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Abstract

The supersonic flow over highly swept delta
wings was analyzed by using conical flow equations.
Numencal solutions for Euler equations were
obtained by introducing the artificial damping terms
to suppress the numerical oscillations due to shock
waves. The authors attempted to develop the conical
Navier-Stokes equations whose viscous terms were
modified as in the conical Euler equations in order to
replace the artificial damping terms. First,
prelimmary numerical studies were done based on
simple rectangular grids by utilizing the
spreadsheet cells and their iteration functions
instead of depending on the computer programs.
An unstructured example is also being anlyzed. The
numerical results were compared to the supersonic
experimental data of swept delta wings with
subsonic and supersonic leading edges.

Nomenclature
:span
c : chord
Cp : pressure coeflicient
E,F,G :flux vector
E, F,, G, :viscous flux vector
M : Mach number
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: static pressure

: vector of conservative flow quantities
: Prandtl number

: Reynolds number

:time

: temperature

uyw  :velodty components in x-,y-,z-direction
iz : coordinates

: angle of attack

: specific heat ratio

: sweep-back angle

: density

: shearing stress
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Introduction

The flow over delta wings was numerically
examined based on the assumption of the conical
flow. Conical Euler equations have been used to
solve this type of flow by researchers™. The
authors attempted to solve the above problems first
by wusing the same technique based on an
unstructured grid. In other studies, artificial viscous
damping terms were used to avoid numerical
oscillations™™; in this study, therefore, the artificial
damping terms were replaced by real viscous terms
which were modified based on the assumption of a
conical flow. This assumption implies that the flow
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on a ray from the apex of the delta wing has the
same physical properties. In general, similarity
coordinate is used to express the conical flow field so
that the flow variation in the direction of the main
stream is not taken into account and only the span-
wise and the normal-to-wing directions are
considered. The above problem thereby becomes a
two-dimensional one that can be easily analyzed
while the solutions keep the three-dimensional
information.

The conical Euler equation, which was actually
modified into the conical Navier-Stokes equation,
was first solved on simple rectangular grids in order
to test the validity of the assumption in the
equations. CFD(Computational Fluid Dynamics) is
normally anlyzed via computer language; this
process, however, is sometimes time consuming. In
previous studies, the authors found that the
spreadsheet software is very useful for fluid dynamic
numerical simulations™*, because the spreadsheet
has build-in cells which correspond to the grids in
CFD, and because of its iteration functions which
can specify the number of iterations and the
tolerance needed to terminate the computation. The
spreadsheet also has its own graphics software,
which facilitates the presentation of the results. The
conical flow equations were discretized in finite
differential forms and were put into the cells of a
spreadsheet, and the boundary conditions in finite
difference forms were also written in boundary cells,
and the iteration in the cells was then begun. After
the computational convergence was examined,
graphical output was produced by selecting the
relevant area.

The pressure data for the “Lee-Side Flow over
Delta Wings at Supersonic Speeds” (NASA TP 2430,
1985 are available and the same conditions were
used for computation. Due to the preliminary nature
of the calculation, flat plate delta wings with zero
thickness were used. Both subsonic and supersonic
leading edges were studied. The Mach number
range was from 1.7 to 2.8 and the Reynolds number
was 2 million based on the span of the delta wing.
The half-span of the delta wings was calculated due
to the symmetry.

An unstructured example based on Delaunay
triangulations using the conical Etler equations is
also being studied.

rning Equati

Conical Flow Equations
The 3-D Navier-Stokes equations are given by
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Eq.(1) is non-dimensionalized by the principal

variables®. The conical flow assumption is as
follows?:
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Note that x, y and z in Eq.(2) are already non-
dimensional. When Eq.(2) is applied to Eq.(1) and
the bar in Eq(2) is omitted for the sake of
simplicity, the following equation is obtained:
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It is assumed that the x-derivative is zero in the
conical flow assumption, and Eq.(3) is examined at
cross-section x =1. The right-hand-side terms
were actually analyzed in non-conservative forms in
the numerical procedure:

rhsEq(3)=—yte _,OF O,  0G,

- @
When the night-hand-side of Eq.(3)is not taken into
account, this is a conical Euler equation.

