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idated with an Euler CFD calculation). Both the
variable wedge angle waverider and shock defined
waverider calculations had the same magnitude of er-

angle-of-attack constant
shear stress
wedge angle function

Abstract .V = volume
VW = variable wedge angle method
w = width
An analytical, power-law derived hypersonic wa- XY = L/D functions
verider model is developed using a three-dimensional z,y,z = linear dimensions
wedge-based flowfield with viscous effects. The = angle of attack
model is designed for simple parametric tradeoffs, 8 = oblique shock inclination angle
and understanding of more complex optimization 5 = ratio of specific heats
‘results. This analytical model is validated against 4 = leading edge inclination angle
a viscous optimized conical waverider created using n = volumetric efficiency
an inverse design technique. Off-design performance 4 = vehicle centerline wedge angle
of the analytical model at varying Mach numbers u = viscosity
and angles-of-attack is validated using an optimized 3 = streamline length
shock defined waverider (which itself has been val- p = density
o4 =
T =
¢ =
) ==

ror in comparison to the CFD validation L/D ratios L/D functions
(maximum of 2% difference). The variable wedge
angle method calculated the same aerodynamic and Subscripts
geometric properties of higher order methods in or-
ders of magnitude less time. alt = altitude

ave = average

Nomenclature b = value for base surface

c = value for compression surface, caret-like
A,B,C = power-law scaling parameters ce = concave :
D = drag cv = convex
F = hypergeometric function e = property at edge of boundary layer
G = flight condition function 1 = value for lower surface
h = height lam = laminar
L = lift ne = non caret-like
£ = length p = planform
M = Mach number Sp = based on planform area
m,n = power-law exponents S, = based on the surface area of a sphere
0 = osculating cone Sw = based on wetted surface area
P = pressure turb - = turbulent
R = thermodynamic constant u = value for upper surface
S = area Ve = based on the volume of a sphere
T = temperature v = viscous
U = velocity magnitude w = wall value, wetted surface area

" - . = wave drag
Emg;ﬁ;;ta::kéneézf;humﬁfg:m, Student. Member ATAA. . = freestream value or surface
Copyright ©1998 by‘the American Institute of Aeronautics
and Astronautics, Inc. All rights reserved.
, 1
American Institute of Aeronautics and Astronautics 21st ICAS Congress

13-18 September 1998
Melbourne, Australia




Copyright © 1998,

by the International Council of the Aeronautical Sciences (ICAS)

and the American Institute of Aeronautics and Astronautics, Inc.

-4

Introduction

A promising concept for the design of high L/D
hypersonic vehicles is the “waverider”, presented by
Nonweiler! in 1959. Waveriders are designed so that
the bow shock is attached everywhere to the sharp
leading edge. As a result of this attached shock, wa-
veriders exhibit very high values of L/D, as shown
by theory, experiment?, and computation?, although
not necessarily the lowest drag. The high lift gen-
erated by waveriders is provided by a region of high
pressure air which exists between the undersurface
and the attached shock.

This paper will explore the aspects of parametric
design of hypersonic waveriders using a wedge de-
rived power-law shaped vehicle with either constant
or variable spanwise wedge angles. An advantage
to these models are their versatility in generating a
wide variety of geometries which closely ‘mimic in-
verse hypersonic vehicle designs, while still retain-
ing the analytical calculation simplicity of the more
generic “caret” waveriders, generated from a simple
wedge flowfield.

Wedge Derived Flowfield Model

Geometry

A general description of waverider geometries is
derived with two-dimensional power-law equations
which define the curvature of both the planform and
upper surfaces:

yp = Az” 1)

(2)

1
Yu = B(2,)" — 2 = (%‘-) "
where the zero coordinate point is at the nose center-
line with the height defined as positive going down,
as shown in Figure 1. Parameters A and B are posi-
tive sizing constants, and exponent n can vary within
the range 0 — 1.

