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Abstract: Due to the formation of waves on de-/anti-icing
fluids used to protect an aircraft during take-off in win-
ter conditions, the aircraft experiences a lift loss, a drag
increase and a decrease of stall angle. The formation of
these waves has been investigated by many authors us-
ing a temporal stability analysis. In this local analysis,
it is assumed that the primary flow is parallel or weakly
non-parallel. In case of the flow over a thin layer of lig-
uid, however, the assumption of a parallel primary flow
no longer holds. To include the effect of a non-parallel
primary flow the analysis employing the one-layer Parab-
olized Stability Equations(PSE) has been extended to a
two-layer analysis. As the PSE method is a spatial type
of stability method, the stability characteristics of the flow
of a gas over a thin layer of liquid have been investigated
also using a local spatial stability analysis. The different
modes previously observed in the temporal stability anal-
ysis, i.e. the Tollmien-Schlichting mode and the interfacial
mode, are also observed in the spatial domain. The in-
terfacial mode, characterized in the temporal domain by
small growing rates, is the dominant mode(highest grow-
ing rates) in the spatial domain. The results of the local
spatial stability analysis have been compared with the re-
sults obtained by applying the Gaster transformation to
the results of a local temporal stability analysis. For the
interfacial mode a modified Gaster transformation is in-
troduced. The evolution of the modes in the streamwise
direction has been calculated employing the two-layer PSE
method. The effect of the non-parallel primary flow was
found to be small. The link to experimental results has
been indicated by introducing a growth rate based on the
disturbance height of the interface.

1 Introduction

Two-phase flows are often encountered phenomena in
every-day life. A subset of the two-phase flows are the
two-layer flows. These flows are characterized by the
presence of an interface, that separates the two differ-
ent inmiscible fluids. Examples of these two-layer flows
can be observed in, for example, distillation columns,
condensors, pipe flows and coating processes. The

“PhD. Student
TMSc. Student

Copyright (©1998 by the Interrational Council of the
Aeronautical Sciences and the American Institute of Aero-
nautics and Astronautics, Inc. All rights reserved.

present interest in these two-layer low problems stems
from the application of a thin layer of de-/anti-icing
fluids on wing surfaces.

To protect aircraft on the ground from ice, snow or
frost accumulation, it has been general practice to
use water-glycol based fluids. Two basic types of
fluids are used: (a) de-icing fluids, that are in gen-
eral Newtonian fluids which only remove ice, snow or
frost accumulation, (b) non-Newtonian anti-icing flu-
ids that prevent ice, snow or frost accumulation to
build up over a certain period of time, the so-called
holdover time. In the mid 1980’s it appeared that
the fluids used to de-/anti-ice an aircraft might have
an adverse effect on the aircraft aerodynamics, specif-
ically during take-off. The 1982 accident of an Air
Florida Boeing 737 aircraft at the airport of Washing-
ton D.C. in moderate snow conditions, resulted in an
increased interest for the application of de-/anti-icing
fluids to aircraft. A series of research projects at Boe-
ing(11),(17)-(19),(27),(28),(30) the Von Kérméan Institute
for Fluid Dynamics(®-(10) Fokker(14):(15) and the Uni-
versité du Québec & Chicoutimi(20)(21):(28) wag carried
out. In these experimental studies it was found that
the presence of a thin layer of de-/anti-icing fluid re-
sults in a lift loss, a drag increase and a decrease of
the stall angle. The experiments showed that during
take-off, before the fluid is finally blown off the surface,
the interface roughens, i.e. waves are formed.(!2) In
order to have a simple, cost-effective aerodynamic ac-
ceptance test for de-/anti-icing fluids in a small cooled
wind tunnel, it has been accepted to substitute the
upper surface of the true airfoil by a flat plate, while
experiments provided the correlation between the lift
loss on a three-dimensional wing and the boundary-
layer momentum thickness at the trailing edge of the
flat plate. The formation of waves on the interface was
also observed during the flat-plate fluid-certification
test runs.

As indicated by experimental results, a gas-liquid in-
terface can become unstable if the free-stream gas ve-
locity passes a certain threshold value. A classical
method to investigate the initiation of flow instabil-
ities is the hydrodynamic stability analysis leading to
the Orr-Sommerfeld Equation. Just recently a num-
ber of articles on two-layer flows in which the dynamic
behaviour of both fluids is taken into account have
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been published. Miesen and Boersma(??) considered a
thin liquid layer flowing down a vertical plane while
sheared by a gas layer (see also® and®)). A spec-
tral method was used to compute the solution to the
Orr-Sommerfeld equation. At the von Kirman Insti-
tute for Fluid Dynamics, Rumberg(?®) considered an
infinite flat plate covered with a thin layer of liquid
sheared by a gas stream and used a shooting method
to compute the stability curves. Ozgen(®¥) extended
the results of Rumberg to a non-Newtonian power-law
fluid. Here the power-law was used to model the vis-
cous behaviour of de-/anti-icing fluids. Finally, Yih(29)
performed an analytical investigation into the forma-
tion of waves on a liquid of high viscosity. All these
references, however, focus on the local temporal sta-
bility problem. In the present paper the stability of
a thin layer of liquid sheared by a gas stream will be
investigated from a spatial stability point of view.
The one-layer Parabolized Stability Equations(PSE)
method has been developed by Bertolotti(!) and Her-
bert(19) to investigate the spatial evolution of an in-
stability. An advantage of the PSE method over lo-
cal methods is that the primary flow no longer has
to be parallel. In the present investigation the one-
layer PSE method will be extended to a two-layer PSE
method. However, before treating this problem, the
one-layer Parabolized Stability Equations will be dis-
cussed and some results of the two-layer local spatial
stability method are presented, see also®) The local
spatial stability results for the two-layer system were
obtained by using a two-layer local spatial stability
method as well as using the Gaster transformation (or
the Modified Gaster transformation) applied to two-
layer local temporal stability results.

