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Abstract

In order to achieve their outstanding perfor-
mances, the hale gnopters need a specific de-
sign: high aspect-ratio wings and low wing
loading. These characteristics imply flexibility,
low frequency modes and aeroelastic phenom-
ena at low speed. Therefore, wing flexibility has
to be taken into account at the early stage of
conceptual aircraft design.

The flight dynamics equations of a free flexible
aircraft are presented in this paper. The new
aspects of the modelization lies in the full cou-
pling between rigid-body modes and flexible
modes.

The first results of this modelization revealed
different kinds of instabilities: the classical flut-
ter due to a coupling between flexible modes,
and other instabilities due to the coupling be-
tween rigid modes and flexible modes, like the
instability of the first bending mode, leading
to a kind of flapping movement. The evolu-
tion of the rigid-body modes with the speed is
also clearly affected by the presence of flexible
modes.

The propulsion by wing flapping without ar-
ticulations at the wing-root is then studied to
show that this propulsion mode could be an
alternative to propellers.

1. Introduction

So as to fly for a very long time or at high alti-
tude, hale gnopters* are characterized by high aspect-
ratio wings, low wing loading and thus very flexible
structures. The frequencies of flexible modes are very
low, around 0.3-0.6 Hz, and get close to the rigid-
body modes frequencies. A coupling between rigid and
flexible movements usually appears for this type of
aircraft. Therefore, the rigid dynamics can no more be

* HALE is an acronym for High Altitude Long Endurance
The term gnopter denotes an unmanned aircraft, often named
UAV (Uninhabited Aerial Vehicle)
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analyzed separately from the flexible analysis. More-
over, because of the oustanding performances of these
airplanes, the hale design is very sensitive to the opti-
mization process, developped in the first phase of air-
craft design. It is thus necessary to shift the flexibility
analysis from the preliminary to the conceptual design
process, so as to guarantee a stable aircraft. We need
methods that are well adapted to aircraft design, that
is to say, simple, rapid, but whose limits are known.

In a former article,(!) a modelisation of the embed-
ded wing, dubbed Flutty, based on the finite element
method with few beam elements had been presented.
This model had been numerically and experimentally
validated.(From Flutty, the flight dynamics equations
of the entire free aircraft had been derived, leading to
a software Super Flutty, the object of this paper. Super
Flutty always fits well with the preliminary design be-
cause the structural modelisation is simple: beam ele-
ments, simplified profile. It is computationally efficient
so as to be integrated in an optimisation process. The
first results, obtained with Super Flutty, show obvi-
ously the influence of rigid-body modes on the flexible
modes and the other way round, and demonstrate the
necessity of introducing flexibility analysis very early
in the design process.

A new concept of ornithopter ! had been introduced
also in* as a pedagogic application of flexibility. It
could be an alternative to propulsion by propellers.
Indeed, the higher you fly, the larger your propeller
is. The idea was to use the natural wing flexibility by _.
exciting the first bending mode in a flapping movement
to produce thrust. Efficiency and powers were com-
puted with Flutty on an embedded wing and showed
that flapping without articulations at the wing root
gave sufficient thrust for cruise flight with an efficiency
equivalent to a propeller. These works are now ex-
tended to the free wing.

t Ornithopter designates an aircraft with flapping wing
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Notations

Fy or N Reference frame (derivation)

Fgor A  Aerodynamic frame
Fgor B Body frame (projection)
On Reference frame origin
Go Body frame origin
ac Aerodynamic center
c aerodynamic chord
NB Rotation of frame Fg relative
to frame Fiy
%—t‘iH Derivative of H
with respect to the frame D
RPQ Vector PZ)
g Absolute speed of Gy projected
W in body frame
u Displacement of the center of
v mass of a section (body or wing)
w along Xy, Y3, Z, respectively
Z’ Deformation angles (body or
9Z wing)
N,
N, Interpolation polynom of struc-
Ny tural displacements
Ns,
X Whole degrees of freedom vector
Xo Degrees of freedom of G,
Xs Structural degrees of freedom
N, J pS N,d! Integration on the aircraft
of the interpolation function
multiplied by the lineic mass (cf 2.4)
u I pS N, dix,

2. Flight Dynamics of Free Flexible Aircraft

2.1 Introduction

This section deals with the modelization of the -

flight dynamics of a free flexible aircraft. The energetic
approach had been chosen against the conventional
approach, because it is more appropriate to the finite
element method.

