the Fifth Standard
*Confi%ration from a series of aeroelastic test
cases",

With steady flow for Mach number of 0.5 and an
incident angle of 2 degrees, the unsteady
calculations have been done for torsional vibrations
about mid-chord with amplitude 0.1 at a reduced
frequency of 2.04.

Here the result by LINSUB for the flat-plate cascade
with the same flow geometry as for the compressor
cascade but with zero incidence angle (i = 0°) are
presented as reference.

Table 3 shows the same behavior of damping data
for different domain sizes as the second of the flat-
plate cases.

Type of boundary conditions | Short Long
domain | domain
Highly non-reflecting 0.9071 | 0.9174
Giles 2-dimensional 0.6301 | 0.9015
Chakravarthy' 2-dimensional 0.6579 | 0.8603
LINSUB (i = 0°) 0.9723

TABLE 3 - Damping of compressor cascade due to
torsional vibrations (o = 90°)

But now the long domain results of two-dimensional
Giles and Chakravarthy’s conditions are in good
agreement with highly non-reflecting ones, which
can be consider again as correct solution. Fig.8
shows the pressure difference djstribution, which is
quit close for different boundary conditions.

Tt crridbe tlo
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FIGURE 8 - Pressure difference distribution of
compressor case due to torsional vibrations
(o = 90°) for the short domain.

Also the pressure difference distribution has quit
reasonable agreement with one reproduced by
LINSUB. Fig.8 shows also that for preliminary
description of flow behavior around compressor
blades at low incidence the flat-plate model can be
used, because it gives good qualified agreement
and takes less computational time.

But a right damping does not necessarily
correspond to locally correct result. And the
unsteady pressure distribution given by Fig.9 shows
that neither of the two-dimensional Giles and
Chakravarthy’s results are accurate.

~6.0

LIRS R Y A Y N N B N S S B TR S SO M |
0.0 0.25 0.5 0.75 1.0
x/c~
FIGURE 9 - Pressure distribution of compressor
case due to torsional vibrations (o = 90°) for the
short domain.
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The difference in the pressure distributions between
the vatious boundary conditions is greater than the
difference in the pressure difference distributions. It
can be explained that the effect of poor boundary
conditions is a shift of the pressure levels, while the
pressure difference between low and upper blade
surface is still more or less the same as for the
correct boundary conditions.

Conclusions and Perspectives

Steady and unsteady boundary condition
procedures for implicit turbomachinery analysis
have been implemented in numerical way.
Comparisons have been done with two-dimensional
Giles and highly non-reflecting boundary conditions.
It was shown that all boundary conditions give good
results when the pressure waves propagate in a
nearly normal direction to the boundary, while for the
waves which are perpendicular to the boundary only
highly non-reflecting boundary conditions are
sufficient. But these boundary conditions are
available only for explicit turbomachinery analysis.
Thus, this article reminds one more time that highly
non-reflecting implicit boundary conditions are
necessary. They will allow to make a full implicit
approach with correct inlet and outlet boundary
conditions, that will able to decrease computational
time significantly. This work is presently in progress.
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