2 One-layer Parabolized Stability Equations

Since long local stability analysis has been used as a
tool to investigate the initiation of instabilities in a
flow. The disadvantage of such a local method is that
it is restricted to parallel or nearly-parallel primary
flows. To overcome this disadvantage the method of
the Parabolized Stability Equations(PSE) was devel-
oped, see(!) and(!®) The method was used to predict
instability as well as transition of the flow over aero-
dynamic surfaces. In the present paper the linear PSE
method will be extended to the situation of a gas flow-
ing over a flat plate covered with a thin layer of liquid,

e.g. - water or de-/anti-icing fluid. Before discussing.

this new two-layer PSE method the conventional one-
layer PSE method will be described first. At the end
of this chapter the results obtained by the present
method will be compared with the results available
in the literature.

2.1 The Governing Equations

The flow configuration is the wellyknown flow of a fluid
over a flat plate. .
Starting point for the derivation of the Parabolized

Stability Equations is the two-dimensional incompress-
ible flow of a Newtonian fluid, of constant viscosity,
governed by the Navier-Stokes Equations in a Carte-
sian coordinate system, i.e.

Vev=0 (2.1)

v _ 1 [T
-57+(v V)v—g—;Vp+;Vv

(2.2)
where p is the pressure, v = (u, v) is the velocity vec-
tor, p is the density, u is the dynamic viscosity and g
is the gravitational acceleration vector.

Upon decomposing the flow field v = (u,v),p into a
laminar primary flow V = (U, V), P and a perturba-
tion, i.e. secondary flow, v/ = (u',v"),p’ according to

v(z,y,t) = V(z,y,t) + v'(z,y,1)
p(z,y,t) = P(z,y,t) + p'(z,y,t)

(2.3)
(2.4)

and neglecting the terms non-linear in the secondary
flow components, one obtains as leading-order terms
the Navier-Stokes equations for the primary flow and
as first-order terms the so-called ’linear stability equa-
tions’ that govern the secondary flow, i.e.

Vevi=0 (2.5)

!
ov. + (¥ VYV (V.-VW = —%Vp' + %VQV'

%
(2.6)

The continuity equation can be eliminated by the in-
troduction of a stream function ¢’ (z,y,t) according
to

2
F
%

V(@,,1) = ( )z;’(w,‘y,t) 27)

oz

Substituting this definition into the momentum equa-
tion results in the following set of equations

Py O OUOY | oy oU oy
Otdy 0xdy  dz Oy Oy? Oy oz
1 ap/ U 83¢/ #83¢1 _
pdz  pxdy  p OF
(2.8)
_OY 0 ovey &ty oV oy
Otox 0z? Oz Oy 0zdy Oy Oz
18p"  pdy 83y
POy " poa® " poudy?
(2.9)

It is assumed that the secondary fow components
y',p' can be expanded in a Fourier series, in other .
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words can be represented by a sum of Fourier modes.
In the conventional local stability analysis, where it
is assumed that the primary flow is strictly parallel,
these normal modes are assumed to be of the form

¥(z,y,¢) = dly)eiler—)
pl(z’ Y, t) = f(y)ei(am—wt)

(2.10)
(2.11)

where ¢(y) and f(y) are amplitude functions, which
depend only on the coordinate normal to the surface,
a is the complex wave number and w is the complex
frequency, both independent of z and #.

To include the effect of non-parallelism in the PSE
analysis a different approach is taken. It is assumed
that the normal modes can be decomposed according

¥'(z,y,t) = ¢(z,y)x(z, ) (2.12)
P'(z,9,t) = flz,y)x(z,t) (2.13)

where
x(z, ) = =i PO _ oy o1y

According to Bertolotti(!) this decomposition is appro-
priate when the flow has the following properties

1 The velocity profiles, wavelengths, and growth
rates change slowly in the streamwise direction

2 The disturbances grow and decay as convected in-
stabilities (see(19))

The first property implies that second and higher
derivatives in the streamwise direction as well as prod-
ucts of first derivatives may be neglected. Using
this approximation one obtains, upon introducing the
above decomposition, the so-called Parabolized Sta-
bility Equations

] d
(Mo +M1)(1+]sz—g + 4

2 Mag =
Oz dx 3a=0

(2.15)

where a(z) = io(z) and q(z,y) = (8(z,y), f(z,y)).
This particular formulation of the Parabolized Sta-
bility Equations is chosen to simplify the derivation
of the two-layer Parabolized Stability Equation, espe-
cially the interface conditions, see chapter 4.

The operators Mj(a,w,U,V), j = 0(1)3, in equation
(2.15) are

[ ay ; 8 8°
M, = —a-gy—z-i- (an — W~ %az);ﬂ ;2%375 s
] (a U—iwa—£a®) - Lol —%—;—y
(2.16)
[ oU 5 82
ScZ=+V<s 0
My = | gt Vo ] 2.17)
K +aV5!7 0
we|  Erw-ag
2 = .
] (2aU—zw+%—Z—3%a2)+V%——%—§;—2 0
(2.18)
_E.BC'L 0
= o By
M= | . ! 3o o (2.19)

The system Mpq = O represents the case of a strictly
parallel primay flow, and thus is equivalent to the Sys-
tem that is obtained in the local stability analysis. Ma-
trix M, contains the effects of the non-parallelism of
the primary flow. Matrix M, accounts for the stream-
wise variation of the amplitude functions. Matrix M;
is a consequence of the streamwise variation of the
wave number.

