Copyright © 1998,

by the International Council of the Aeronautical Sciences (ICAS)

and the American Institute of Aeronautics and Astronautics, Inc.

A98-31685

ICAS-98-6,6,2

DIAGNOSTIC FROM SYSTEM MODELS: THE ADAM EXPERT SYSTEM APPROACH

Ermanno Girardelli, Fabrizio Didd
Alenia Aerospazio, Aeronautics Division
Corso Marche 41, 10146 Torino - Italy
Email: Girard@liat.alenia.polito.it

Abstract

The ADAM (Aircraft Diagnostic And Maintenance)
project is designed to build a support system for the
unscheduled maintenance of mechanical and
electronic systems. The problem faced is how to help
technicians to fix the detected malfunctions in the
shortest time. The support system proposes the best
test sequence to identify the failure in the quickest
way, avoiding unnecessary part replacement.

The aim of this paper is to describe the second
version of ADAM. In the first release of the system
the diagnostic process was represented by means of
trees, while in the second release ADAM makes use
of system models to avoid any necessity of knowing
the troubleshooting procedures in advance.

ADAM has been conceived as a shell to develop
diagnostic systems for several kinds of complex
equipment, and this paper provides a practical
example of how it applies to a typical fire protection
system for a military aircraft. The paper will
highlight the main differences compared to the
traditional diagnostic approach and the possibility of
influencing the system design during its development
phase. »

Introduction to aircraft maintenance

Before of describing the ADAM expert system we
will briefly describe the evolution of aircraft
maintenance.

There are two major constraints driving aircraft
programmes: aircraft mission availability and
support cost. Evolution of the maintenance concept
has tended to reflect the need to optimize these two
drivers.

Traditionally, "hard time" maintenance was the
leading concept. Equipment was removed at
specified periods of time, considering a fixed

Copyright © 1998 by ICAS and ATAA. All rights reserved

scheduling time, in order to allow an in-depth
investigation of their status. This was when no or
very few electronic self-test functions were installed
on the aircraft, and the state of the art did not allow
in-depth control functions to obtain significant
maintenance data.

The resulting high support costs and relatively low
aircraft availability suggested a requirement to
monitor the status of equipment directly during the
time it was operating on the aircraft. This could be
achieved by means of probes, continuity checks,
dedicated tests (built-in-test upon request) and
software for the correlation of such data/parameters
gathered from the various sources.

In such an environment, maintenance actions were
performed applying the “on condition” maintenance
concept, i.e. when the monitor function indicated
that the piece of equipment was degrading (from the
operational point of view).

With the adoption of safety analysis, further progress
in maintenance programmes then became practical.
By using redundancy and fail-safe criteria it was
possible to accept that certain failures could occur
during the flight, and to allow for their occurrence
instead of trying to prevent them.

Naturally, this approach is effective only if the
maintainer is able to notice the occurrence of a
failore, in order to devise the appropriate
maintenance actions when needed. This approach is
called "condition monitoring".

Further evolution in maintenance programmes
became possible as the “testability" concept
matured. Early troubleshooting was usually based on
the experience of mechanics who made use of
available documentation, professional skills, some
statistics and, to a certain extent, trial and error.
Extensive use was made of specialized test
equipment (when available) to isolate the aircraft
zone or component where the failure had occurred.
While resolving some of the problems, heavy
reliance on specialized test equipment was frequently

3

21st ICAS Congres
13-18 September 1998
Melbourne, Australia

Copyright © 1998,

by the International Council of the Aeronautical Sciences (ICAS)

and the American Institute of Aeronautics and Astronautics, Inc.

found to negatively impact on the time to repair and
the cost of the maintenance action. It also has a
knock-on effect on logistics in terms of the need to
supply, maintain and deploy of such specialized test
equipment.

The real driver for testability was the need to reduce
the "no fault found" condition (i.e. to minimize the
unnecessary removal of non-defective items), a
penalizing influence on aircraft availability and
support cost. The "no fault found" rate in the early
years of most aircraft programmes is about 40-50%
of the total fault arisings, with consequent impact on
the support cost due to the high number of spares
needed and the additional diagnostic time to localize
and repair the true fault.