To ensure a planar shock (i.e. a wedge derived
flowfield) the vehicle must have a constant wedge
angle 6. This is achieved by constraining the curva-
ture of the lower surface to follow the equation:

BT

tan = a- ()" (3)
o= (%)

Applying Eqn. 1 between = = 0 'and the desired
vehicle length z = £ along with Eqn. 2 defines the
entire vehicle upper surface. Similarly, applying

2
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Top View
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Rear View Side View

Figure 1: Example of a caret waverider: 4 =
03, n=1, 6 =5° £ =164 feet

n=00,A=9.11
=05 A =400 a
n=05A=151
n=10,A=025

n=05A=3.00

Figure 2: Variations in power-law constant A
and exponent n (planform view)

Eqn. 1 between z = 0 and the lower surface length,

= {/ cosf, along with Eqn. 3 defines the vehicle
lower surface. The vehicle base plane is taken per-
pendicular to the flight path at a zero degree angle of
attack. These equations result in five variables (A4,
B, n, £, 8) which may be manipulated to generate a
wide variety of vehicle configurations.

Small variations of these five parameters can result
in large variations in the resulting vehicle geometry,
as shown in Figures 2 and 3. At a value of n =
0 the vehicle takes on a blunt-planform (spatulate)
flat-topped configuration while at n = 1 the vehicle
is a caret geometry.

Waveriders are designed assuming an attached
leading edge shock. Not all variable combinations
possible with this parametric geometry will lead to
a valid waverider with an attached shock. Shock at-
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n=05,A=4.00 n=05A=151 n=00,A=9.11

n=0.5A=3.00

n=10A=025

Figure 3: Variations in power-law constant A
and exponent n (base view)

tachment is determined by setting:
| A
Substituting Eqn. 4 into Eqn. 3 results in:

B =

1
2 =ztan + (%) (tanf —tanf)  (5)
for the curvature of the lower surface with an at-
tached shock where 8 must be less than the max-
imum shock attachment angle. An example of a
vehicle generated using these equations is shown in
Fig. 4. The attached shock requirement reduces the
number of variable parameters to four: 4, n, £, and
.

This power-law vehicle model is simplistic enough
to allow all geometric values to be defined analyti-
cally, allowing for quick analysis of different vehicles.
The vehicle height h and width w are given by:

A\
w=2AL" Q)

Using Eqn. 7, the variable parameters can be
changed to a more convenient set consisting of £,
w, n, and 6.

The planform area of the vehicle S, is found by
integrating the area under the projected leading edge
curve, as viewed from above, resulting in:

wl
n+1

[4
S,,=2/Aa:"= ®)
0

As expected, the planform area of fhe spatulate ve-
hicle (n = 0) is twice that of the caret vehicle (n = 1)
for constant length and width.

Isometric View Top View

y=82"

w

yoh|Zaxtane 7

Rear View

Side View

Figure 4: Parametric vehicle example: A =
0.66, n = 0.5, 8 = 5°, £ = 164 feet

Base area Sp is found from:

Az
s,,:z/ /dzdy:Spta.nB ©)

0 2z

Holding the values of w, £, and 6 constant and testing
n at the two limiting values, shows that the spatulate
vehicle (n = 0) will have twice the base area of the
caret vehicle (n = 1).

The volume V for the wedge derived, power-law
waverider is: '

Sl wl2tand
n+2 (m+1)(n+2

[
V=2 Siz)de = (10)
I )

which is more sensitive to changes in the length than
the width or wedge angle. Also, the denominator can
vary between two (for n = 0) and six (for n = 1),
with the n = 0 vehicle having three times the volume
of the n = 1 vehicle with equal £, w, and 6.

This parametric vehicle allows for many variations
in possible configurations by simply changing the
value of the power-law exponent n. Also, all of the
geometric equations listed reduce to the well-known
caret waverider equations* at n = 1.

The wetted freestream surface area Syoo and the
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wetted compression surface area Sy are:

¢ =tanf A2n2 2n-2
nez<n—
Swoo_2/ / ”].-i-wdzdx (11)
0 0
¢ =tanf A2 2( 9)2 2
n“(z —rtanf)-n—
ch—2/ / \/1+ (tanﬂ—tan@)z"‘ dzdzx
0 ztanf
(12)

The total wetted surface area of the vehicle is S, =
Swoeo + Swe- These may have to be integrated nu-
merically. Alternatively, the summation of the cross
products in the vehicle coordinate space provides a
fast surface area calculation method.

