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Abstract

This paper describes an approximate factorisation (AF)
algorithm, for the solution of the two-dimensional steady
Subsonic Small Disturbance (SSD) Equation. The algo-
rithm employs internal Newton iterations, at each time
level, to achieve time accuracy and computational effi-
ciency. For steady flow computations, an “artificial" time-
dependent derivative term is introduced into the SSD
Equation to incorporate temporal numerical dissipation.
This term is implemented for variable time stepping, to
allow for step size cycling to accelerate convergence to
*steady-state. In the AF algorithm, the reduced potential
is determined via an iterated finite difference scheme, in
which the coefficient matrix acting on the unknown re-
duced potential difference is approximately factored. ‘The
reduced potential is then determined via the solution of
two tridiagonal linear systems. The size of the time step is
cycled in a predetermined fashion, with the minimum and
maximum time steps based on the spatial grid spacing.
Results for steady subsonic flow over an aerofoil, with a-
10% thick double parabolic arc profile, inclined at 0° and
1° angle of attack (AOA) are presented. To demonstrate
that the method works for nonlinear partial differential
equations, results for three-dimensional steady subsonic
and transonic flow over a F5 wing are presented.

Introduction

The purpose of this paper is to describe the development
of an AF algorithm, that solves the steady SSD Equation
with nonreflecting far-field boundary conditions. The AF

algorithm was originally developed by Ballhaus, Jameson

and Albert(1) in 1977 for steady transonic flow computa-
tions. It was shown by Batina(23) (see also Gear(10:11)
and Gear, Ly and Phillips(lz)) to be very robust for either
steady or oscillatory transonic flow problems. Qur aim is
to develop an improved version of this algorithm, in the
sence that this improved algorithm should lead to a better
convergence rate. ,

An ‘“artificial” time-dependent term is introduced
into the steady SSD Equation to incorporate temporal
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numerical dissipation, this is sometimes referred to as the
method of false transients.(?) In the AF algorithm, the
reduced potential is determined via an iterated finite dif-
ference scheme, in which the coefficient matrix acting
on the unknown reduced potential difference is approx-
imately factored. The reduced potential is then deter-
mined via the solution of two tridiagonal linear systems.
The size of the time step is cycled in a predetermined fash-
ion, with the minimum and maximum time steps based
on the spatial grid spacing, in order to achieve the fastest
convergence rate.(814) A numerical stability analysis of
the iterated finite difference scheme is carried out. This
allows the choice of an appropriate time differencing strat-
egy. The proposed method also works for nonlinear partial
differential equations.

Steady results, generated by the use of the scheme,
for the subsonic flow past a double parabolic arc aerofoil
are presented, and comparison with the analytic solution
is made. To demonstrate that this method also works for
nonlinear partial differential equations, results for three-
dimensional steady transonic flow over a F5 wing are also
generated.

A nearly planar wing is immersed in a steady, isen-
tropic and inviscid flow. The steady $SD Equation for the
reduced potential in three dimensions, ¢(z,y, z), may be
written in conservation form as

0 0 d
5e (=026 + oy + 50 =0, (1)

where ¢, = 9¢/0z, similarly applies to ¢, and ¢, deriva-
tive terms. Here (x,y,z) represents a nondimensional
rectangular Cartesian coordinate system with the coordi-
nates based on an aerofoil chord length as the charac-
teristic lengthscale, and M is the freestream Mach num-
ber. In nondimensional terms the total velocity potential,
@(z,y,2), and the fluid velocity vector, v = (u,v,w),
are given by ® = 2 + ¢ and v = V(z + ¢), respectively.

Since numerical computation of steady flow in an
unbounded region is performed on grids with finite dimen-
sions, nonreflecting far-field boundary conditions(8:9:13)
must be employed, so that the unphysical effects created
by the far-field computational boundaries can be min-
imised. For Equation (1) the following boundary condi-
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tions are imposed,

¢z =0 streamwise boundaries, 2)
¢y =0 right spanwise boundary, (3)
¢, =0 vertical boundaries, (4)
¢y =0 symmetry plane, (5)
(¢s)=0 wake, (6)
(¢2)=0 wake, (7

where (o) indicates the jump in the indicated quantity
across the wake. On the wing the flow must be tangent to
the surfaces at all points,(s'm) thus the following physical
boundary condition is imposed at the mean plane of the
wing,

¢ (2,4,0%) = b7 (z,y) . (8)

The upper and lower wing surfaces are defined as z =
h*(z,y), respectively.