Today, we believe that the best way to decrease the
"no fault found" condition is to monitor the
functional status through the implementation of a
testability programme during the design phase. This
implies, of course, that if we want to know the true
status of the aircraft, in order to remove only faulty
items, it is necessary to introduce appropriate
monitoring devices and test points in airborne
systems and equipment during the design phase.

Microswitches, temperature and pressure probes,
electrical integrity checkers etc. installed in the
appropriate items of each system make it possible to
monitor the operating parameters of the aircraft.
Dedicated test software, loaded or resident in control
units (e.g. computers which control and manage
aircraft functionality) analyze such information and
make the aircraft health status available to the
maintenance crew as an output. The maintenance
engineer is then able to drive the aircraft
maintenance using the heaith status information.

This is quite a significant breakthrough, but has
shortcomings in terms of maintenance, related to the
methods of retrieval and display of the health
information so gathered. Initially, each control unit
stored the maintenance data in its own (non volatile)
memory, requiring such information to be
downloaded at equipment level by the user via an
external hardware and usually needed software
support to translate the memory store content into an
input suitable for troubleshooting purposes.

Moreover, the diagnostic procedures were essentially
“paper based" even if the starting point for the
troubleshooting was provided by the aircraft itself,
either system by system or item by item, and
troubleshooting techniques were generally based on

the use of external test sets supported by the practical
experience of maintenance engineers.

As computing power grew, further evolution became
possible with the introduction of mew electronic
checks and on-board monitoring to improve the
performance of control units, with the enhanced
processing capabilities being used to perform greater
depth tests at subsystem/item level. Even considering
the relative slowness imposed by airborne
qualification procedures, it would be fair to say that
on-board software, the number of digital links and
airborne computing power are doubling every three
years or less.

Probes are now installed in mechanical and electro-
mechanical systems in order to control all the
operating parameters and to generate the relevant
maintenance data. For avionic systems
(communication, navigation,. etc.) electronic
functions can check each item to reduce the
ambiguity of fault indications.

The need for monitoring a high number of signals
and to process an increased number of parameters
brought centralization of the maintenance data. On-
board monitoring systems were developed in an
extensive way in order to achieve two main goals:
collecting all the in-flight BITE data in a single
place, and accessing such data in the most effective
way.

Electronic control units within aircraft systems
continuously collect health data during aircraft
operations. Such data is sent (through appropriate
buses such as MIL-1553, ARINC 429) to the central
electronic unit where they are stored and processed
for subsequent retrieval. An example of such data
analysis is the identification of the possible faulty
items.

The second goal is related to the on-ground
utilization where BITE data is accessed via various
media, on and off-board, e.g. displays, printers,
CDROMs, databus retrieval via external sources, etc.

It is now possible to place greater reliance upon the
aircraft internal capabilities, in terms of error
message recording, as the starting point for the
troubleshooting process. There is hardly any need to
refer to an ‘"expert mechanic” in order to
“manipulate” information gleaned from sensors in
aircraft systems.

The user/maintainer can interface directly with the
machine which is now able to provide reasonably

S D AT

Copyright © 1998,

by the International Council of the Aeronautical Sciences (ICAS)

and the American Institute of Aeronautics and Astronautics, Inc.

accurate failure indications. Some types of failure
are, of course, beyond the capacity of present-day
BITE to identify, and require the specialized skills of
the trained maintenance engineer to resolve.

He (or she) will still have to refer to external sources
such as the troubleshooting procedures for
information. Traditionally, such procedures are bulky
manuals intended to support the “diagnoser”, and
contain both the logical reasoning for the "fault
finding" and information for access/remove/
install/align/test operations. The content, size and
weight of such documents tends to have given them a
somewhat "user-hostile” profile, since apart from
being heavy and bulky they are full of arcane cross-
references to information in other documents and
limit their information to the “single fault” condition.
From the diagnoser’s point of view, the multiple
fault is usually the one that gives most difficulty to
resolve.