To position the problem, the choice of the relative’

frame will be detailed. The different parts of the
Lagrange’s Equations will be written, and particularly
the kinetic energy, which is very interesting in order
to analyze the coupling between rigid and flexible.
Then, the aerodynamic forces will be introduced in the
equations.

The structural modelization of the body and the
wing will not be detailed, the reader can report himself
to the previous article.(!)

P&V\ d"(,lm_‘/)

FA

undeformed aircrafy

Fig. 1. Body frame definition
2.2 Relative Frame Choice

As written above, the choice of the relative frame is
very important because it conditions the complexity of
the equations but also their physical signification. This
is the frame in which the flight dynamics equations will
be written, and the aerodynamic forces projected.

In our approach, the physical meaning will be
favoured against the equations simplicity, which makes
the originality of our approach. The notion of “mean
reference frame” or “mean axes”, usually used to
define the body frame, will not be treated. Then,
no assumptions will be made neither on the axes
nor on the position of the instantaneous center of
gravity. In(>® the authors choose the mean axes whose
properties contribute to simplifying the kinetic energy
expression. These properties do not appear obvious
to me, as the system is under aerodynamic loads.
Therefore, we have defined our own relative frame.

The origin Gy of the body frame Fg is defined as
the center of mass of the undeformed aircraft, it is a
real geometrical point. And the axes associated to this
point are the eigen axes of the body section, whose
center of mass is Gy. Xj is the axis orthogonal to the
section toward the rear of the aircraft, ¥, and Z, are
the elastic axes associated to the section (cf Fig. 1,
page 2).

Let us now define the displacements of every point
of the aircraft regard to the Earth reference frame.
The position of Gy is then completa}\deﬁned by
the projection of RP%%° in the body frame. The
orientation of the body axes is also referenced by
angles. zo, Yo, Z0 are Gg coordinates along X3, Y}, and
2y respectively, and ¢q is the bank angle between Y,, -
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and Y}, ¥ the azimuth angle between Z,, and Z;, and
t the pitch angle between X,, and X

The structural degrees of freedom are noted Xs;
they let us define the node displacements of the wing
and the body. The structural nodes are the center
of mass of each section considered. x groups the
coordinates of Gy x,, and the structural displacements
Xs+

The vector s(z,y, z,t) = R where P is a current
point of the aircraft, is defined by (cf Fig. 1, page 2):

8($,y,z, t) = RG°P = RGOPo +RP¢P =p+d

with p, point of the undeformed aircraft and d, the
deformation (cf Fig. 1, page 2). Body and wing are
modelized by the finite element method and the defor-
mation d may be expressed as function of y,.

Now, we have expressed the whole displacement of
a current point P in the body frame. We will then
write the Lagrange’s equations of a flexible aircraft, the
kinetic energy, the aerodynamic forces and the elastic
energy.

2.3 Lagrange’s Equations

The Lagrange’s equations for the whole aircraft
+ have the following expression:
d38L 8L 68D
—ar T aot s =@ (1)
dtdx dx Ox .
where L is the Lagrangian, that is to say the difference
in kinetic and potential energy (L = T ~U;—U,), where
T is the kinetic energy, U, is the energy of deformation,
Uy the potential energy of gravity, Q = %’;{—V the gen-
eralized forces (aerodynamic and propulsion) and D

expressing the damping. Since no structural damping
will be considered here, (Eq. 1) becomes:

a a(T—ud—ug)) AT ety oW,
ot dx dx T Ox

For equations simplification, we will define new
angles ¢, 8, and 1, as follows

P = ¢y = ¢o — Yo sinby (3)
q = v = 1o cosfp sin B0 + g cos ¢ (4)
7 = 0y = g cos fp cos do — g sin ¢o (5)

For purpose of clarity and conciseness, the only terms
concerning zo, ¢s and x, will be presented, when
developped. At the time of the complete writing of the
Lagrange’s equations, we have noticed, as we will see
later (cf 2.7) , that it was more comfortable to consider

() W ow
Ot \ 8y Oy Yo 8z " Byo

P.e,n dcuu\ﬁ b

than

o ().
at Bd:b 8¢b

All these preceeding terms will be now detailed.