The volume, wetted surface area, and planform
area can then be used to calculate figures of merit,
such as the volumetric efficiencies based on wetted
surface area 7s,, or planform area 7g,, as defined:

(13)
(14)

Substituting Eqns. 8 and 10 into Eqn. 14 results
in:
Vi

=3

_ [(n+1) £tan? 6
=|n+2?

1
3

s, [
This shows the small variation in 7g, achievable at
the power-law exponent limits of n = 0 (spatulate)
and n = 1 (caret) for constant length, width, and
wedge angle to be 75, n=0 = 1.047s,,n=1. There-
fore, even though there is a large change in volume
. for changes in n, it comes at the expense of added
planform area and scales by about the same mar-
gin. For a true gain in 7, the vehicle should gain
all of its volume through height variations (i.e. by
increasing 8) and by increasing the length to width
ratio. The most efficient exponent n can be found
by taking the derivative of ns, with respect to n and
holding £, w and 6 constant. This resultsinn =0 as
the exponent which allows for the highest planform
- efficiency (i.e. spatulate configuration).

Non-conventional figures of merit have been de-
veloped to remove what may be perceived as a dou-
ble accounting of a vehicle’s surface area in both the
volumetric efficiency and the L/D calculations. This
has been done by comparing the vehicle against the
properties of a sphere due to the fact that a sphere
is the most volumetrically efficient shape possible.
Alternate volumetric efficiencies can be based on a
comparison to a sphere of equal volume (surface area
comparison), 7s,, or a sphere of equal surface area

4

(volume comparison) 7y, :

36m)5V3

ns, = LT (16)
63V

v, = Wé . 17
Sa

Aerodynamic Performance

Lift and Wave Drag

The flow over the waverider is assumed to be es-
sentially two-dimensional with streamlines flowing
straight back over a series of wedges. Lift L and
drag due to lift Dy, are:

L = Sysin|a| (—1)7[Py, — B] + Spcos|e| [P, — Py]
(18)

Dy, = Sycos|a| [P — Py] + Spsin|a| (—1)7 [P — Py)
(19)

where P,, P, and P; indicate the pressure for the
upper, lower, and base surfaces respectively found
using either oblique shock theory or Prantyl-Meyer
expansion theory. The parameter ¢ = 1 for negative
angle of attack, @, and o =0 for a > 0.

Viscous Drag

Both the laminar and turbulent solutions have
been derived using the reference temperature
method. In most cases, the transition point will be
unknown, so these two results will bracket the actual
value. Following the two-dimensional streamline as-
sumption the viscous drag is estimated by integrat-
ing along two-dimensional streamlines over the area
of the vehicle. '

The skin friction for laminar flow Ty 1m is:

/ c* G
Tw,lam ~ 0.332 pel']e2 Te = 2;,3127;
z,e

where the conditions at the edge of the bound-
ary layer are approximated using post-shock con-
ditions and function Giam (defined in Eqn. 20)
is shown in Table 1. The parameter C* is the
Chapman-Rubensin parameter evaluated at average
boundary-layer conditions® and is solved for using
the power-law viscosity approximation given by:

«\ n—1 x\ ~1/3
(%—) <§-) for air (21)
e []

(20)

C*: ~
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[ | Laminar Flow Turbulent Flow 1
G1 | 0.664+/pU3p.C* | 0.037(U.)'3(p*)%3(u*)02
Gz | 0.8
Fo 0.99845 0.99758
P -0.57529 -0.80941
P 0.36737 0.54989
Fs -0.11939 -0.18247

Table 1: Viscous drag constants for wedge de-
rived waverider ‘

where T* /T, is found using Eckert’s empirical esti-
mate for the average boundary layer temperature:

*

1,_;— ~ 0.5 +0.039M?2 + 051w

€ e

(22)

and the wall temperature is estimated depending on
the application. For hypersonic vehicles at cruise
conditions, a good estimate is Ty =~ 1100 K. For
this model the wall temperature is assumed to be
constant. »

Dynamic viscosity p at the edge of the boundary
layer is approximated by Sutherland’s laws®.