The current trend is towards storage of all relevant
procedures on a computer in order to improve
information availability and reduce user workload. A
portable computer can be used to directly access the
aircraft system/device where the maintenance data
has been gathered and stored, and such data will be
used to trigger the computer program that generates
troubleshooting procedures, which can be linked to
any referenced procedures such as remove, install
and test of components.

This is indeed a significant improvement in terms of
logistic support but some aspects of such an
approach still need to be improved:

* firstly, this process needs to initiate sufficiently
far upstream in the design process to fully
consider the diagnostic needs. It is common
knowledge that the design and the maintenance
analyses (FMECA, Fault Catalogue), once frozen,
form the basis for the troubleshooting procedures.
In the case of critical areas (for instance when the
item with the highest failure probability has been
found to require the longest time for removal and
testing) modifying the design becomes difficult,
because at that time in the design cycle it will
probably be considered either too late or too
expensive to implement.

* Secondly, there is the need for some practical
means of collecting the experience gained by
maintainers and diffusing it among all the users.
Up to now this is achieved somewhat piecemeal
by means of user feedback leac:.ling to document

modifications which take a certain amount of
time to implement.

Approach i i It system

Diagnostics can be seen as a process that starts from
a set of symptoms and leads to the identification of
the causes of malfunctions through a series of steps
aimed at search space reduction. Two kinds of
knowledge are involved: technical knowledge,
coming from technical manuals (e.g. fault isolation)
or design documentation and empirical knowledge,
coming from the expertise of personnel.

Technical knowledge, ie. information about the
behaviour of an aircraft system, is readily available
and well documented, while empirical or heuristic
knowledge, which is the result of years of practical
fault finding, tends to be widely but thinly spread
among many people and so is difficult to retrieve. It
also tends to be inconsistent from location to location
for the same reasons.

The first approach that we pursued in building a
diagnostic system was based on collecting
knowledge about how to perform troubleshooting on
a physical system, i.e. modeling how people solve
the problem of identifying a failure starting from a
given situation. While this works, we found that
there are a number of drawbacks in such an
approach. The first is that collecting such knowledge
is very time-consuming; the second is that it is
difficult to keep the knowledge up-to-date with
respect to the evolving configurations, and to keep
pace with the various system modifications. There is
also the human factor to consider - potentially, each
individual will try to solve the same problem in a
different way. If you build a troubleshooting support
system based on the experience of a single person
you will save time but very likely the system will not
be completely accepted by other people. It is quite
difficult to merge the various approaches to the same
diagnosis to minimize this aspect.

Another way to approach the problem of building
troubleshooting support systems has risen from the
shortcomings that we have just pointed out: instead
of focusing our attention on modeling the behaviour
of the maintainer, attention is shifted to the
behaviour of the physical system under
consideration, in order to infer the entire
troubleshooting process from scratch, by using a
model of the system under test,

Copyright © 1998,

by the International Council of the Aeronautical Sciences (ICAS)

and the American Institute of Aeronautics and Astronautics, Inc.

Alenia has been involved for many years in this area
of research. Initially our efforts were devoted to the
implementation of heuristic support systems, as
previously mentioned, while now our attention is
moving towards model-based systems. The task is
challenging because it is not at all simple to grasp all
the relevant aspects of physical system behaviour.

The remainder of this paper will describe using an
example the kind of research we have done in
Alenia, highlighting the problems that were
encountered, the solutions adopted and the
limitations to the scope of our investigation.

A simple fire protection system

Fire protection systems are commonly used on
aircraft as a means to inform the pilot, or the
groundcrew of any fire or overheat occurrence. They
are usually installed in the most critical points of the
aircraft where fire could potentially occur and cause
damage the aircraft or the personnel (e.g. engine bay,
APU bay, cargo bay). They normally consist of
detectors (electrical or pneumatic) which will inform
+ the cockpit and all the dedicated computers of a
fire/overheat occurrence.

We will describe a simplified example of a fire
protection system. A single pneumatic detector will
report the fire/overheat status to the cockpit and to
the computer.