2.4 Kinetic Energy

The kinetic energy is expressed by writing the
velocity of each point of the aircraft, which is the
derivative of RO with respect to the reference frame
Fy.

RONP — RONGO + RGQP

and
Nd Nd
T = RONP . RONP
2 /V p ( dt ) ( dt ) dv

The kinetic energy will be then subdivided in six
terms, each term having a special signification.

2T =2T1 +2T2 + 2T + 2Ta + 275 + 275 (6)

The first term 27; concerns the energy due to the rigid
movement:

o7, = (28 gones) . (14 gona / pdv  (7)
dt dt Iy :

The second term is the eneréy only due to the
deformations

Bq Bd
2T, = —ROF . —RCOF) g 8
T J-/V"<dt RSP o (8)

and the following terms relate to the coupling
between rigid and flexible movements.

Nd _one Bd _g.p
R"°>/pEt—R° dv 9)
v

Nd one P
27;:2(511 N °)/p(NwB/\RG° )dv(lO)
v

By
27; = / o (d—RG°”> . (NwB A RG°P) dv (11)
v t :
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27’s=/;p(NwB

The rotation of the body frame relative to the reference
frame can be expressed as NwBT = [p g r], with the
classical angular velocities, p the roll rate, q the pitch
rate and r the yaw rate, projected in Fg.

A RG°”) : (%B A RG°P) dy12)

Each kinetic term has a special signification in
the coupling between rigid and flexible behaviours. As
an example, the third term represents the coupling
between the rigid displacements and the flexible ones;
with the notations,

a a'rg)_a'rs
5t \ 3%,

Oxs
Only the two first terms and the last one of kinetic
energy will be developped.

=UN," +VN,T + WN,T

First Term  Let us note the mass of the whole

aircraft M; and project %%RO” Go in the hody frame
Fp
Nd _one . .
E?R NTe=Ui+Vi+Wk
then
' 271 = M, (U? + V2 + W?) (13)
and
Nd Bd
Ft-RONG° = Et_RONGo +N B /\RONGO (14)

With these last remarks, the first term of La-
grange’s equations may be written as

a (8T\ OT _ . ¢
a9 87'1) oy ow ow
- =0 (16
(3¢b 3¢b yoa -i-zo(90 (16)
8 (T\ OTi _
7 (5e) g =0 0

This first term is present in the flight dynamics
equations of a rigid aircraft.

Second term  This terms corresponds to the kinetic
energy due to the structural deformations and if the
movements of our elastic system are small enough, the
kinetic energy 7 may be written in a quadratic form
(Eq. 18)
1 ,
= §X8T [(M]Xs (18)
where [M] is the structural mass matrix, calculated
with the finite element method.

?en ctov;\-»‘e"

Then, the Lagrange’s term may be written as fol-
oT;

lows:
7 (a¢) -
0t \ 0xs 6Xs

the others lines of Lagrange’s equations are obviously
equal to zero.

= [M]X, (19)

Sixth term  The sixth kinetic energy term for an
elementary volume dv is

24T = p [(qw —10)? + (ru — pw)® + (pv ~ qu)z] dv
Then obviously,
7] (67{;) _
3t 69:0
and the term derivated with respect to ¢, may be
subdivided in three terms;

o%s

=0
8z0

9 (?E) 976
ot \ 8¢y %y
the first one is the rigid contribution that we have
in the flight dynamics equations of a rigid aircraft,

=Q1+Q:+Qs

Ql = jzzp (j:z:yq. + Jzz".')
(jzz jyy) qr + (ja:yr
+ (" —-4q ) Jy=

the other terms will not be detailled here, but the
second term reflects the inertia variations due to the
structural deformations and the third one points up
the evolution of inertia with time.