Conical Flo umption in Vi Tms
One of the elements of the viscous flux terms in
Eq.(3) is (for example ) given by

1 ov
T =—{(— 5)
¥ " Re (8x 0 y) (
If the conical flow assumption in Eq.(2) is applied
even to the viscous terms, Eq (5) becomes
1 ov ov v Ou
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where the physical properties of the flow are
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assumed to be constant for the sake of simplicity.
The remaining viscous terms were examined in the
same manner.

First, the authors attempted to evaluate the
validity of the conical flow assumption, and Eq.(3)
was discretized by the simple FTCS method In
addition, classical rectangular grids 20 x 20 in y-
(span-wise) and z-(normal-to-wing) directions were
used. The computational domain is

0<y<h, -1<5z<1 @)
where y and z values are normalized via the chord ¢
of the delta wing and, therefore,

b=2 tan(izz- —A) ®

The cross-section of the delta wing is modeled as a
flat plate and is located in the computational space
as follows:

OSyStan(%—A), z=0  ©

The finite difference mesh size then becomes

tan(% - A)
Ay=—=2—— Az=0.1 (10)
Y 10
(This mesh size is too coarse for a flow class at Re=2
x 10° ; therefore, the authors attempted to obtain an
overview of the flow field.)

Computing by Spreadsheet - Spreadsheet Fluid
Dynamics(SFD)PH

CFD usually involves lengthy program
development and it sometimes becomes time
consuming due to computer illiteracy and the
complexity of the governing equations. The authors
found that spreadsheets are very useful CFD tools,
because the cells become natural grids and the
iterative calculation between cells becomes possible.
The authors call this technique Spreadsheet Fluid
Dynamics (SFD) . !

In this study potential flow in a camber with an

inlet and an outlet is shown to make this process
easier to understand. Figure 1(a) shows part of a
spreadsheet and the flow region, which are rounded
by colored cells. The value of the stream function is
given on the colored boundary. One cell (e.g. B2 in
Fig.1(a)) was selected, and the finite difference form
of Laplace’s equation was inputed, which becomes in
a square grid as follows:

=(A2+C2+ Bl+B3)/4 an

Eq.(11) follows the spreadsheet format and it
indicates that the value of cell B2 is the average of
the neighboring four cells (which really the
Laplacian means). The contents of cell B2 are
copied into the other cells in the computational
domain in Fig.1 The alphabet letters and numbers
are automatically changed according to the location
of the cell, and the spreadsheet is now ready to be
computed. The iteration is then selected by
specifying the number of iterations and the error
tolerance when computing is terminated
Calculations were conducted and the stream
function was readily obtained almost instantly by
the graphics in the program(see Fig.1(b)). In order to
accomplish the ahove, lengthy computer program
lines and the specialized computer skills are
unnecessary. The discretized governing equations
and the boundary conditions are only needed.

Spreadsheet Fluid Dynamics was also applied to
the problems in this study and a sample
computational domain for the computation here is
shown in Fig2. This is actually part of the
spreadsheet. The boundaries and the delta wing
cross-section are colored

Computation via Spreadsheet Fluid Dynamics is
explained as follows for the examples used in this
study.

First, the physical properties of air, i.e., Prandtl
number Pr and specific heat ratio v, and the

- aerodynamic conditions like Mach number A/ and

the Reynolds number Re were specified in the
spreadsheet. Delta wing data, (i.e., the sweep-back
angle and the angle of attack), were also specified.
The computational conditions, (dy; dzand d¢), were
also given. A cell was selected in order to count the
number of iterations.

Next, the initial and boundary conditions for the
three velocity components and the three
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thermodynamic properties ( pressure p, density o
and temperature T') were specified, and six 20x20
cell blocks were prepared for these values. One of
the build-in features of Spreadsheet Fluid Dynamics
is that it is not necessary to declare domains for
variables.

The convection and viscous term cell blocks were
then prepared. These correspond to the terms which
are to be spatially differentiated. For the continuity
equation, two 20x20 cell blocks and three 20x20 cell
blocks were needed for the rest of the equations
(three momentum and energy).