The description of the system is as follows (see
figure 1):

electrical
power (4)

circuit
breaker (3)

alarm switch
2A) . . .
~ l—-‘—- integrity switch (2B)
-~ pe / ty

groundcrew
sensing element (1) g’éteelc){gr[%czt)wn display (6)
cockpit light (5)
: control unit (7) bus lanes (8)

FIGURE 1 - Fire Protection Schematic Diagram

A sensing element (1) is installed throughout the
zone which needs to be protected. On military

.

aircraft such a zone is normally limited to the
engine(s) and APU bay, whilst on civil aircraft it also
includes the passenger zone and possibly other bays.

The sensing element is a thin metal tube filled with
gas at a certain pressure, and when a fire/overheat
event occurs the gas expands, forcing the alarm
switch (2A) (which is fitted in the fire protection
detector 2) to move, closing the circuit.

Then, the electrical power (4) will pass through the
fire protection detector and two warnings will occur:

¢ the cockpit light (5) will inform the pilot that a
fire/overheat event is occurring;

* the groundcrew display (6) will store and display
the relevant warning for maintenance purposes.
This will be driven by the control unit (7), which,
once informed of the fire/overheat event via the
signal from the detector (2), will send an
appropriate bus message to the groundcrew
display (6) through the bus lanes (8).

This is the active part of the system, i.e. how a
fire/overheat hazardous event is displayed/advised to
the pilot and to the maintenance groundcrew. The
system is also provided with a passive self-
monitoring capability.

In order to continuously monitor the condition of the
sensing element, an integrity switch (2B) has been
included. In the event of gas leakage from the
sensing element, the internal pressure will fall,
causing the integrity switch (2B) to open and the
control unit (7) to sense the change of electrical
status from closed to open.

The control unit will then supply the groundcrew
display (6) with the appropriate error message
through the bus lanes (8).

In order to protect the system from short circuits or
over-current events, a circuit breaker (3) is placed
upstream of the whole system architecture.

An example of "deep modeling"”

We will describe here a "deep model" for the fire
protection system described in the previous chapter.
The last step will be to give a brief description of the
algorithm that is able to infer a troubleshooting
procedure from a deep model of a physical system.

LR W AN Woa I)

Copyright © 1998,

by the International Council of the Aeronautical Sciences (ICAS)

and the American Institute of Aeronautics and Astronautics, Inc.

The first steps when modeling a system is to describe
those the entities relevant to the diagnostic process
and to detail how such entities are connected. We
have not yet developed a direct method for this, but
in our experience the best way to choose such
entities is to consider how maintenance operations
are performed, and to describe only those items of
equipment that will be subject to replacement or
repair. This means that how you will develop a deep
model of a system depends on how you intend to
perform the maintenance on the system itself. For
instance, when you allocate a failure to a computer,
the normal diagnostic procedure can be either to
replace the whole computer or to go in deeper detail
with the troubleshooting to identify the faulty board.
In the first case it would be enough to describe the
computer with a single entity, in the second one you
will probably need to use many entities to describe
all the replaceable computer boards and devices.
Initially you should assume that all possible recovery
actions are codifiable and that they are reasonably
stable over time, thus the choice of the entities to be
described depends mainly on the location at which
the troubleshooting is performed, which in turn
identifies the probable user and therefore the kind of
troibleshooting to be performed.

In this example we will assume that only simple
replacement actions will be performed and that there
will never be recovery actions concerning the
internal components of a piece of equipment.

One aspect which immediately needs resolution
involves the system boundaries, which means
deciding where your system starts and ends, and how
to consider those entities that actually do not belong
to the system under consideration but which,
nevertheless, are important for the completeness of
the description. In our example we considered some
indications on the groundcrew display, a device that
very likely will not belong to the fire protection
system as such but, for instance, may belong to a
master warning system that lies outside the scope of
our description. The solution to this kind of problem
Is a compromise between an exhaustive approach
that would entail describing more than needed, and
the correctness of the description itself. The above
mentioned indications could be, for instance, directly
connected to the computer itself, instead of
describing the various pieces of hardware between
the computer and the groundcrew display.