Decomposition (2.12)-(2.13) used in the derivation of
the Parabolized Stability Equations is ambiguous, i.e.
both the amplitude functions and x(z,t) depend on
the streamwise coordinate z. To resolve this ambi-
guity the following normalization condition(see®)) is
introduced

Jq

tdy =
o 3z dy=20

(2.20)
Here qf represents the complex conjugate of q and Q) is
the integration domain in the direction normal to the
solid wall. This normalization condition minimizes the
streamwise changes of the amplitude function and the
wavenumber «. Alternative normalization conditions
can be found in the literature, e.g.(!) and(1®)

The Parabolized Stability Equations constitute an ini-
tial boundary-value problem. To complete the formu-
lation of the Parabolized Stability Equations both an
initial condition and boundary conditions are needed.
The initial condition is obtained by solving the local
spatial stability problem, i.e. Mgq = 0 in the above
formulation. More details on the local spatial sta-
bility problem for two layers can be found in(® The
method described in(® utilizes a virtual interface in -
the gas boundary layer (see also(®?)) and solves the
Orr-Sommerfeld equation for the amplitude function
#(y) (the pressure term is eliminated from the formu-
lation). Once ¢(y) is known the pressure amplitude
function, f(y), can be determined using

_fou w 8 uo
1=y (o (5 -0) vu) g5+ s o
(2.21)
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Two sets of boundary conditions must be supplied to
complete the formulation of the Parabolized Stability
Equations. At the solid wall, the no-slip condition has
to be satisfied, i.e.

¢($7 y) =0

% (1) = 0 (2.22)

} at y=0
The boundary conditions at infinity follow from the
assumption that far away from the wall the secondary
flow components die out. Thus, one obtains

$(z,y) = 0
flz,y) =0

The initial boundary-value problem as described in
this paragraph has to be solved numerically.

} as y — oo (2.23)

2.2 The numerical implementation

The Parabolized Stability Equations, Equation (2.15),
together with the boundary conditions, Equations
(2.22) and (2.23), and the normalization condition,
Equation (2.20), form an eigenvalue problem in the
unknown shape function q and wave number a(z).
Starting from an initial solution obtained with a lo-
cal spatial stability analysis, the streamwise evolution
of the shape function q and the wave number a(z) can
be calculated. All quantities are non-dimensionalized
using the free-stream velocity U., and the boundary-
layer length scale at o, L§ = (vzo/Us) /. In the
remainder of this paper it is assumed that the solu-
tion at station z; is known either from a local spatial
stability analysis or from the procedure to calculate
the solution of Parabolized Stability Equations at this
station. The streamwise derivatives are approximated
by backward differences, i.e.

o) _ Ol —O)s
Bl = ————mei (2.24)

with Az; = 2,41 — z;. Equation (2.15) then reduces
to

(A.’m(]\ﬁ[o -+ Ml) -+ ]\’[3) If—*-lqlf—tll
+(a§+1 - ai)MBfﬁﬂqul = MZ|§+1Q[¢ (2.25)

where k denotes the iteration number.
The equation describing the correction needed for the
wave number is

fQ (q|§+1 - (I|i) -qf|§+1dy
fQ Iql§+1|2dy

’

This equations provides that, once the solution is con-

verged, i.e. aff! = ak, |, the normalization condition,

K+l _ ok
Git1 = Gipy + A
k3

(2.26)

Equation (2.20), is satisfied.

Equation (2.25) and (2.26) only contain derivatives
and integrals with respect to the normal direction. In
this direction the unknown amplitude function q will
be represented by a truncated Chebyshev expansion.
The semi-infinite domain y € [0,00 > is scaled to the
finite domain z € [~1, 1] using

1—- ¥
2= —% (2.27)
X
1+ X

where y” is a constant used to change the distribution
of the grid points. The Gauss-Lobatto distribution in
the z-domain is used for the collocation points. For
more details see(®) The integration over the Q-domain
is carried out using the trapezoidal rule.

The resulting algebraic system for the coefficients of
the Chebyshev series expansion is solved iteratively
until the solution is convergedf. Thereafter the pro-
cedure marches on to the next streamwise station, see
Figure 1.

Local solution

at X=Xy
|
i—_—O, ao, qo
BEEEEEEE———

Parabolized Stability Equations
&

. —~-—
Boundary Conditions

k+1
P =i+ &, ¢ k=k+1

normalization condition

+1 k+1 7
i+1> Hi+|

L. converged not converged .

Figure 1: The numerical solution procedure

In the next paragraph results of the present method

will be compared with results found in the literature,
e.g.(1):(16)

2.3 Results

To validate the method described in the previous para-
graphs the results for a strictly parallel boundary-layer
flow and for a non-parallel boundary-layer flow given
by Herbert(*®) have been used for verification of the
implementation.