Method of False Transients

The steady-state solution is obtained by the method of
false -transients, see Beam and Warming,(4'l7) Davis(?)
»and Ly, Gear and Phillips,(14) in which an artificial time-
dependent term, ¢,, is added into Equation (1) to in-
corporate the temporal numerical dissipation. Since the
purpose of this paper is to investigate ways to enchance
convergence rate of the numerical scheme to steady-state,
we consider only two-dimensional flow. That is we assume
the wing to have an infinite aspect ratio, so that the flow
field around the aerofoil is the same for any cross section
perpendicular to the wing. Thus the steady problem is
now governed by

¢ = V2¢ (557 Z): . (9)

where V2 is the Laplacian in the (Z,z) domain and
Z = z/v1— M?2. The boundary conditions for (9) are
given by (2), (4), (6) and (7), with the physical boundary
condition on the wing given by

6: (2,0%) = b (3). (10)

Here we consider a rectangular computational region with

all the computational boundaries as depicted in Figure 1.

The locations of these boundaries are determined mainly
by computer storage and accuracy requirements. The
mean plane of the aerofoil lies along the z-axis from z = 0
tozx=1.

Since the boundary conditions (2) to (8) are time-
independent for the steady problem and provided the so-
lution converges, we expect that ¢, — 0. This indi-
cates that solving the boundary value problem governed
by Equation (9) will generate soluticns that also satisfy
the two-dimensional form of (1). The price paid is the

loss of the true transient solution, but this is not signifi-
cant to us, since the objective of this work is to develop
a numerical scheme that will generate the steady-state
solution at an enchanced convergence rate.

Factored Scheme

Let the “artificial” time scale, 7, be discretised as 7 =
nA7 where A7 is the discrete increment of 7, and
n denotes the time-level (or iteration number). Thus
(1) = ¢(nAT) = ¢™. Here the spatial dependence has
been temporarily suppressed. The time difference for-
mula, written in a general Padé form(17), is given by

04" (1+a)A) — ok,
or ~ 1tbAr

+{b—a—-1/2)0 (A7)’ + O (A7),

Ar

¢1’L

(11)

where K: is defined as the foward time difference operator

Argn = ¢ntl—gm, (12)
and (A_T the backward time difference operator
Kogm = ¢m — ¢, (13)

Formula (11) includes the following well-known rules,

a=0, b=1/2, trapezoidal formula,
a=0, b=1, Euler implict,
a=1/2, b=1, three-point backward,
a =0, b=0, Euler explicit,
a=-=1/2, b=0, leap frog.

In the next section we will show that the Euler explicit and
leap frog rules are inappropriate for the solution process
as they will cause scheme instabilities.

Inserting formula (11) into (9), and after clearing
fractions and rearranging gives

(1 - AFV?) Rl4" = ol 4" + ATAR

+(b—a—1/2)0 (A7) +0(AT)?, (14)
where the residual R = V2¢”. The scheme constants
are A7 = bA7T/(1+a), A = 1/band @ = a/(l + a)
with @ # —1. The form of (14) suggests an approximate
factorisation of the terms on the left, omitting second-
order terms in A7, we obtain

_ & N P
[1_ATW:| [1—AT67] A-,-¢

= al,¢" + ATAR. (15)
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FIGURE 1: A mathematical model for two-dimenional steady flow computations.

The factored scheme (15) can then be solved in the fol-
lowing manner, iteratively,

[ Arﬁz]w = ol ¢" + ATAR, (16)
[1 - Araiz—] A" = o, (17)

¢n+1 — ¢n +A_T>¢n’ (18)
where 1) is a dummy temporal difference. In each itera-
tion, a new approximation to ¢ is found by systematlcally
solving Equation (16) for 1, Equation (17) for Al 6™,
and then using (18) to obtain ¢"*!. When the solution
converges, A.¢™ — 0, and the numerical solution is then
given by ¢ = ¢™. The method is potentially fast since
the solution process is fully vectorised, and variable time
stepping is incorporated.

In general Equations (16) to (18) form a three
time-level iterative scheme. In order to further simplify
the current problem (and make it more manageable in the
context of stability analysis in the next section), only a
two-time level scheme is considered (setting o = 0). All
the spatial derivatives in Equations (16) and (17) are dis-

cretised using second-order accurate central differencing

approximations, since the two-dimensional steady SSD
Equation (that is Equation (1) without the y-derivative
term) is of elliptic type. This then leads to Equations (16)
and (17) forming two tridiagonal systems of equations.
Usually Equation (14) forms a linear, block tridiagonal
system of equations. However the factored scheme (15)
reduces a formidable matrix inversion problem to a series
of small bandwidth (tridiagonal in this case) matrix in-
version problems that have efficient solution algorithms.
For an accurate factorisation the time step used in the

iterative scheme must be small relative to the spatial grid
spacings. This ensures that each linear system is strongly
diagonally dominant. For a detailed description of how
the boundary conditions are incorporated into the finite
difference scheme, see Gear(19) and Murman(16).