So, in our fire protection example, we could identify
the following main entities:

control unit, electrical power, circuit breaker,
ground, wiring, alarm switch, integrity switch.

T power

circuit

breaker
alarm integrity
switch switch

"_
—t 34—
light o
control

I l unit

P @ —

ground ‘L l

fire-alarm detector-failed

FIGURE 2 - Entities Diagram

A second step in the system modeling is the
collection of standard information on each entity: the
defect rate, the replacement time and the number of
pins, where we use the term "pin" for addressing a
channel of communication, of any nature, with the
external "world".

The next step is then to analyze and describe the
behaviour of each entity. This means first making a
list of the all possible working and failure states. For
instance we can describe a bulb as being a device
that can be either in the "working" state or in the
“failed" state, while a wire will normally be "closed"
or “open" respectively when in the working or failure
state. A circuit breaker has more possible states, the
working conditions will be, for instance, "open" and
“closed", while the failed states will be "failed-open"
and "“failed-closed”, to mean a stable situation where
the device cannot be placed in the closed status or
the open one at will.

The last step in our deep-modeling process is to
describe the behaviour of such entity by means of a
formal language that makes use of clauses. A clause
is something similar to a rule in rule-based expert
systems, and at a first glance it is similar to a
common "if-then" expression.

We are not going to describe the details of the formal
language in this context, because we think that it is
more useful to comment an example, trying to

LSRN W P

Copyright © 1998,

by the International Council of the Aeronautical Sciences (ICAS)

and the American Institute of Aeronautics and Astronautics, Inc.

highlight which is the right perspective to assume
when describing the behaviour of a system.

Let us describe a simple circuit breaker (CB), a two
pin device (that we will identify as pinl and pin2
hereafter) that transfers electrical power only when
in the closed status.

The clauses describing the circuit breaker are listed
below:

Clause 1
Conditions: (Status 1) = Closed,
(Ampere pinl) <=5
Functions: (Ampere pin2) = (Ampere pinl),
(Volt pin2) = (Volt pinl)
Clause 2
Conditions: (Status 1) = Open,
(Ampere pin2) = 0
Functions: (Ampere pinl) =0,
(Volt pinl) >=0
Clause 3
Conditions: (Status 1) = Closed,
: (Ampere pinl) > 5,
(Volt pinl) >=0
Functions: (Status 1) = Open,
(Ampere pin2) = 0
Clause 4
Conditions: (Status 1) = BlockedClosed
Functions: (Ampere pin2) = (Ampere pinl),

(Volt pin2) = (Volt pinl)

Clause 1 says that if the CB is "closed" and the
electrical power is less that 5 Amperes then the
device will remain in its original state, and all the
electrical power will be transferred from pinl to pin2
(another symmetrical clause describes the inverse
flow).

Clause 2 says that when the CB is "open" the current
will be zero on both pins, independent of the voltage
on pinl.

Clause 3 describes the status change of the CB when
the current is more than 5 Amperes, and the device
goes from the closed status to the open one, with a
reduction of the current to zero.

Finally clause 4 describes the only failure situation
considered here, i.e. the CB stuck in the closed state
and will not open, no matter how much current flows
through it.

’

The clause language depicted here is powerful
enough to describe many devices, but, at the same
time has some limitations. For instance it is not
possible to use it for describing complicated time-
varying behaviour. One of the future steps in this
research will be to improve the formal language in
this direction.

3

‘modeling the behaviour” means

At this point we have given an idea on how a system
can be modeled by means of entities and clauses. We
described how to identify an entity, but we still have
to identify those criteria that will drive us when
modeling each entity. All these problems can be
summed up in one question "Which are the aspects
of the device that I need to model and which not?".
When describing a transistor do I need to give a full
description of all the quantitative aspects, by means
of transfer functions, considering the influence of the
external temperature, the action of parasitic capacity
on the behaviour of the transistor at high frequencies,
or will it be enough to provide a rougher description
in terms of Kirchoff's laws?