When the equations are solved iteratively k becomes k + 1
in the second term on the right-hand side of Equation (2.26)
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The first case considered is the strictly parallel, single-
phase, boundary-layer flow. For this calculation it
is assumed that the primary velocity profile(Blasius)
does not change with the streamwise coordinate. The
parameter values are given in Table 1 (Note the values
between brackets are the non-dimensionalized frequen-

cies, (wL§)/Us)- 0.08
0.07
Case (a) | Case (b)
Uso[m/s] 10 006 |
vglm?/s] 10-° 005 e
Zo [m] 0.16 400 450 500 550 600 650 700 750 8GO
10=3
Az [m] 5.0 430 Figure 3: Strictly parallel boundary-layer flow: a; vs.
NOpoly 30 z/Lg; parameter values are given in Table 1; —: Case
Nvi (a), ---: Case(b)
y* 10
wolH 2] 860(0.0344) [ 430(0.0172)
w[H z] 860(0.0344)

Table 1: Parameter values used in boundary-layer flow
test cases

In Case (b) the frequency for the initial solution is half
the frequency used in the remainder of the domain.
Results for these two cases are shown in Figures 2 and
3. The figures show good agreement with results of
Herbert. Case (a) verifies the implementation of the
PSE method. Case (b) shows, as was observed by
Herbert, that even a poor initial condition leads, after
a short transient region, to the most unstable mode.
However, case (a) shows also a weak transient that
was not observed by Herbert. This transient might
be caused by the less accurate initial condition used
in the present calculation. The initial condition, that
Herbert uses, is calculated using a local formulation of
the Parabolized Stability Equations for a non-parallel
flow, whereas in our case the solution of the strictly
parallel Orr-Sommerfeld equation has been used.

0.01

0.005 | ¢

Unstable

Stable

-0.005

it

-0.01
400

450 500 550 600 650 700 750 800

Figure 2: Strictly parallel boundary-layer flow: a, vs.
z/Lj; parameter values are given in Table 1; —— Case
(a), ---: Case(b)

The second case considered is the non-parallel
boundary-layer flow. The parameter values used are
given in Table 1, Case (a). The primary flow varies
with the streamwise coordinate according to the Bla-
sius equation. The results are shown in Figures 4, 5
and 6

0.004

0.002 |
Unstable

Stable

-0.008

500 1000 1500 2000 2500
Figure 4: Non-parallel boundary-layer flow: a, vs. z/L§;
parameter values are given in Table 1; Parabo-
lized Stability Equation, ---: Local Spatial Stability(Orr-

Sommerfeld)

The figures show good agreement between the re-
sults obtained with the present PSE method and the
method used by Herbert. As can be seen from the fig-

ures, the streamwise variation of both the wavenum- --

ber and the streamfunction, c.q. the velocity profile, is
small. Therefore the effect of the non-parallel primary
flow is, as previously observed by many authors, small.
The problem that the growing boundary layer leaves
the computational grid, as stated by Herbert, was re-
solved by using the transformation given in Equation
(2.27). It should, however, be noted that using this
transformation care should be taken to place enough
points in the boundary layer close to the starting point
of the PSE analysis.
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0.104

0.102 A

0.1 >
0.098 +
0.096 |

0.094 +

0.092

500 1000 1500 2000 2500

Figure 5: Non-parallel boundary-layer flow: a; vs. z/L3;
parameter values are given in Table I; Parabo-
lized Stability Equation, ---: Local Spatial Stability(Orr-

Sommerfeld)

08 |
06 |
04

0.2

0 2 4 6 8 10 12 14 16 18 20
Figure 6: Non-parallel boundary-layer flow: w'[ulq, vs.

y/Lg; parameter values are given in Table 1; —— z/L§ =
500, ---: z/Lg = 2000

Before continuing with the two-layer PSE method, first
a brief description will be given of the local spatial
stability problem for a two-layer system. Attention
will be given to the Gaster transformation in case of
an interfacial mode(I-mode).

3 Two-layer local spatial stability analysis

In the literature the two-layer stability problem has
received a considerable amount of attention, see(®)(22)
for recent articles on this subject. These analyses,
however, have been limited to the two-layer local tem-
poral stability problem. The two-layer local spatial
stability problem has not been addressed. Because
the method of the Parabolized Stability Equations is
a spatial stability method, some remarks will be made
concerning two-layer local spatial stability methods.
More details can be found in®® and®

As is the case for the one-layer stability problem, the
equations that govern the two-layer local spatial sta-
bility problem are the same as those that govern the
two-layer local temporal stability problem. Therefore,

both shooting methods and spectral methods can be
used to calculate the eigenvalues and eigenfunctions.
It should, however, be noted that whereas the local
temporal problem is linear in the frequency w, the lo-
cal spatial stability problem is fourth order in @. The
results shown in this paragraph have been calculated
using a spectral method, see(3)

In the two-layer local temporal stability analysis two-
different modes have been observed, see>¥) The first
mode is the ’so-called’ Tollmien-Schlichting mode and
has its origin in the gas boundary layer. This mode is
also present in the one-layer stability problem. In ad-
dition to this mode an interfacial mode was observed.
This mode originates from the jump in viscosity, den-
sity, velocity gradient across the interface. These two
modes have also been observed in the two-layer lo-
cal spatial stability analysis. The appearance of the
two modes in the temporal stability analysis and those
inthe spatial stability analysis can, however, be differ-
ent. An interfacial mode with small growth rates in
the temporal case can become the dominant mode in
the spatial case, and vice versa. This is illustrated in
Figure 7 and 8, to be discussed shortly.