The discretized governing equations (Eq.3 with
Eq.4) were written in the next four 20x20 cell blocks.
These cell blocks gave the values for the next time
step.

Six 20x20 cell blocks were used to store the new
time level value of the three velocity components
and the three thermodynamic properties.

Twelve 20x20 cell blocks were used to get space
derivatives in the x-,y- and z- directions of the three
velocity components (z, v and w ) and static
%emperature T

Finally, the viscous terms in the six 20x20 cell
blocks and the viscous work and heat conduction
terms in the three 20x20 cell blocks were obtaiend.

The spreadsheet automatically repeated the
iteration and the computation was terminated when
convergence was reached. It is significant that only
one spreadsheet is necessary in the above process.

Inig un nditi

The initial conditions were the same as the
uniform flow conditions and the outer boundary
values remained the same during computation.
Along the symmetric plane, ie. ;=0, the zero-
gradient condition was used. On a delta wing, the
velocity components are all zero, and the

temperature condition is either specified or adiabatic.

The pressure on the delta wing is calculated from
the momentum equation in the zdirection on the
surface of the wing. The boundary layer assumption,
(i.e., zero-normal pressure gradient ) may be used for
replacement.

Because a zero-thickness flat plate model was
used for the delta wing, extra cell rows were
prepared for the windward pressure value in the
spreadsheet. It was important to use the average of

the windward and the lee-side pressures when the
derivatives in the y-direction were calculated at the
leading edge of the delta wing. This was done in
order to avoid unnecessary discontinuity.

Computation nditi u to Com the
Experiments

The flat lee-side pressure data are available in
NASA TP 2430™ and the same computational
conditions were used in our computation.

Sweep-back angle A 52.5deg., 67.5deg.

Mach number M 17,20,24,28

Reynolds number Re 2x10° (based on the span)
Angle of attack  « 4deg., 8 deg., 12deg., 16deg.,
20deg.

The above calculations specified the temperature
of the delta wing, which was the same as the
uniform flow static temperature and was different
from that in the experiment. However, the adiabatic
wall conditions were examined, and the pressure
difference was not significant between the constant
temperature and the adiabatic conditions.

Comparisons were made to previous
experimental data®™ and also to the linear theory for
lee-side pressure!” in the next section.

Computational Results and Comparison to
Experiments NASA TP2430"

Figures 3 (a) ~ (e) show the calculated span-wise
pressure distributions over a delta wing with a
sweep-back angle of 67.5 degrees in a supersonic
flow at M=1.7. The Reynolds number based one this
span was 2 x10°. The angles of attack were 4, 8, 12,
16 and 20 degrees ( (a),(),(0),(d) and (e) respectively
in Fig.3). C'pu denotes the lee-side and Cpl denotes
the windward side. ‘cal’ shows the results from this
study. The NASA experimental data on the lee-side

of the delta wing®™ are also shown in Fig.3 (Gou_exp). - -

Linear theory” for the lee-side pressure is also
included in Fig.3 (Gpu_th). Examples of subsonic
leading edges are shown in Fig.3.

At most of the angles of attack, the authors’
calculation did not predict the lee-side pressure near
the leading edge; the coarse cells (grids) could be one
of the causes. The NASA experiment was turbulent,
while the simulation in this study had no turbulent
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model. The size of the cells used here was very
coarse to simulate the experimental wvortical
conditions. The leading edge vortex was not
adequately simulated and the pressure peak was
not reproduced in the above calculations. The
calculated lee-side pressure near the axis of the wing
was closer to that in the experiment at lower angles
of attack. Linear theory, however, was even closer to
that in the experiment as a whole for the conditions
in Fig.3.

Figure 4 shows the results at M =2.4 for the
same delta wing of A=67.5 degreesin Fig.3. Here,
this lee-side pressure calculation was not acceptable
compared to the NASA results at lower angles of
attack. The lee-side pressure prediction by the above
method, however, was closer to the NASA data at an
angle of attack of 20 degrees. The reason for this is
unclear One possibility might be that the conical
flow assumption in this study matches the
experimental conditions at higher angles of attack.