The first answer is that it is important to remember
that you are not building a simulator, but a system
for troubleshooting, that should be able to grasp only
the minimal set of aspects relevant to the diagnostic
requirement.

The second answer is that you must assume that your
physical system will work properly, i.e. that there are
no malfunctions due to the system design itself,
because the validation of the system -design lies
beyond the scope of your investigation.

The third answer is that it all depends on the kind of
diagnostics you are considering, whether it is the one
at system level, where the goal is to identify a major
item that has failed, or the one at component level
where the aim is to identify the component
responsible for the malfunction.

The approach that we are describing in this paper has
been conceived for the “highest” possible level,
sometimes called the "first" level, where the aim is to
replace the failed item to recover the system
readiness in the shortest possible time. Our approach
has been tested for troubleshooting at system level,
where it has proven to be effective in fault isolation,
while it has not been tested for other kinds of
diagnostic.

F00 AC Al .

Copyright © 1998,

by the International Council of the Aeronautical Sciences (ICAS)

and the American Institute of Aeronautics and Astronautics, Inc.

ADAM support system

In the course of the present research project, the first
phase was devoted to building a version of a support
system based on the heuristic approach. The software
system was based on diagnostic trees, ie. it was
basically a tool for modeling diagnostic knowledge
by using the formalism of diagnostic trees. For more
information see ().

The second phase of the project has led to a second
support system capable of inferring the
troubleshooting procedure starting from a deep
model of a physical system, as described in the
previous chapter. At present, system validation is
still ongoing.

In this chapter we will give an overview of the
ADAM system interface and of its main
functionalities.

In figure 3 the interface is represented, and as you
can see it is provided with a set of graphical tools
(toolbar) that allow the user to represent on the
screen all the entities in the deep model. So, from the
user point of view, the deep model will look like a
schematic diagram, where all the entities will be
represented by means of boxes and connected by
means of lines representing wirings, pipes, databuses
and so on.

Moreover, each object in the deep model will be
associated to a set of clauses, as described in the
previous chapters, and will be provided with
information like defect rate, component status,
replacement time and so on.

After the deep model generation, the user will be
able to run a troubleshooting session. At first he will
list all the symptoms of the malfunctions detected
either by the groundcrew or by the pilot. This will be
possible by mouse and menus.

The next step will be to execute the troubleshooting
algorithm that will generate the possible solutions for
the problem. The output for this process is a list of
pairs component/failure states that will identify a
possible system fault. In our example it could be
“Circuit Breaker - Open”.

ADAM is provided with a graphical explanation
mechanism: each time that a failure is proposed for
the symptoms detected, the graphical representation
of the failed item will change in color (e.g. it will
turn to red) and the user will be gble to identify on

the screen the path from the initial symptoms to the
failed component.

An example

Let us suppose that the failure message on the
groundcrew display is: "Detector failed".

This kind of message is generated when the control
unit detects a loss of current on the line that goes
from the electrical power to the control unit, via the
integrity switch. This could be due to a failure of the
fire detector, but also to a failure on the line that
brings electrical power from the generator to the
control unit. ‘

At this point a maintenance operator, possibly low
skilled on the system under consideration, will have
to understand how such a warning message could
have been generated. Generally this is not a trivial
operation, and could mean browsing through
manuals, consulting diagrams and so on.

The symptom can be due to many causes: the
electrical power can be off, the circuit breaker can be
open, the integrity switch can be open, the wiring
can be open-circuit and the problem could even be in
the control unit. The operator must choose an action
among all the possible ones, and the problem is what
to check first.

What the user needs at this stage is a list of possible
actions to perform on the fire protection system,
ranked according to a minimum cost criterion.

Such a criterion must consider the defect tate and the
cost of the action itself. Such two criteria may be
contradictory, i.e. the cheapest recovery action (in
terms of time and of spare parts cost) may be the
least likely to occur and vice versa. At the time being
we simply have chosen to rank the recovery actions
by means of the quotient between the repair time and
the defect rate, the smaller is the number the best is
the associated repair action. So, after the symptom
description and the system run, the final output is a
list of possible failures ordered from best to worst.