For the one-layer local stability problem Gaster(13) de-
rived a transformation relating approximately tempo-
ral stability results to spatial stability results. In®
this transformation is reviewed. It has been found
that for the two-layer flow configuration the Gaster
transformation is not valid for the interfacial mode.
A Modified Gaster transformation to transform tem-
poral results into spatial results has been introduced
according to

- (S) = a.(T)

a(8) = —uwi(T) | G2 (1) B _

(3.1)

wr(S) = wp(T) +wi(T) [2‘; (T)} [g:: (T)} )

where T denotes the temporal case and S denotes the
spatial case. The underlined term differentiates this
transformation from the conventional Gaster transfor-
mation.

Figure 7 and 8 are representative for the situation that
can be found for the flow of a gas layer over a thin layer
of de-/anti-icing fluid. For a de-/anti-icing fluid the --
viscosity ratio m = p;/p, can, however, still be up to
1000 times larger in magnitude than the value of 500
used in the present computation. For these liquids, the
interfacial mode that for the present parameter values
is much larger than the Tollmien-Schlichting mode be-
comes even more unstable and its maximum shifts to-
wards lower frequencies, w,. A complete description of
these phenomena is given in(®) In the next chapter the
new method of two-layer Parabolized Stability Equa-
tions will be presented. The initial condition for the -
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0.1

0.01

0.001 -
0.001 0.01 0.1 1

0.0l

0.005 r

Stable |
Unstable: '

-0.005

-0.01 e :
0.001 0.01 0.1 1

 (a2)

Figure 7: Two-layer local spatial stability, Tollmien-
Schlichting mode: Re = UL*/v, = 1000, L* = 2.5 -
107*m, h = 1-10%m, m = m/p, = 500, r =
pi/pg = 1000, ny; = 20, no gravity and no surface ten-
sion; (al) a-(S) versus w-(S), (a2) ;(S) versus w,(S) —:
Gaster transformation, ---: Modified Gaster transforma-
tion (Equation (3.1)), o: local spatial stability analysis

two-layer PSE method is the result of a two-layer lo-
cal spatial stability analysis. Therefore, the different
modes observed for the local spatial stability analy-
sis are also expected to appear in the results of the
two-layer PSE method.

4 Two-layer Parabolized Stability Equations

In this section the new method of two-layer Parabo-
lized Stability Equations will be derived. The method
is similar to the one-layer PSE method described in
section 2. Due to the introduction of the liquid layer,
however, an interface and, thus in the mathematical
formulation, interface conditions are introduced. The
treatment of these interface conditions and the asso-
ciated problems are discussed in paragraph 4.2. First
the primary velocity profile is discussed.

4.1 The primary flow

.

The primary flow is governed by the two-dimensional
incompressible Navier-Stokes equations for a Newto-

10 froriedd : e T -

0.1

0.01 e

0.001
le-05

0.001 0.01 0.1

R ad
o
. Unstable il

-0.2 ¢

-04

-0.6

0.8 po

i

-1.2
1e-05

0.001 001 0.1
(a2)

0.0001

Figure 8: Two-layer local spatial stability, interfacial
mode: Re = UsL*/vy = 1000, L* = 2.5-10"%m, h =
1-107%m, m = pi /pg = 500, r = pi/pg = 1000, no gravity
and no surface tension (see also Table 2); (al) . (S) versus
wr(S), (a2) ai(S) versus w,(S);——: Gaster transforma-
tion, ---: Modified Gaster transformation (Equation3.1),
o: local spatial stability analysis

nian fluid in a Cartesian coordinate system, see Equa-
tions (2.1) and (2.2). The location of the interface is
given by the kinematic interface condition

Oh oh
E—\Luc’)_z =v at y=h{z,t)

(4.1)
The interface conditions are
e continuity of velocity in the streamwise direction _.

lu(z,y = A(z,t),8)]=0 (4.2)

o continuity of velocity in the normal direction

I[U("B)y = h(:l}, t)7t)]] =0 (43)
e continuity of tangential stress
Is:(z,y = h(z,2),8)] = 0 (44)
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e continuity of normal stress

[[Sn(.'li,y = h(.’E, t)v t)]] =—0K (45)
where [- | designates the jump across the interface, o
the constant surface tension [Nm™!] and K the local
curvature of the interface[mn~!]. The components of
the total stress vector s at y = h(z,t) are

e (1o (2)) (224 2
1+ %)2 Oz 0y Oz

St =
(3
o oh v du
+1+(3_h)226m<8y Oz (46)
and
_ RN A
Sp = —p +1+ g—h)z <28y+2<6z) 8x>
(o o
1+(gﬁ)2 Oz (6y+8z (41

Using boundary-layer theory Nelson, Alving and
Joseph(®*3)  obtained a non-similar, non-parallel,
steady-flow solution for the set of equations given
above. Their solution is derived for a large value of
the streamwise coordinate z, and is a global attractor
for all initial conditions. The equations used here to
calculate the primary flow are a modification of this
asymptotic solution. The liquid layer height is calcu-
lated using

and the velocity components in the liquid layer are

Vo) = oy e
where @ is the constant volume flux(m?2/s) in the lig-
uid layer. Note that the slope of the liquid layer height
is small compared to the slope of the boundary layer

thickness. The velocity profile in the gas boundary

layer is calculated using the Blasius equation

&f

dn®

1,d%f
3 gz =0 (4.10)

where the similarity coordinate is given by n = (y —
H(2))(Uso/(vgz))*/? and df /dn = U. The boundary
conditions at the interface! are f = 0 and df/dp =

THere it is used that for a steady solution the kinematic in-
terface condition reduces to UdH/dx =V

(2Q/ho)(zo/x)*/*. At infinity the streamwise velocity
component should approach the free-stream velocity,
ie. df /dn — Us. It should be noted that the asymp-
totic profile given by Nelson et al. only coincides with
the approximation of the primary velocity profile used
here for large values of the streamwise coordinate z.