Stability Analysis and Improved Algorithm

Stability Analysis of Factored Scheme

In this subsection, we will determine_the stability charac-
teristics of the factored scheme using the von Neumann
method of stability analysis. In the analysis, the errors
distributed along the grid points at one time-level are
expanded as a finite Fourier series. The stability or insta-
bility of the finite difference equation is then determined
by considering whether a Fourier component of the error
distribution decays or amplifies on progressing to the next
time-level.

For simplicity we assume the solution of the differ-
ence equation is spatially periodic of the form

% = ¢(nAT,JAT, kAz)

= ¢" (K1, K2) exp{i (k1JAT + kokAZz)}, (19)
where i = /=1, " is the Fourier coefficient and k,
Ko are the Fourier variables. The streamwise and vertical
indices of the grid points, respectively, are denoted by
Jj and k. Upon substitution of (19} into the discretised
form of (15) (recalls that & = 0), we find that in order for
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[t < |p"], the following two inequalities must hold,

o] < (1+AFP)(1+ ATQ), (20)
a+l 2 2\
A< 24 —min (a2, (a2) ), @)
where the so-called “frequencies” are defined by

2 . Az\1?

P = [—&c_- sin (K)l 7):] s (22)

Q = lsin AT (23)
T |Az "27 '

These inequalities are satisfied if a > —1/2 and b > 1/2.

It is interesting to note that the unfactored
scheme, represented by Equation (14), also imposes the
same restrictions on the values of a and b for a stable
solution process. This suggests that the stability charac-
teristics are not deteriorated when the factored scheme
is used, and in fact has the advantage that the solution
process can be fully vectorised.

Improved Algorithm

"Let ¢ be the converged solution and define the error after

the nth iteration as e® = ¢™ — ¢. The error distribution
is considered to behave in a spatially periodic fashion,
in a similar form given by (19). If the error amplifica-
tion factor, 3, is defined to be B = "1 /", then by
substituting this into (15) we arrive at

AP+ Q) AT

P R Pra AT

(24)

For rapid convergence the time step sequence must be
carefully determined. We wish to minimise 3 for a pos-
sible range of P and @ values. (6) Setting 3 = 0 and for
real values of AT, we must have

A>1+ VPG
P+Q
We chose A = 2, so that this inequality and inequality

given by (21) are satisfied. In this case, § will be zero if
AT =1/P or AT = 1/Q. For each root chosen the error

(25)

e will be reduced as the solution proceeds, since 8] < 1.

for all possible P and @ values.

Suppose we can construct a discrete set of variable
time steps in the form AT; = 1/P; (j = 1,2,...,N).
From now on, readers should be aware that j does not
represent the streamwise index of the grid points. Since
|Q — Pj] < |@+ P;| we find that for each j value 3 takes
the maximum value given by

_ 1P= A
P+ Pj°

B; (P) (26)

This represents the worst case in the context of error re-
duction. When the algorithm is executed for N iterations,
the error should be reduced by a factor of H;.Vzl B;. thus
the mean reduction of error per iteration is approximately
given by ’

1/N

— N -
7= |T1% o7

For convergence we require the error corresponding
to all frequencies to decrease successively, and the speed
of convergence will depend on how small 8 is. Thus the
aim is to choose a sequence of time steps which minimise
B. If P values are ranged from P; to Py (from (22), P €
(1, (2/A%)?]) and using the relationship A7; = 1/P;, the
following geometric time step sequence is derived,

Ap] AR
I N-1
AF; = [Tx} forj=1,2,...,N,  (28)

which cycles through the full range of possible AT; val-
ues.

The results for two-dimensional subsonic flow
over a double parabolic arc aerofoil are computed us-
ing a computational region of the size (zy,z4, +2m) =
(—1,2,£2), see Figure 1 for more details. The grid spac-
ings are Az = 1/50 and Az = 1/60, that is using 50
and 60 grid points per chord length in the streamwise
and vertical directions, respectively. In this case it was
determined that N = 13 gives the smallest § values of
0.708482. The distribution of B versus frequency P is
represented by the thin line in Figure 2. Thus using the
time step sequence given by (28), the mean reduction of
error per iteration in all frequencies is less-than 0.708482.
Note that with a constant time step-some frequencies in
the error reduce at a rate just less than one, and hence
die out very slowly. However using (28) we expect the
sequence to produce a dramatic speed up in the conver-
gence of the solution process.