Jz29) P

The previous expressions show the importance of
the choice of body frame, though the different terms of
kinetic energy, pointing up the couphng between rigid
and flexible motions.

2.5 Elastic Energy U,

With the assumptions of small deformations, the
elastic energy Uy may be written under a quadratic
form (Eq. 20)

1 L
Ug = -2-X8T (K] xs (20)

where [K] is the structural stiffness matrix, calculated
with the finite element method.

Then the Lagrange’s term, concerning the elastic
energy becomes

() B w




Copyright © 1998,

by the International Council of the Aeronautical Sciences (ICAS)

and the American Institute of Aeronautics and Astronautics, Inc.

X

- gcos 60 sin ¢0

@Xb

aircraft seen from the back

- gcos 90 cos ¢0

\F‘-’
- gcos 60

Y

Fig. 2. Work of gravity force

The lines of the Lagrange’s equations concerning the
rigid movement are obviously equal to zero.

»

2.6 Gravity Potential Energy U,

In this section, the work of the weight acting on
the flexible aircraft will be presented. Axes orientation
and convention are described on Fig. 2, page 5. In
projection in the body frame, g will have the following
components:

g” = {gsinby, —gcosbysin gy, —gcos by cos ¢o }22)

The gravity potential energy is written:

Ug=/ pg - Tdy
v

To + u(z, Y, =, t)
Yo +U(-’E,y>2,t)
Zg + ‘LU(.’Z:, y)z?t)

The term 3% (%Z’;(E) is null.

(23)

with » =

% = Mthineo
ou, ou, o
P _ e 4, % o [ -
3%, Yo 37 + 2z B30 gcosfo [ cos¢oz_)‘+ sin gow]
U,

g [sinfo Ny T + cosfo sin go N, T

+cos 8 cos go N T]

Pndeans
(AERYE NN

Deformations influence the rigid behaviour (Eq. 24)
with the term cos ¢gv , and the ri§id angles influence
the flexible movement by sinfo NV, " .

Let us detail now the aerodynamic forces and
analyze how they get into the Lagrange’s equations.

2.7 Generalized Aerodynamic Forces

So as to take into account the aerodynamic forces,
the Principle of Virtual Work will be used. Therefore,
the virtual displacement and the efforts have to be
expressed in function of the degrees of freedom chosen
before.

The virtual work may be expressed as follows:

W=F-6r+M.-6Q (24)
where F' is the vector of aerodynamic forces pro-
jected in the body frame and &r = SROVF is the
virtual displacement of the application point P of the
forces, M represents the aerodynamic moments pro-
jected in the body frame, 62 the virtual rotation.

The virtual displacement In projection in the

body frame Fg, the expression of r = RO~F is

To Pz up
T=4% ¢+ Py p+4q Vp
2p Pz wp

where the last term is only due to the structural
deformations, and is expressed as a function of x,;
the virtual displacement of P relative to the reference
frame Fly is

dzo dup Zo + Szp
dr =< Syg » +<{ Svp +{6NwB}/\ Yo + Syp
4z Swp Zo+ S.p

with {IVwB}T = {6y 66, 6¢s }

The virtual rotation 62 (cf (Eq. 24)) is the local
rotation at the point P, relative to the reference frame
Fy, and projected in the body frame Fiy:

5¢b + N@a 6Xs
88y + Ngv dxs
6¢b + NO; 5Xs

60 =

Generalized aerodynamic forces The efforts on
the wing are applied at the aerodynamic center, then,
the virtual displacement seen previously will be taken
at this point. The quasi-stationnary aerodynamics is
modelized with the Lifting Line Theory, and the un-
stationnary aerodynamics (rot yet implemented) with
Theodorsen’s theory.(8)




Copyright © 1998,

by the International Council of the Aeronautical Sciences (ICAS)

and the American Institute of Aeronautics and Astronautics, Inc.