4.2 The governing equations

The equations describing the two-layer Parabolized
Stability Equations in the liquid layer and the ones in
the gas layer are the same as those describing the single
layer Parabolized Stability Equations, i.e. Equation
(2.15). In the remainder of this paper the subscripts
1 and 4 are used to denote the liquid layer and the
gas layer, respectively. Hence in the gas layer one has
4= pg and p = pgy, and in the liquid layer p = y; and
p = pi, etc. .

The derivation of the interface conditions in PSE form
is similar to the derivation of the Parabolized Stability
Equations. The equations are derived from the kine-
matic interface condition, Equation (4.1), the continu-
ity of velocity in the streamwise direction, Equation
(4.2), the continuity of velocity in the normal direc-
tion, Equation (4.3), the continuity of the tangential
stress component, Equation (4.4), and the continuity
of the normal stress component, Equation (4.5). The
flow field is decomposed according to Equation (2.3)
and (2.4). In addition to this decompostion the inter-
face location is decomposed according to

h(z,t) = H(z,t) + h'(x,t) (4.11)
The equations governing the secondary flow have to be
linearized around y = H({(z,t). Thereafter, the terms
non-linear in the secondary flow components are ne-
glected and a stream function according to Equation
(2.7) is introduced. Finally, the normal mode expan-
sion as given by Equations (2.12) and (2.13) is intro-
duced, along with

K (z,t) = h(z)x(z,t) (4.12)

Using Bertolotti’s assumptions (see paragraph 2.1),
the following equations have been derived for the
interface conditions in the the two-layer PSE method

e Kinematic interface condition

dh .
U'C‘l‘:; + (aU — iw)h =

dH 8¢ 09 ~
—an—a—m—aqb at y=H(z) (4.13)

¢ Continuity of velocity components across the in-
terface
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0
Mio,q, + M, 3‘;2

oqy
+Mio,q + My, — o = (B0 + En)h

at y= H(z) (4.14)

s Continuity of stress components across the inter-
face

(Mzo + Moy )qg + My — + —-Mzg e

+(M20, + M’)l,)QI + Mo: Mzg,(]z

dh
(E70 + Egl)h + E))-d-— + j—aEzgh
at y= H(x)

(4.15)

The operators in the above expressions are given in
Appendix I. The representation of the problem in both
the amplitude functions ¢(z,y) and f(z,y) is for the
two-layer Parabolized Stability Equations necessary,
, because due to the presence of the derivative of f(z, )
with respect to the streamwise coordinate = the pres-
sure can not be eliminated from the interface con-
ditions. The observations in paragraph 2.1 with re-
spect to the ambiguity of the decomposition still hold.
Therefore in the two-layer case the normalization con-
dition, Equation (2.20), is once more incorporated in
the model.

To close the system both boundary conditions and an
initial condition are needed. The solid-wall boundary
condition for the liquid layer and the free-stream con-
dition in the gas layer equal those for the single-layer
case, see Equation (2.22) with subscript ; and Equa-
tion (2.23) with subscript 4, respectively. The initial
condition is obtained by solving the local spatial stabil-
ity problem for the two-layer case, see chapter 3 and(®)
The problem of the unknown pressure amplitude func-
tion is solved as described in paragraph 2.1.

4.3 The numerical implementation

The numerical implementation of the equations for the

two-layer system derived in the previous paragraph is-

similar to the one described for the single-layer prob-
lem, see paragraph 2.2. Due to the variation of the
liquid-layer height in streamwise direction, the loca-
tion of the collocation points in the normal direc-
tion will, however, vary with the streamwise location.
Therefore, the streamwise derivatives have to be calcu-
lated in a slightly different manner. In addition to the
Cartesian (z,y) coordinate system a non-orthogonal
(&,m) coordinate system has been introduced, see Fig-
ure 9.

70777,

7

X X1

Figure 9: The Cartesian and non-orhogonal coordinate
system

Here ¢ is the direction coinciding with the line connect-
ing two points with the same z-coordinate, Equation
(2.27), and 7 coincides with the surface-normal direc-
tion. Using Bertolotti’s first assumption (see para-
graph 2.1), ie. assuming that second and higher
derivatives of the interface height in the streamwise
direction and products of first derivatives in that di-
rection may be neglected $, it is easy to derive that

2.2 a0 )

;% = a% (4.17)
and

Af = Az (4.18)

An=Ay— dii—A:v (4.19)

It should be noted that at the mterface dl/dz reduces
to dH/dz.

Using this coordinate transformatlon the Parabolized
Stability Equations in both the liquid layer and the
gas layer become

(Mo + Ml)q+ M2 [— — =
(4.20)
The kinematic interface condition is simplified to
dh - O¢

Ud—€+(aU iw)h+6—§+a¢:0 at y = H(z)
(4.21)

For the continuity of velocity components across the
interface, one obtains

§Consistent with the primary flow derivation in paragraph
4.1 this is a legitimate assumption, because the variation of the
liquid layer height is small compared to the variation of the
boundary-layer thickness
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dq, dH dq,
Mio,qq + Mo, [35 &z By
Oq dHdq
-|-M101q, + M, {85 . ay]
= (B0 + En)ﬁ at y=H{z)

(4.22)

and for the continuity of stress components across the
interface one finds

(Mo, + Ma1,)qg + Mo, [%1?9 _ %%:’_g
+(Mag, + Moy, Y + Mo, [%% _ %%ﬁ

- dh  da
= (Ezo + Eg1)h + Eag— + —

d€ dzEzgiL at y=H(IE)

(4.23)

The Parabolized Stability Equations, the boundary
and interface conditions, and the normalization condi-
tion once more form an eigenvalue problem providing
the wave number a(z) as well as the unknown shape
functions q; and q, and the disturbance height h.
Upon discretizing the governing equations the evolu-
tion of the amplitude functions, the disturbance height
as well as the wave number can be calculated.