Figure 5 shows the results for the same delta
wing at M=2.8; this is the example of a supersonic
leading edge. Again, the lee-side pressure prediction
was not successful at lower angles of attack. At
higher angles of attack (12, 16 and 20 degrees), the
calculated lee-side pressure distributions again were
in agreement with those in the experiments. The
angle of attack of 16 degrees was the closest to that
in the experiment.

Figure 6 shows the span-wise pressure
distribution around a delta wing with a sweep-back
angle of 52.5 degrees in a supersonic flow at M=2.8.
This is the example of a supersonic leading edge
with a moderate sweep-back angle. The experiments
and numerical predictions were different from the
linear theory for the supersonic leading edge. In
addition, the predicted lee-side pressure
distributions using the method in this study were
similar to those in the NASA experiments at higher
angles of attack(12, 16 and 20 degrees). At lower
angles of attack, the prediction in this study were
not similar to those in the experiments.

Although the windward side pressure
distributions are also shown in Figs. 3-6, they were
not compared to the experiment.

Conclusion

Conical flow equations were used to solve the
flow around a highly swept delta wing in a
supersonic flow. This study showed the results
obtained form the conical Navier-Stokes equations
that had been extended from similar conical Euler
equations. Two delta wings with sweep-back angle of
67.5 and 52.5 degrees were studied in a supersonic
flow with Mach numbers ranging from 1.7t0 2.8 at a
Reynolds number of 2x10°. The numerical solutions
were obtained via spreadsheet (Spreadsheet Fluid
Dynamics - SFD). The results were compared to the
NASA experiments. It was found that, although the
correct predictions at lower angles of attack were not
possible, the predicted lee-side pressure distribution
using this method agreed with the NASA data at
higher angles of attack (around 12 — 20 degrees),
especially when supersonic leading edge was
calculated.
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tho

0 0

0 0

[ [

[ 0

0 0

[ 0

0 0
0 0 0.
0 0 ] »
rho_u 0! 0, 0
0 0 [ 8 [} 0, 0 0
0 0 0 0 [4 0! 0! 0
0! 0 0 0 0 0 0 0
0 0 0 0 0 0 0! 0
0 0 0 0 0, 0 0; 0
0i 0; 0 0 0 0 0! 0
0 0 4 [ Y [ 0 0
0 0 0] 0 0, 0| 0| 0
0! 0

0.20711 0.2485] 0.2899 0.3728] 0.4142] 0.4556,
rho |

Fig.2 Computational cells for density around the cross—section of a delta wing in a spreadsheet

r

6




Copyright © 1998, by the International Council of the Aeronautical Sciences (ICAS)
and the American Institute of Aeronautics and Astronautics, Inc.

o =4deg. M=1.7 Re=2%10"6
[-1cp A=67.5deg

& [-]Cpu_cal

B[-1Cp! cal
X [-1Cpu_th

O[-ICpu_exp
NASA TP2430

v/{b/2]

(a)

o =12 deg. M=1.7 Re=2%10"6
A=67.5deg.
[-Icp

& {-ICpu_cal
[-1Cpl cal
X[-ICpu_th

O[-ICpu_exp
NASATP2430

y/[b/2]

(c)

o =20deg. M=1.7 Re=2%10"6
A=67.5deg.
[-1cp

& [-]Cpu_cal
[-1Cpl_cal
X[-ICpu th

O[-ICpu_exp
NASA TP2430

y/[b/2]

(e)

o= 8deg. M=1.7 Re=2%10"6
=1cp A=67.5deg.

&[-1Cpu_cal

B [~ICpl
X[-ICpu_th

O[-ICpu_exp
NASATP2430

y/[b/2]

(b)

o= 16deg. M=1.7 Re=2%10"6
A=67.5deg.

@& [-ICpu_cal

g{-1Cpl_cal

X[-ICpu_th

O[~]Cpu_exp
NASA TP2430

y/[b/2]

(d)

Fig.3 Computational results compared to NASA experiment [L.ambda=67 5deg. M=1.7]
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Fig.4 Computational resuits compared to NASA experiment [Lambda=67 5deg. M=2.4]
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Fig.5 Computational results compared to NASA experiment [Lambda=67 5deg. M=2.8]
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Fig.6 Computational results compared to NASA experiment [Lambda=52 5deg. M=2.8]
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