Considering the virtual displacement expression,
one can obtain the generalized aerodynamic forces:

W _
9z (25)
-a—éb— = ;Yo -—FyZ()'f'/SyaCsz —/Szachy +Mz
ow
— NuT i wT_ . T
. / {NTdF, + (N, dgacNg,T) dF;, (26)

+Np, TdM; + No, TdM, + Ny, TdM,}

we see now the interest of writing in a new way (Eq.
25) which is simplier:
ow ow oW
—_— yog"zz +205§; —_ /Syachz

)
—/smchy + M,

Aerodynamic efforts dF,, dF, are the elementary
aerodynamic forces for a surface ¢ dy projected in the
body frame Fjg.

The efforts are often expressed in the aerodynamic
frame F4 as we will see later. We will then have to
project them in the body frame.

dF, dF,,
dF, » =[T}{ dF,, (27)
dF, dF,,

with

[T]=

— COS Qproj €OS Bioc COS Aproj Sin Broe  sin Qproj
sin Bioc c0s Bioc 0
— 810 Qproj €OS Broc SIN Qpro; Sin Bl — COS Aproj

where Bioc is the local slideslip angle not expressed
here, and apr,; detailed after.

The elementary drag (for an element of surface ¢ dy)
expressed in the aerodynamic frame is:

dF, = _%psvg (Czo + kC22al,) dy
the lateral force,
1
dFy, = 2pSVCypfioc dy

and the lift
_ 1
b

Only, the longitudinal terms will be detailed in the
following sections.

dF,, = pS Va2 Cza0yo dy

The elementary pitching moment is given by:

dM, = %pSchCm dy

(q’+ 0',,) c
Va

where

Cm = Cmg + Cmagio: + Cm, + Cmgmdm

Pendoaia

The aerodynamic velocity and the different angles,
Qo and apro; are expressed in the following sections.

Aerodynamic velocity V, The local aerodynamic

velocity at a point P, V,p = %%RON Pis given by:

VaP — ___RONGD + _RGOP +N wB A RGOP
dt dt
In the lifting line theory, quantities, like velocity and

the angle of attack are referenced with respect to

the aerodynamic center. & RONGoT _ {-UV W}
represents the global velocity, the speed of Gg, the
origin of the body frame, 24 RG03¢ LN ,,B 5 RGoac i
the relative speed of the aerodynamic center and may
be expressed as a function of the structural degrees of
freedom. In this expression of V, there are terms of
first order in little displacements.

The second term of V, will introduce a coupling
between rigid and flexible due to aerodynamic efforts.
The components of V, projected in the body frame will
appear in the angle of attack expression and induce also
a strong coupling.

Local angle of attack a;,. The local angle of at-
tack is due to several influences Fig. 3, page 7:

o the wedging angle o,

¢ the torsion angle 6, expressed as a function of Xs

¢ the angle of attack due to the vertical veloc-
ity arctan (L‘;:—‘-)

b
=z

expressed as a function of the
global velocity and the structural displacements.

Projection angle ap,.,; The aerodynamic efforts
are written in the aerodynamic frame and have to be
projected in the body frame, so as to be included in
the Lagrange’s equations (Eq. 25), (Eq. 26).

Considering only the longitudinal flight, so as to
simplify, the projection angle Qpro; has the expression

arctan (%n) (cf Fig. 3, page 7).

The main parameters of the local aerodynamic
efforts have been expressed in function of the global

displacement and the structural displacements. The --

forces will be integrated along the wing span and
participate to the entire aircraft dynamics.

2.8 Conclusion

The Lagrange’s equations are now expressed and
take into account the full coupling between rigid-body
modes and flexible modes. In comparison to the usual
approaches,(®3) the expression of aerodynamic forces -
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Fza
N 4
ey \\\ J Fxa
« o~ \\\ ; Xg : body axis
¢ roj ~= -
proy ~-Vz . T

axis of the profile

. . axis of the profile
at an abscissa y in span

at the wing root
with a = arctan(Vz/Vx)
proj

Fig. 3. Projection angle of local aerodynamic efforts

is not more complex. The only supplementary terms of
coupling are present in the kinetic energy and reflect
a supplementary influence of the rigid on the flexible
and the other way round. The system of equations is
obviously non linear; the equilibrium point has to be
calculated by fixing the global speed and the angle of
attack. Around this equilibrium, one can then study
» the aircraft dynamics through linearization.