Sequence With Repeated Endpoints. It is clearly

shown in Figure 2 (thin line) that large 8 values occur
at the ends of the frequency range. This unfavourable
behaviour can be eliminated by repeating the endpoints of
the sequence, since if P lies in between, say P; and Pj11,

then the major reduction of error will come from f; and ™~

Bi+1, and B will be largest if P is such that 8; = Bj41.
Using (26) this requires P? = P; P41, and hence §; and
Bi+1 become

!\/Pj+1/Pj - 1|
VPis1 /P +1 7

So we enforce P = P, and Py_1; = Py, and hence '

B = Bij+1 = (29)
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0.001 0.01 0.1 1

0.001 0.01 0.1 1
(AT/2)* P

FIGURE 2: Distributions of 8 for sequence without (thin
line) and with (thick line) repeated endpoints using Az =
1/50.

obtaining the following time step sequence,

A,?l = 17
2(j-2)
AT

AT; ._} ) forj=2,3,...,N -1, (30)

I
[ aamenamman |

2
ATy = (AT) /4.

Using this sequence we can obtain a small 8 value of
0.665443 with N = 22, as represented by the thick line
in Figure 2.

We also obtain similar results to those represented
by sequences (28) and (30) when AT; = 1/Q; and
Az = 1/60 are used. By this stage we have four different
smallest G values to choose from, as tabulated in Table 1,
and we obviously select the smallest one to construct the
time step sequence for our computations.

Computed Results

Two-Dimensional Subsonic Flow Computations

The steady subsonic results for flow, with a freestream.

Mach number 0.25, past a 10% thick double parabolic
arc aerofoil inclined at 0° and 1° AOA are presented here.
The aerofoil profile is given by

hE (z) = 2022 (1 —z) forze[0,1]. (31)
A FORTRAN 90 code has been written implementing the
proposed improved AF algorithm. The computations are

. carried out employing the Euler implicit time difference
formula.

For nonlift-generating computations, numerical ex-
periments were performed using the geometric time step
sequence (with N = 22), Equation (30) (N = 22,3 =
0.665443) and with a constant time step, AT = 0.025. If
R and Ry are the current and initial résidual values com-
puted at aerofoil (upper surface) quarter-chord point, the
solution is said to converge when log;o [R/Ro|1/4 is less
than -5.5. The convergence history for the time step cy-
cling curves is presented in Figure 3 with all the final
details tabulated in Table 2. In this figure the vertical
scale is logarithmic, so that a value of —m indicates that
the current residual has descreased to 10™™ of its initial
value. The experiment with repeated endpoints requires
less iterations for convergence, and in the case without
time step cycling, 122 iterations are required to obtain
similar accuracy. Note that the constant AT value was
arbitrarily chosen, and a smaller value could be used, but
this would then lead to more iterations to obtain similar
accuracy. This value must be chosen to ensure stability,
and in this case, AT = 0.025, is the largest possible value
that could be used without causing an instability.

For aerofoils with a simple profile, like the one used
here, an analytic solution for the reduced potential on the
aerofoil surface can be derived using the integral form of
the steady subsonic equations. The comparison between
the analytical and numerical solutions for the case of 0°
AOA is excellent, as illustrated in Figure 4. The steady
pressure coefficient,

Cp = —2¢,, (32)

computed for the cases of 0° and 1° AOA are collected in
Figure 5. In this figure the pressure coefficient has been
scaled with the critical pressure coefficient; Cy =-2u
where % is given by (37). Values of C;,/C} greater than
one indicate locally supersonic flow.

R
lo l—! -2
10 Ry a

Geometric

Sequence
-5
Repeated
P Endpoints
5 10 15 20 25

Iteration Number

FIGURE 3: Convergence history. Note [Rol1/4 = 6.4800.
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TABLE 1: Smallest possible 8 values.

Repeated | AT=1/P (Az =1/50) | AT=1/Q (Az=1/60)
Endpoints B8 N B N
without | 0.708482 13 0.717058 13
with 0.665443 22 0.674453 22

TABLE 2: Convergence history data for Figure 3. Note [Rol;/4 = 6.4800.