The advantage of a support system in this example is
clear: the failure report "Detector Failed" could be
either unclear or even be misleading, because it can
originate from four different causes. ADAM is useful
for:

1. finding the proper set of possible failed items
starting from the groundcrew indication,

CGIRAR DS 14

Copyright © 1998,

by the International Council of the Aeronautical Sciences (ICAS)

and the American Institute of Aeronautics and Astronautics, Inc.

2. ranking the list of actions on the failed items in a
best probability order for maintenance operations.

The user interface

In this chapter we will give a short description of the
user interface that is represented in figure 3.

Basically the tool has graphical capability for
representing the deep model by means of something
very close to the usual schematic diagrams. So the
white area in the center of the screen (canvas) is used
for drawing objects, usually square boxes, and
connecting them by means of lines which represent
wires, pipes, databuses etc.

The toolbar is used for selecting the entity to be
drawn, or the kind of link, while the pull-down
menus is used for activating the system
functionalities, i.e. for saving/loading deep models,
for selecting symptoms and so on.

The canvas is also used for the explanation.

Canvas

FIGURE 3 - ADAM Interface

The troubleshooting algorithm

We will try in this chapter to give an idea on how our
model-based algorithm works, without going into
deep detail.

The ADAM algorithm accepts two kinds of
symptoms, i.e. those that must be “explained” by the
system and those that are only additional data for
reducing the search space, and that must not be
contradicted. ,

Our algorithm is able to generate sets of hypotheses
and to delete those sets that are in contrast.
Hypothesis are generated in a backward strategy,
starting from symptoms and “going through" the
system components. Each time* that a new
component is reached, new hypotheses are generated
about the component, and the algorithm will reject
those that are inconsistent.

The result of the computation is a lattice structure
that keeps track of the assumptions made about each
component.

At the end it will be possible to associate to each
symptom many sets of assumptions. Each set
represents an explanation, i.e. a diagnosis for the
symptom selected.

Implementation notes and future
developments

The present ADAM software release has been
totally developed in C++ and runs on an ordinary
PC platform.

Future efforts on this research project will be
devoted to building component libraries so as to
allow the user to build system deep-models without
having to write most parts of their clauses, and to
improve the formal language for clause description.

Final remarks

A support system for unscheduled maintenance
should be able to provide the system designer with
precise knowledge of the troubleshooting procedure
during the design phase itself, and to collect the
experience gained by maintainers. -

The two aspects mentioned here are covered by the
two different ADAM releases: the heuristic version,
ie. the one based on diagnostic trees, which is
described in (), is suitable for storing
troubleshooting procedures and for modifying them
easily and quickly, while the model-based version,
which has been extensively described in this paper,
is suitable for automatically generating diagnostic
trees. By combining the two systems is possible to
generate an initial version of diagnostic procedures
and then to modify them taking practical
experience into account.

GiRRAS

Copyright © 1998, by the International Council of the Aeronautical Sciences (ICAS)
and the American Institute of Aeronautics and Astronautics, Inc.

Acknowledgments

This research project would not have been
possible without the support of many colleagues in
the Alenia Aerospazio - Aeronautics Division.

We thank Stefania Converso, Emanuela
Damiani, Oriano Fadini, Ashley Hogg and Raffaele
Prete for their insightful discussions and related
work that bear on the material presented here.

References

1. S.Damiani, FRicci, E.Valfté - “ADAM Aircraft
Diagnostic and Maintenance” in Proceedings of
the third Conference of the Italian Association for
Artificial Intelligence - Turin Italy - October
1993

2. L.Console, P.Torasso - “A Spectrum of Logical
Definitions of Model-Based Diagnosis” in
Readings in Model-Based Diagnosis - Morgan-
Kaufmann, San Francisco, California, 1992

- 3. L.Console, G.Friedrich - “Model-Based
Diagnosis” in Annals of Mathematics and
Artificial Intelligence - J.C.Baltzer AG - Swiss -
1994

1enddeo

	00001.PDF.pdf
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009