Laminar viscous drag Dy, is then found by inte-
grating the skin friction over the length of a stream-
line £(y) and then over all streamlines for the upper
(u) and lower (l) surfaces respectively:

At Eu(y)dzd
Dlam,u = Gl,lam,u x_l/?y (23)
0 0
Ae™ §u(y)/ cos 9d i
4
Dla.m,lv = Gl,lam,l -Z-T/g (24)
o 0

where £(y) is the y-dependent streamline length over
the upper surface, given by:

E1S

aw=t-(%) (25)

The skin friction for turbulent plate flow 7 turs is
given by:

_ 0.0592p*U2 _ 0.8G1,turb
Tw,turb ~ 2(Re*)0.2 - 30.2

(26)
where the function Gityr (defined in Eqn. 26) is

shown in Table 1 and,

Re* = p*U.z/p*
 p* =P/RT*

@7
(28)

5

with R being the specific gas constant for air. The
values for T* and p* are found by using Eqns. 22
and Sutherland’s law, respectively. Turbulent vis-
cous drag D;yrs is found by integrating Eqn. 26 in
the same manner as above for the upper and lower
surfaces:

AL™ §u (y)
Diurpu = 1.6G1, turb,u Py dzdy (29)
0 0
AL Eu(y)/cosb 1
Dturb,l = 1-6G1,turb,l ;5—2 da:dy
0 0
(30)

Since both the laminar and turbulent viscous drag
equations are of the same form, they are evaluated in
the same manner. The only difference between the
equations for the upper and lower surfaces are the
integration limits (i.e. &(y) = &u(y) / cos@). There-
fore, the same equation can be used for the upper
and lower surface since the upper surface is aligned
with the freestream flow direction (i.e. using § = 0°)
when evaluated with the proper atmospheric con-
ditions. Integrating by parts in both the z and y
directions results in a series solution for the viscous
drag D,, represented by a hypergeometric function
of the form:

_ G1w€G2
* (cos§)Cz

o _ K

(Z (n()lki Tc:;z)k v ) 3
k=0 k :

The hypergeometric function can be rewritten as:

'(32)

k
§ n)e(—G2)s 1_". _ i 1 H {n+p)(p—0.5)
51 ) Kl T k! 1
=0 +n)n =0 " p=0 +n+p

which fits well to a third order polynomial of the
form:

F(n) = Fo + Fin + Fpn? + F3n® (33)
for both the laminar and turbulent curves, where
Fy, 7y, F,, and F3 are constants. This results in the
combined laminar and turbulent drag equation for
either the upper or lower surface of the vehicle:

14

D, = GywF(n) (—) * (34)

cos@

with the constants and functions, F' and G, as shown
in Table 1. Values in Eqn. 34 are for using SI units.
It is easy to see that Eqn. 34 scales linearly with the
width, and to the G power of £. Also, the power-law
exponent n only appears within the function F(n).
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Figure 5: Hypergeometric function F(n) vs.
power-law exponent n

Only the implicit functional dependence on € can-
not be readily determined due to the atmospheric
properties in the variable G;.

The plot of the hypergeometric function for both
the laminar and turbulent cases is shown in Fig. 5
for variations in the power-law exponent n from zero
to one. Eqn. 34 shows that for a constant set of
values for £, w, and 6 the viscous drag scales by
the hypergeometric function. For the laminar case,
the viscous drag at n = 1 is 67% of the value at
n = 0. Similarly, at n = 1 the turbulent drag is
56% of the n = 0 case. Therefore, even though the
n = 1 vehicle has 33% of the volume and 50% of
the planform area of the n 0 vehicle, it has a
disproportionately higher amount of viscous drag.

L/D Equation

The lift-to-drag ratio can be derived from the pre-
viously defined L and D. Writing Eqns. 18, 19, and
34 in the form of the complete L/D equation:

L__L
D~ Dp+D,
and then dividing through by cos|a|[P; — P,] and

substituting Eqn. 9 into Sy, results in the following
simplified L/D equation:

(35)

L _
B = GO M TR0 e e Fa) T 0%t (36)

where hgy; is the design or cruise altitude and,

X4y
_ . Gl,z -1
Y2 = (Gl"‘ + (cosG)Gz) (P, — P,) cos|o|(1 - XY)
‘ (38)

6

3 =61 (39)

Uy = (n+1)(Fo+ Fin+ Fn® + F3n®)  (40)
. [B-B

X =tané {—-——H - Pu] (41)

Y = (~1)° tan|o] (42)

For a given design point Mach number and alti-
tude, the L/D becomes a function of only 4, o, £, and
the power-law exponent n. The smaller the denom-
inator in Eqn. 36, the larger the L/D becomes. All
viscous effects are contained in the ¥, term, while
all length dependence and power-law exponent de-
pendence have been decoupled into the ¥3(€) and
W¥4(n) terms, respectively. Both of the functions ¥,
and ¥, contain some component of lift of the vehi-
cle through the function X, as well as, the (P, — P,)
term in ¥,.