The next section is devoted to describe the first
results concerning the evolution of rigid and flexible
modes in several cases.

3. First Results
3.1 Introduction

The following results represent a kind of validation
of the recently implemented program Super Fi lutty,
software of simulation of flexible aircraft dynamics.

The aircraft taken as example is the Condor, whose
wing characteristics were detailed in{") and the body
is considered as rigid.

Several cases will be presented in the following’

sections: the first one is the evolution of a flexible
aircraft toward an embedded wing to analyze the
flutter speed trend; the second case is an evolution
from a very rigid wing to a flexible one, to try to
have a qualitative idea of this variation; these two cases
are calculated for the normal mass and inertia of the
Condor.

The last one is the evolution of the kind of insta-
bility when the pitching inertia decreases.

PQ '.'\(Q ¢ x.'“,'\‘»

Imaginary
- .
B Ly . o B
" o tgrsion mode
" B P L . .
. : Stable / Unstable
'I
., . . o
2nd bending mode .
i
¢ v Mt S .
- 1st:bending mode:
2
o 4 1 i L
-2 04 -4 02 e 02 0¢
Real

Fig. 4. Evolution of modes (embedded wing)

3.2 From embedded wing to free aircraft ...

This section deals with the influence of rigid-body
modes on the flutter speed and on the flexible modes
behaviour. It represents a kind of validation of Super
Flutty. The aim is to try with Super Flutty to tend
to the case of the embedded wing, computed with
Flutty, by increasing the body mass and inertia, so as to
reduce the influence of rigid-body modes on the flexible
modes. In order to balance the increase in mass and to
have the same flight cases, a complementary artificial
lift had been added at the global center of gravity.
Then, the embedded wing should be the limit for very
important body mass and inertia. The embedded wing
is studied first, then the real free aircraft is presented.
The last part shows the results obtained with a body
mass of 50 000 kg, instead of 3 950 kg.

The embedded wing The evolution of the flexible
modes is plotted on Fig. 4, page 7, thanks to F lutty.()

Without aerodynamic forces, the frequencies are
the following: the first bending mode frequency is
about 0.274 Hz, the second bending mode about 1.1982
Hz, and the torsion mode about 2.4803 Hz. The cou-
pling between torsion and bending is stronger than
in the previous section, and then the flutter arrives
sooner, around 98 m/s. The flutter is here a classical
instability of the torsion mode with an energetic ex-
change with the bending modes. The second bending
mode is also on the way of instability. The first bending
mode is becoming aperiodic but stable.

The real aircraft The body mass is 3950 kg, its
inertia is about 200 000 kg.m?, and the structural
coupling between torsion and bending is exactly the
same than in the last paragraph, that is to say that
center of torsion and center of mass of the profile are
exactly in the same position as previously.

The first bending mode frequency is 0.314 Hz and
the torsion mode one is 2.486 Hz. The torsion frequency
is not affected a lot by the limit conditions.
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Fig. 5. Evolution of modes (real aircraft)
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, Fig. 6. Evolution of modes (Body mass = 50000 kg)

As you can see on Fig. 5, page 8, the global evolu-
tion of the modes are quite equivalent. The instability
is a flutter of torsion, but this instability arrives a little
bit sooner (around 95 m/s) than in the embedded wing
case. Instinctively, I would have said that, in the case
of free aircraft and in the same coupling conditions,
the flutter should arrive later than for an embedded
wing. Nevertheless, the frequencies of the two modes,
first bending and torsion modes, are closer than in the
previous case. There is a torsion angle at the wing-root,
that increases the torsion at the wing tip, and locally
increases the aerodynamic forces and thus the coupling
between torsion and bending. The rigid-body modes
could also contribute to flutter, by a coupling with
the flexible modes. This could explain the lower flutter
speed, although the difference is not so important.

Note that the first bending mode is no more aperi-
odic. This is probably the influence of the rigid-body
modes. The short period mode, normaly periodic and
stable becomes aperiodic very soon, probably because
of the flexible modes. The phugoid, like for Fig. 10,
page 9, is less and less damped. Its pulsation decreases
with speed. This last behaviour is typical of flexible
aircraft.