Using Equation (4.18) the Parabolized Stability Equa-
tions in both the gas layer and the liquid layer reduce
to

dl o
(Azi(MO + M) + (1 - Azia;a—y) ) f1a iﬁl

3 k k
+(ai-”+1 - ai)M3|§+1Q|i:11 = M2!i+1‘1[i

(4.24)

The kinematic interface condition in its discretized
form becomes

Uk + Azi(aU —iw) (5, ) BIEH

+(1+ Azy) 5 65 = Ulkahli + ¢l (4.25)

The discretization of the interface conditions results in

Ail?z-Mlo lz+1 dg lz—i—l

dH 0
( Azz =3 )Mlz |z+1q9|z+l

+ Ax,M1o,|z+1QI|z+1

dH &
( Azzd 3 )M121L+1Qz|1+1

— Az (Byo + E11) ’i+1ﬁlf-fll =

= Mg, |51 qgli + Mo, ¥y at y = H(z)
(4.26)

and

Azi(Mso, + M219)1§+1Qg1§111

dH 0
<1 — Azi%@) 22 |z+1Qg[z+1

; : k
+ (a|§+1 - a|i)M23g|i’+1%‘iI1l

+ Azi(Mao, + Moy )5y a5

dH &
( Azz—d‘;a—y) My, !z-{-lql[z—i-l

k
+ (a|§+1 - al')M231!§+lql|iif

— Azi(Byo + Ea)|¥,  AEST — Boolf  RIEH

- (a|i+1 - a’i)E23fi+1 |z+1 =

Ealfy 1l
Finally the equation describing the correction needed

for the wave number(i.e. the normalization condition)
becomes

= M229|f+1q9|i + M221|i+1ql|'i - (4.27)

E+1 _ k
Aty = Qiq1

1 Jq ({1 - (%) a%} alf, —~<l1i> -qf|¥, dy
Az; Jalalk, Pdy

(4.28)

As in the one-layer case these equations only contain
derivatives and integrals with respect to the surface-
normal coordinate direction. Therefore the same spec-
tral method as described in paragraph 2.2 was used.
Both q; and q, are represented by a truncated Cheby-
shev series. The domain y € [0, H] is transformed to
the domain z € [-1,1] using -

y
=2< _ 2
z=24 -1 (4.29)

and the semi-infinite domain y € [H, co > is scaled to
the finite domain z € [~1, 1] using

(4.30)

+
s
o [
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where y* is a constant used to change the point dis-
tribution in the gas boundary layer. The location of
the collocation points is once more derived from the
Gauss-Lobatto distribution in the z-domain. The re-
sulting algebraic system contains both the coefficients
of the Chebyshev series expansion in the gas and the
liquid layer as well as the unknown amplitude of the
disturbance height, h. This system is solved iteratively
until convergence is achieved, see also Figure 1. The
initial disturbance height hg is calculated according
ho = a¢/(iw — alU) at y = H(z).

4.4 Results

In this section results obtained with the two-layer PSE
method are presented. Both modes of instability men-
tioned in section 3 are discussed. As initial conditions
the results of a two-layer local spatial stability analysis
as shown in Figure 7 and Figure 8 at w, = 10~2 will
be used. The remaining parameter values are given in
Table 2.

Ul /5] 10
v[m?/s) 10—°
zo [m] 0.25
Az [m] 1072

NOpoly, 60

NOpoly, 40

Nvi 20

y* 10

wo[Hz] | 1600 (10~?)

h[m] 10—
m=ujug | 500
T =p/pg 1000

Fr 0

S 0

Table 2: Parameter values used in two-layer test cases

Two types of test runs were performed. In the first
set of runs it was assumed that the primary velocity
profile does not change with the streamwise coordi-
nate. Thus the implementation of the two-layer PSE
method has been verified. In the other series of runs
the non-parallel primary velocity profile as described
in paragraph 4.1 has been used. The results of these
calculations are shown in Figures 10 to 13.

These figures, in which both the results of the two-~
layer PSE method and those of a two-layer local spatial
stability method are shown, indicate that for both the
Tollmien-Schlichting mode and the interfacial mode,
when the primary velocity profile is kept constant
in the streamwise direction, the calculated eigenvalue
does not change, except within some short transient
period during the first steps. This transient that also
was observed in the results of the one-layer method is
thought to be caused by the slightly inaccurate initial
condition. The solution of the strictly parallel Orr-

0.004

0.002 e
P Unstable

Y * Stable

-0.006 {

-0.008

0.2 04 0.6 0.8 1 12 14 1.6

Figure 10: Two-layer Parabolized Stability Equations,
Tollmien-Schlichting mode: a, vs. z[m]; parameter values
are given in Table 2; ——: Case (a), Strictly parallel flow,
---: Case(b), Non-parallel flow; o:- Local spatial stability
analysis

0.045
0.044 |
0043 |
0.042 |
0.041 |
0| e
0039 | .
0.038 | I
0.037 |
0.036 |
0.035

0.2 0.4 0.6 0.8 1 12 1.4 1.6

Figure 11: Two-layer Parabolized Stability Equations,
Tollmien-Schlichting mode: a; vs. z[m]; parameter values
are given in Table 2; ——: Case (a), Strictly parallel flow,
---: Case(b), Non-parallel flow; o: Local spatial stability
analysis -

Sommerfeld equation was used as intitial condition. A
better initial condition would be a local formulation of
the two-layer Parabolized Stability Equations.