At a = —6/2, the pressure term (P, — B,) in the
denominator of ¥ and X goes to zero, but L/D is
still defined. Taking the limit as &« — —8/2, it can
be found that Eqn. 36 reduces to:

L _ =1 .
5D T ] Gyt W(n)w(L
a——8/2 7+(G1.u+(m_ 9)02 (Pl—Pb)(Y)tuga)collal
(43)

Note that Eqns. 36 and 43 are independent of the
width of the vehicle. This is an inherent character-
istic due to the uniform wedge angle of the vehicle
and, therefore, the constant flow properties along
each streamline. Also, due to the fact that the width
scales with the constant A for a given exponent n
(i.e. w = 2A4¢"), the width of each streamline scales
by the same constant, thereby scaling the viscous
drag linearly in A. Using variations in the vehicle’s
width, the vehicle can be tailored to achieve any de-
sired volume. This allows for-incredible flexibility in
choosing the design geometry.

Variable Wedge-Angle Vehicle Model

Vehicle Geometry

The derived model can be expanded to include
non-planar shocks. The methodology for the gener-
ation of this vehicle is the same as the wedge derived
vehicle, with the addition of a third power-law func-
tion to include lower surface curvature:

1
Ytee = Clatee — Ttanb)™ — zicc = (%52)™ + ztand
(44)

for § < & (i.e. concave (cc) surface) where § is
the angle of the leading edge measured relative to
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y= AL
Isometric View Top View
y=82"
f—1——+f
==
y=C{xtang - 2)" .
Rear View Side View

Figure 6: Convex parametric variable wedge
angle vehicle example: A = 2.1, m =05, n =
06,0 =12° 6§ =6° £=236.58 m

freestream, m is a second power-law exponent which
can vary between 0 and 1, and C is the lower surface
power-law constant. A vehicle with a convex (cv)
lower surface has curvature defined by:

1
Yoo = C(—2ico + Ttan )™ — 2,0, = ztanf — (ﬂg—") ™

(45)

Unlike the planar-shock vehicle, these equations re-
sult in six variables (A, n, m, ¢, 8, §) which may
be manipulated to generate a wide variety of vehicle
designs where the upper surface power-law constant
is defined as B = A/tan™4. This is very similar to
Eqn. 4 where the shock angle 8 has been replaced
by the leading edge angle 4. The introduction of the
parameter & allows for the leading edge angle to be
defined independent of the shock angle (which is not
constant for this geometry). The parameters C is a
scaling factor used to align the leading edges of the
upper and lower surfaces:

Azn—m

C= | tan 8 — tan §j™

(46)
Absolute value is used because C must always be
positive, regardless of whether vehicle is convex or
concave. An example of a convex vehicle generated
using these equations is shown in Fig. 6.

This general model produces a planar shock at
the specific case of n = m. For n = m = 1, these
equations create the caret style waverider with an
attached shock with § = 8.

The lower surface cannot cross the upper surface,
so the ratio of the slopes at the leading edge:

"Ylee _m  tand
" ntand — tanf

(47)

N
yu,'cc

7

¥y = Cm(z - x tang}™

Figure 7: An example of a non-physical com-
bination of variables

must be less than unity for the concave vehicle. An
example of a shape in which this is not true is shown
in Fig. 7. This can be rewritten in terms of the fol-
lowing inequality for small angles with an attached
shock: :

m 4§

which must be satisfied for a feasible design.