Body-mass = 50 000 kg The modes without aero-
dynamics are exactly the same than for the embedded
wing. The evolution of the modes is also similar to
the one in the case of the embedded wing. This shows

'R-m Ao

imagnary tmaginary

) Stabic nstable
. Short period mode
.o

~ .

4 Stable Unstabie

Phugoid;

e

Real

Fig. 7. Evolution of rigid-body modes (rigid aircraft)

that when the body mass and inertia are important
there is no more coupling between rigid-body modes
and flexible modes.

Conclusion  This section shows that through con-
tinuity, the embedded wing flutter is recovered. In
this case, the aeroelastic behaviour of the free flexible
aircraft is not very different from the one of the em-
bedded wing. This is always torsion instability. But a
little difference between the two flutter speeds could be
explained by two influences: first of all, the frequencies
of the two modes are closer, and the rigid-body modes
could contribute to the coupling. Nevertheless, the
evolution of the first bending mode is well affected;
in the case of free aircraft, it is no more aperiodic.

3.3 From Rigid to Flexible...

This section aims at showing the evolution of the
dynamics of the whole flexible aircraft, when the wing
is more and more rigid. The longitudinal Young Modu-
lus of the wing had been increased. Then, the coupling
between rigid and flexible is changing.

Concerning the body characteristics, its mass is
3950 kg and its pitching inertia is about 200 000 kg.m?.
The evolution of the rigid-body ‘modes with the air
speed is shown on Fig. 7, page 8. The pulsation of the
short-period mode is linear and the damping increases
with the speed, and the damping ratio is constant.

Concerning the phugoid, its period is equal to
0.45 . V and the pulsation decreases with the speed,
the damping increases.

Note that for low speeds, the phugoid mode is un-
stable. This is probably due to a coupling between low
frequency mode and phugoid, because of an unusual =
high angle of attack. Indeed, the phugoid computation
with the 2 by 2 model (V' and ) gives conventional re-
sults in terms of phugoid period and damping, whereas
with the complete model (5 by 5) the phugoid is un-
stable.

Now we will analyze the results, for the same
aircraft, but where flexibility had been taken into
account. Several Young Modulus for the spar flanges
had been considered (500 Mpa, 250 MPa, 140 MPa). .
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Fig. 9. Evolution of modes (E=250 MPa)

The last value is the Young Modulus of carbon fiber
composites with orientation 0°.

E=500 Mpa On Fig. 8, page 9, the evolution of

, the rigid and flexible modes with speed is represented.
Without aerodynamic efforts, the torsion mode fre-
quency is about 5.2 Hz and the first bending mode
frequency about 0.85 Hz. There is no instability on
the speed range considered here. The damping of ev-
ery mode increases and the evolution of the rigid-
body modes is not affected by the flexible modes.
The phugoid has always the same aspect. Note the
apparition of coupling between torsion and bending
detected through the decreasing of torsion damping.

E=250 Mpa On Fig. 9, page 9, the coupling be-
tween torsion and bending is much stronger than
previously, the frequency mode without aerodynamics
is about 0.43 Hz for bending and 5.18 Hz for tor-
sion. Since the aerodynamic coefficient Cm, is very
strong and the structural coupling between torsion and
bending is not very strong, the second bending mode
becomes unstable before the torsion mode. The first
bending mode becomes aperiodic, which is character-
istic of a very low frequency bending mode.

Concerning the rigid-body mode evolution, the
short-period mode is markedly affected, the damping
begins to decrease for high speed, and the phugoid
mode becomes aperiodic and then unstable.

E=140 Mpa For E = 140 Mpa, the bending
frequency is about 0.33 Hz, and the torsion at about
3.69 Hz. The flutter is encountered at a lower speed,
and the first bending mode becomes also unstable
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Fig. 10. Evolution of modes (E=140 MPa)

earlier. But what is more interesting, is the evolution
of the phugoid mode: the damping is decreasing with
speed instead of increasing and the mode is nearly
unstable. This is typical for highly flexible systems.(5)

Conclusion This section has shown the influence of
flexible modes on the rigid-body modes. By decreas-
ing the wing stiffness, the short-period mode becomes
aperiodic, whereas for a rigid aircraft, it was always
oscillatory and stable. The phugoid mode has a com-
pletely different evolution with the speed when the
Young Modulus is decreasing. We have reproduced a
typical behaviour of highly flexible aircraft.