Code Iterations [Rl1/4 log1 IR/ Rol1/4 |Z—:¢“|max
Geometric Sequence
N =22 22 1.7518(107%) —5.5681 1.3742(10™%)
Repeated Endpo_ints
Equation (30), N = 22, 8 = 0.665443 20 1.8232(107%) —5.5508 1.0111(1079)
Constant Time Step
AT = 0.025, 122 9.5740(10~°) —5.8305 2.8210(10~5)
¢ Cp/Cy
0.05 0.025
0.025|
1 T
z L]
0.6 0.8 1

-0.025
esesse Numerical Solution

(Improved AT Algorithm)

-0.05 —— Analytical Solution

FIGURE 4: Comparison between the numerical and ana-

lytical solutions for the reduced potential on the aerofoil
surface at 0° AQA.

Three-Dimensional Transonic Flow Computations

The governing equation for the steady transonic flow,
in three dimensions, is the nonlinear modified Transonic
Small Disturbance (TSD) Equation. The modified TSD
Equation(2'3'12) for the reduced potential, ¢(z,y, z), may
be written in conservation form as

0fi [ 8f2 | Ofs

APy,

Oz Ay 8z (33)

where
foo= = (MP-1) (6T GeL (34)
f2 = ¢y(1+H¢z)) f (35)
fs = ¢ _(36)

eeess () degree AOA

-0.025
1 degree AOA
upper surface
0.05 l degree AOA

lower surface

FIGURE 5: Scaled pressure coeffiéient on the aerofoil
surfaces.

The constants 7, G and H are

o= (1/M*-1)/(v+1), (37)
G = M*(y-3)/2, (38)
H = M?*(1-+).

Here v represents the ratio of specific heats. Equa-

tion (33) is of hyperbolic type representing supersonic
flow for ¢z > U and of elliptic type representing subsonic
flow for ¢, < u. The boundary conditions imposed at
the far-field boundaries and on the wing are those given
by Equations (2) to (8).

Computations were performed for the steady flow
over a swept and tapered F5 wing at freestream Mach
numbers 0.5 and 0.9. The cross section of the wing is

(39) .
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a symmetric NACA 65A004.8 section with a 7° droop
nose over the first 10% of the chord. The semispan
of the wing is one, with its chord length measuring one
at the root section and tapering down to 0.2875 at the
wing tip. The location of the leading and trailing edges
of the wing (with respect to the wing span) are given
by zie = 0.625y and zte = 1 — 0.0875y, respectively.
The size of the computational region used in this study is
(T, Zd, Ym, L2zm) = (—1,2,2,43), with 80, 30 and 180
grid points in the streamwise, spanwise and vertical direc-
tions, respectively. On the wing we have 40 grid points
along each cross section, and there are 15 such sections
along the semispan of the wing.

The approximate solution was obtained by the use
of a type-dependent, finite difference scheme incorporat-
ing the time step sequences developed in the previous
section. The full details of this scheme can be found
in Gear(1011) and Gear, Ly and Phillips.(12:15) The em-
phasis on this part of the paper is to demonstrate that
the convergence rate of the scheme can be enchanced
by the uses of the time step sequence with repeated end-
points, see Table 3. In each case presented, in Table 3, we
see that the scheme with repeated endpoints converges
faster. Using only about 80% of the number of iterations
used by the scheme without repeated endpoints. The
computed scaled pressure coefficient on the surfaces of
‘the F5 wing are presented in Figure 6. In this figure,
the shock surfaces are represented by the discontinuous
jumps in the scaled pressure coefficient. The shock po-
sition and strength vary along the wing semispan, with
greatest variation in strength near the wing tip.

General Remarks and Conclusion

In the preceding sections, the development of the
improved AF algorithm for the solution of the two-
dimensional steady SSD Equation is presented. The al-
gorithm has also been implemented to solve the two-
dimensional steady TSD Equation by the author.(12:15) |t
is evident from the numerical experiments and the analy-
sis presented here that the method of false transients with
time step cycling can dramatically enchance the rate of
convergence to the steady-state solution.

The method also works for nonlinear partial dif-
ferential equations, as evident in Table 3 and Figure 6.
The present analysis gives us a technique for determin-

ing the minimum and maximum time steps based on the

spatial grid spacing. But for nonlinear partial differen-
tial equations the maximum time step should be chosen
to ensure stability. The present analysis shows us that
by repeating the endpoints of the time step sequence, at
least twice, we should be able to reduce the error at the
extreme frequencies at a faster rate.

]
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FIGURE 6: Scaled pressure coefficient on the surfaces of the F5 wing.
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