Another way to write Equation 47 is in terms of
the minimum wedge angle for a given set of variables:

ecc,min =4 (1 - -T-n—)

- (49)

Height h, width w, and planform area S, for the
variable wedge angle vehicles are the same as shown
in Eqns. 6 through 8 for the vehicle with the wedge
derived flowfield. Base area Sy of the variable wedge
angle derived vehicles can be found by solving the
equations:

AL® Ziec

Sb,ec =2 / / dzdy (50)
1] Za
Al™ Ziev

Sb,cv =2/ / dzdy (51)
0 Zu

where the z-coordinate of the upper surface is found
from Eqn. 2 and the z-coordinates for the lower sur-
faces of the concave and convex geometries are found
from Eqns. 44 and 45, respectively. The solution,
which is the same for both vehicles, has been di-
vided into two terms, S and Sy nc, shown by the
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equations:
. n+1
=5, t
Sp,c = Sp tanf mrl (52) |
m-—n

where Sp = Sp,c + Spne. Equation 52 becomes the
base area of a caret (c) waverider for n = m = 1.
Therefore, this term indicates how closely the ve-
hicle corresponds to a caret-like waverider¢. This
leaves the second term to represent the non-caret
(nc) waverider base area correction.

The volume V of the variable wedge angle wa-

verider is found from integrating the local base area
Sp(z) (i.e. replace £ with z in Eqn. 50 or 51) down
the length (z) of the vehicle where the solution fol-
lows directly as functions of S and Sg . as shown
in the following equation:

L

V=Sbn+2

(54)

The equation for volume is the same regardless of
whether the vehicle has a concave or convex lower
surface.

Surface area calculation for the variable wedge an-
gle derived parametric vehicle requires a simple nu-
merical integration of Equation 11 for the wetted
freestream surface area and the following equation
for the wetted compression surface area:

£ ztand

Swe =2 V1+ C?m2(z - ztan §)2m-2dz dz

ctand

o,

(55)

This results in the total wetted surface area of the
vehicle equal to Sy = Sweo + Swe-

Aerodynamic Performance

Lift and Drag Due to Lift

For the purposes of this analysis, even with a
curved shock, the flow over the waverider is again as-
sumed to be two-dimensional with streamlines flow-
ing straight back over a series of wedges. Since these
vehicles do not have uniform spanwise surface angles,
the flowfield is solved at each local spanwise angle.
This results in what has been termed the variable
wedge angle (VW) flowfield. Local spanwise angles
diocar for either the concave or convex vehicles are
solved from:

Az]

700] (56)

¢lgcal = tan~! [

o o v - -t o it - ap o -

IATY EREYY |-r'.>~v-i FAURY PUT TS ||~1|vn-|uﬁi|-liﬂ rewey |
0 2 4 8 10 12 14 16 18 20

Span Location (m)

Shock, Lower, Upper Surface Locations (m), P/Peo,d, .,

Figure 8: Concave variable wedge angle vehi-
cle exit plane geometry and shock location

P
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T T

b & L b o v 2 O ®
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8 10 12 14 16 18 20 22 24 26

Span Location (m)

............

Shock, Lower, Upper Suiface Locations (m), P/Peo,é,.,

Figure 9: Convex variable wedge angle vehicle
exit plane geometry and shock location

where the local vehicle height Az is given by:
1
= (L) (206 - tanO)/1- 2
Az= (A) (tan 6 — tanf)l
1

+{tanf — (%) " tand

(57)

and £(y) is solved using Eqn. 25. The variations in
the local angle across the half-span of the vehicle, the
associated compression surface shock pressure ratio,
and the exit plane shock profile are shown in Fig-
ures 8 and 9 for the concave and convex vehicles,
respectively, where Zspock,local = &(¥) tan Biocai-
Following the same format as the wedge derived
waveriders, this method can also easily account for
variable angles of attack by using the parameter o
defined for Eqns. 18 and 19. Use of this parameter
results in the following lift and wave drag equations

8
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by summing of pressure forces over the body:

AL .
L=2 [ {€WIR - Pcosla] o
0
+Az(~1)7[B, - Psinal} dy
At
Di=2 [ Q)R- Psnlel
0

+Az[{P, — Py]cos|a|} dy

where P,, P, and P, indicate the pressures for the
upper, lower, and base surfaces respectively. These
pressures are solved using either the oblique shock or
Prantyl-Meyer relations. A “vehicle-averaged wedge
angle” is given by:

AL™
2 fo Blocal Ay -

" (60)

¢Auerage =

Viscous Drag

The skin friction for both laminar and turbulent
flows are solved in the same manner as shown for
the wedge derived vehicle. Since the upper surface
is at a constant angle relative to freestream, it can
be solved in the same way as the planar shock wa-
verider. When solving for the lower surfaces, the
bounds of integration are integrated over the span-
wise angle @jocqr instead of the vehicle wedge angle
. This results in the total vehicle viscous drag equa-
tion:

D, = Gl,uw£G2F(n)
AL® Eu(y)/ cos biocai (V)

. / 1,6G1,l(¢local(y)) dzdy

zl—Gz

(61)

where, G1, G2 and F(n) are shown in Table 1.

The implicit drawbacks to this method are: 1) the
model is assumed to be a true aerodynamic shape
with no losses due to engine-airframe integration
(a reasonable approximation for this rocket appli-
cation), 2) all values of lift and drag assume shock
attachment to the leading edge (i.e. no pressure leak-
age), which is not true for all sets of parameters in
this method, 3) centrifugal lift has been neglected,
4) center of pressure and moment forces have not
been considered, 5) no control surface or trajectory
optimization has been included, 6) transverse flow is
assumed to be zero, and 7) the wall temperature is
assumed to be constant.
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Figure 10: Variable wedge angle comparison
geometry with MAXWARP vehicle

Validation Models

The variable wedge power-law waverider model is
compared against both conical and osculating cone®
generated waveriders to validate the methodology.

MAXWARP Conically Derived Waveriders

Using the MAXWARP? (Maryland Axisymmetric
Waverider Program) optimization code, a suitable
conically derived waverider comparison model was
generated (a Mach 8 cruiser optimized for maximum
L/D).

The planform leading-edge equation (y = Az™)
was curve-fit to the MAXWARP vehicle resulting in
values of A = 2.4566 and n = 0.4942. The result-
ing variable wedge angle geometry match is shown in
Figure 10. As this figure shows, the values of £, w, h,
8, and 6 (196.85 feet, 121.91 feet, 16.50 feet, 4.7636°,
and 4.7913° respectively) were all held constant be-
tween the two vehicles. The freestream Mach num-
ber and dynamic pressure were also held constant at
8 and 3821.3 psf.

Specifications are shown in Table 2 for both the
MAXWARP vehicle and the resulting variable wedge
approximation. The variable wedge vehicle has a
8.3% larger volume and 6.6% larger base area. The
outcome was a model which had a 7.2% lower L/D,
3.2% more lift, 2.9% less wave drag, and 53.5%
more viscous drag than the MAXWARP vehicle.
The discrepancy in the viscous drag is because the
MAXWARP program calculate the vehicle’s wall
temperature profile, whereas the variable wedge ve-
hicle assumes a single constant wall temperature.
Therefore, it is clearly shown that the variable wedge
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| MAXWARP | V. W. | % Diff.
V (m®) 2,756 2,984 | 8.30
Sy (m?) 3,051 3,032 | -0.63
Sp (m?) 1,496 1,402 | -0.25
Sp (m?) 117 124 | 6.61
ns, 103115 [ 0.3307 | 6.16
1s, 0.1314 | 0.1389 | 5.71
L/D 8.44 8.32 | -1.42
L (x10° N) 7.990 8.385 | 4.94
D,, (x10¢ N) 0.707 0.699 | -1.11
D, (x108 N) 0.240 0309 | 28.7

Table 2: Variable wedge angle model valida-
tion with MAXWARP vehicle

model is able to simply and analytically solve for the
same characteristics which take orders of magnitude
more time to solve using the conical method.

Osculating Cone Derived Waveriders

The method of osculating cones® is an infinite
degree of freedom tool used for inverse waverider
design. Using models generated by Takashima ®
with this method, a comparison was made to vali-
date off-design performance for different Mach num-
bers and angles of attack. Takashima validated
the method of osculating cones using an inviscid
CFD calculation of the optimized Mach 10 vehi-
cle shown in Figure 11. The vehicle approximation
was made using the variable wedge angle method
by curve-fitting (y = Az™) to the planform surface
of the osculating cone generated waverider. The
vehicle approximation is fairly close to the desired
shape with only slight differences in the resulting ge-
ometries. They were matched to have equal length,
width, height, and centerline and leading edge an-
gles of 22.12 m, 24.16 m, 3.50 m, 6.56°, and 9.00°
respectively.