3.4 Low Body Mass and Pitching Inertia

This section aims at showing the influence of the
body mass and inertia on the flexible modes. In-
stead of a body mass of 3950 kg, and an inertia of
200 000 kg.m?, the mass is 1000 kg and the inertia
4 000 kg.m?. The short-period mode has then a high
frequency compared with the natural aircraft, because

wsp 1s proportional to \/ﬁ where B is the inertia.

The phugoid should not be really affected by this
modification. .

The rigid behaviour is represented on Fig. 11, page
10. Frequencies and dampings have to be compared
with those plotted Fig. 7, page 8, because the same
static marge is taken for both examples. For the
same air speed, the short-period mode damping and
pulsation have a proportionality ratio of /50 that is
well respected. Concerning the phugoid mode, note
that it is no more unstable at low speed with high angle
of attack. This is probably due to the fact that the two .
movements are more decoupled. The terms concerning
the short period are bigger because divided by the mass
M or the pitching inertia B.

Fig. 11, page 10 will be now compared with Fig. 12,
page 10, which represents the evolution of the rigid-
body and flexible modes with the speed. The first
remark is that there is no more a classical instability,
of torsion or of second bending mode, as in the last
cases. The torsion damping variates as if there were no
coupling. The short period is represented with triangles -
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and is above the first bending mode (diamonds) in
frequency. It has a normal evolution until the speed of
130 m/s, where the damping begins to decrease. Note
that the phugoid mode becomes aperiodic probably be-

' cause of the interaction with flexible modes. Concern-
ing the first bending mode, it has a completely unusual
behaviour; the damping decreases with speed instead
of increasing and it becomes unstable. This evidences
the coupling between short-period and first bending
mode. The energetic exchange is between these two
modes, and the short period mode plays the role of
the torsion. Short period mode gives energy to first
bending mode to become unstable. This type of insta-
bility is similar to a flapping movement. It is close to
flutter conditions of a tailless aircraft with low pitching
inertia, the Ricochet.(®:7) For this aircraft, the flutter
was an unusual instability of the first bending mode,
with a high displacement of the wing root and a very
small displacement of the wing tip.

Fig

3.5 Conclusion

All these computations show clearly the influence of
the coupling between rigid and flexible movements on

the evolution of the different modes. The first section’

was dedicated to the program validation, to follow
the evolution of the flexible modes, when the effect
of the rigid-body modes was reduced. The action of
the flexible modes on the rigid behaviour is shown
in the second section, and the last section deals with
the influence of the rigid-body modes on the flexible
modes.

Two types of instabilities have been detected: the
classical flutter with instability of torsion mode by

coupling with bending modes; the instability of the first
bending mode through the coupling with the short-
period mode, creating a kind of flapping movement,
as the pitching inertia decreases. The instability of the
phugoid, frequently cited in the litterature on flexible
aircraft , was not reproduced here; but a tendency to
instability had been noticed for the real aircraft.

4. Propulsion by Flapping

The concept of an ornithopter had been presented
in the preceeding published article.(!) This concept
was thought to answer to design problems; indeed,
very especially designed propellers are necessary to be
effective at high altitude, where air rarefies. The idea
was to take advantage of the wing flexibility, usually
seen as a constraint, and by exciting the natural modes
in a flapping movement, to produce thrust.

The originality of the concept lies in the fact that
we use the natural aircraft, without articulations at the
wing root.

In,V) the theory of flapping is introduced and will
not be presented here. In this paper, the flapping of a
free wing will be treated, whereas in,(!) the flapping of
an embedded wing was studied. We will see here the
evolution of the efficiency and the propulsion power
due to the flapping of the wing with the inverse of the
reduced frequency (1/k), k = £5.
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Fig. 14. Evolution of propulsive power with 1 /k
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