For the non-parallel primary flow the variation of the
wave number with the streamwise coordinate is small¥.
Comparison of the results of the two-layer PSE method
for non-parallel flow with the results of the parallel

two-layer local spatial stability method indicates that --

the effect of the non-parallel primary flow is small.
This was also observed for the one-layer case.

A point that has not received any attention in the
present paper but that is of eminent importance in an
analysis based on the Parabolized Stabiltiy Equations
is how to define the growth rate. In the conventional
one-layer PSE methods the growth rate based on some
physical quantity N, characteristic for the secondary

TNote that the wave number a is non-dimensional
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Figure 12: Two-layer Parabolized Stability Equations, in-
terfacial mode: a, vs. z[m]; parameter values are given in
Table 2; ——: Case (a), Strictly parallel flow, - --: Case(b),
Non-parallel flow; o: Local spatial stability analysis

6 -
55} T
-
5 '//‘/
e
45} el
/“/
yd

4 I _f/

yd

S
5t
02 04 06 08 1 12 14 16

Figure 13: Two-layer Parabolized Stability Equations, in-
terfacial mode: a; vs. z[m}; parameter values are given in
Table 2; —: Case (a), Strictly parallel flow, ---: Case(b),
Non-parallel flow; o: Local spatial stability analysis

flow such as the maximum of v/, is defined as the loga-
rithmic derivative v(z) = (1/N)dN/dz. The physical
quantity N is the real part of its complex counterpart
in the mathematical formulation. Different posibilities
for N have been proposed, see!!) For the Interfacial
mode, however, the two-layer PSE method gives rise
to a new formulation for the growth rate. In this case
the growth rate can be defined using the disturbance
height of the interface, i.e. N = h’. The growth rate
based on this physical quantity and that based on the
maximum of u' are given in Figure 14. This Figure
shows that the growth rate based on the disturbance
height and the growth rate based on the maximum of
u' are almost identical. From an experimental point of
view the growth rate based on the disturbance height,
however, might be easier to measure than the one base
on the disturbance velocity.

0.8

0.7
06 1
05
04 |
03}

02} Unstable

0.1 L . : A . .
0.2 04 0.6 0.8 1 1.2 14 1.6

Figure 14: Growth rate of two-layer Parabolized Stability
Equations, interfacial mode: ~ vs. z[m]; parameter values
are given in Table 2; ——: growth rate based on Uiz, O
growth rate based on A’

5 Conclusions

In the present paper the new method of two-layer
Parabolized Stability Equations has been introduced.
This two-layer method is based on the conventional
method of one-layer Parabolized Stability Equations
as introduced by Herbert(®) and Bertolotti()) Meth-
ods based on the Parabolized Stability Equations are
spatial stability methods. For flows of a thin layer of
liquid sheared by a gas stream the local spatial sta-
bility has not been investigated so far. In this paper
results of such a local analysis have been presented.
It has been shown that both the Tollmien-Schlichting
mode and the interfacial mode, that appear in a lo-
cal temporal stability analysis, also appear in a local
spatial stability analysis. For a local spatial stability
analysis the interfacial mode is the dominant mode
for de-/anti-icing fluids, in contrast to what has been
found in a local temporal analysis where the Tolimien-
Schlichting mode is the dominant mode. It has been
shown that the stability curves for a local spatial sta-
bility analysis can also be calculated using the Gaster
transformation. However, the Modified Gaster trans-
formation has to be used in case of the interfacial
mode.

The equations governing the two-layer PSE method
have been derived. Due to the introduction of the
liquid layer, interface conditions are to be considered.
The treatment of these interface conditions in the PSE
formulation and associated issues have been discussed.
The primary velocity profile used in the calculations
is a modification of the asymptotic solution of Nelson,
Alving and Joseph(23)

The resulting eigenvalue problem in the shape func-
tion, the wave number and the interface disturbance
height has been solved numerically using an iterative
spectral method. It has been shown that the two-layer
PSE method has been implemented correctly and is
able to follow the evolution in the streamwise direc-
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tion of both the Tollmien-Schlichting mode and the
interfacial mode. The initial condition used is still
amendable to improvement. As has been observed for
the single-layer method the effect of the non-parallel
primary flow is small. The presence of a disturbance
height gives rise to the introduction of a growth rate
based on this quantity. In experiments this quantity
is the most direct evidence of the unstable flow. In
the future this link to experimental results has to be
investigated further. Moreover, the possibilities of ex-
tending the present linear PSE method to a non-linear
two-layer PSE method needs to be investigated.
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Appendix I: The matrices of the interface conditions

Continuity of velocity components across the interface:

2 9 ~2 0
—1 3 = By
s[5 e
0 o 0
M129 [1 O] Ml?z—[_l 0}
0

2
ﬂg('a%‘f —-d®) 0
~2uga-3% -1

—m(a%zr -a’) 0 }
a8
2/1[0,'55 1
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