The comparisons to the off-design CFD calcula-
tions are shown for Mach numbers between 4 and 10
and angles of attack between -6° and 6° are shown
in Table 3. Data is given for the lift, inviscid drag,
and L/D for the CFD osculating cone and analyt-
ical variable wedge angle calculations. All results
agree with the CFD validation numbers other than
for the @ = —4° cases. The error for these cases
is 20% since this angle is close to the vehicle’s zero
lift angle of about 3.3° (i.e. low magnitude of lift re-
sults in a large error with small departures from the

—_—
Z 1

Figure 11: Variable wedge angle planform
curve fit comparison geometry with osculat-
ing cone vehicle

solution). Coincidentally, the variable wedge angle
and osculating cone methods had the same magni-
tude of errors (maximum difference was at o = —4°
and was 2.4%) in comparison to the CFD calcula-
tion, although the variable wedge angle method is
orders of magnitude faster to calculate. This makes
the variable wedge angle method extremely powerful
for parametric studies of hypersonic waveriders.

Conclusions

Use of a parametric vehicle will allow for quick
analytical studies to help determine a first order
approximation for a desirable vehicle configuration.
Towards this goal, two different power-law derived
vehicle models have been developed. The first is
a strictly planar-shock geometry with four variable
generating parameters, the second model contains
six parameters and can therefore be fit to more re-
alistic configurations. Due to the three-dimensional
nature of the second model, a variable wedge an-
gle analysis has been developed. This method has
been validated using both conically and osculating
cone derived waveriders. The variable wedge angle
method has been shown to have the same accuracy
as the osculating cone method for an optimized wa-
verider configuration, thereby making the variable
wedge angle method extremely powerful for para-
metric studies of hypersonic waveriders. Also, since
the planar shock model is contained as a subset of the
variable wedge angle model (i.e. fewer parameters)
it allows for even greater insight into the character-
istics of these type of vehicles.
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Lift (x10°N) Drag (x10°N) L/D
Ms | @ ||O0.C. | V.W. | % Error | 0.C. | V.W. | % Error | O0.C. | V. W. [ % Exrror
4 0° | 14.62 | 15.01 2.67 3.632°| 3.716 2.30 4.03 4.04 0.36
6 0° | 11.08 | 11.15 0.68 2.145 | 2.162 0.77 5.16 5.16 -0.09
8 0° ] 9356 | 9.377 | 0.22 1.566 | 1.570 0.28 5.97 5.97 -0.06
10 | 0° | 8.379 | 8.441 0.73 1.276 | 1.286 0.74 6.57 6.57 0.00
10 | -6° | -6.194 | -6.945 12.12 1.013 | 1.095 8.10 -6.11 | -6.34 | 3.72
10 | -4° | -1.443 | -1.813 25.65 0.675 | 0.705 4.39 -2.14 -2.57 20.36
10 | -2° | 3.344 | 3.239 -3.13 0.757 | 0.767 1.27 4.42 4.22 -4.35
10 | 0° | 8.379 | 8.441 0.73 1.276 | 1.286 0.74 6.57 6.57 0.00
10 | 2° | 13.84 | 14.01 1.20 2.274 2.294 0.86 6.09 6.11 0.34
10 | 4° | 19.87 | 20.10 1.20 3.813 | 3.849 0.95 5.21 5.22 0.25
10 | 6° | 26.53 | 26.84 1.16 5.968 | 6.027 0.99 4.45 4.45 0.17

Table 3: Variable wedge angle model off-design Mach number and angle-of-attack validation

data

Future Work

Since the variable wedge angle model is analyt-
ical and the results are the same as both the conical
and osculating cone vehicles, an optimizer could ar-
rive at the same solutions as the validation models
with significantly less time using the variable wedge
model.

This parametric tool is also currently being used
to investigate multiple classes of waverider vehicles
for Boeing? to determine the trade-offs associated
with hypersonic vehicle design.
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