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Abstract

There has been increasing complexity in
fighter aircraft design. The new emerging
head-on air-to air missiles require the fighters
to manoeuvre in six independent degrees of
freedom. For the accurate analysis and design
task, the computational alogrithms have
advanced in the recent past. These algorithms
also apply for computational electromagnetics
for stealth featuring of configurations. Subject
writeup brings out the growth in computational
algorithms, optimal grid generation techniques
and requirement of parallel computations for
speedup.

Introduction

There has been increasing complexity in
fighter aircraft design. Longitudinally unstable
canard-delta configuration are considered to
provide outstanding combinations of manoeuv-
rability, acceleration and short-field
performance. Optimal wing profile is required
throughout the flight envelope. The variable
camber design through leading edge and
trailing edge flaps deflections aims at such a
commitment. This results in excellent sustained
turn performance but causes bad  transonic
transients and high supersonic drag. The use of
such flaps are therefore confined to subsonic
flow regimes. High pitch manoeuvres require
the use of vortex associated lift. The
transonic flow drag reduction is possible
through wing-body blending. Supersonic wave
drag can be reduced through optimal wing
warp. Unsteady flow conditions prevail during
the execusion of manoeuvres. The entire task
of analysis and design requires the accurate
algorithms for prediction of aerodynamic values.
Subject writeup makes an approach towards

|t

recent growth in computational algorithms for
such purposes.

The loading on aircraft needs to be accurately
predicted for varied Mach numbers and
altitude conditions at various combinations of
aircraft attitudes, control surfaces travel rates
and  accelerations, aircraft angular velocities
and accelerations, and also the linear velocities
and accelerations. This involves in total flow
regime of subsonic, transonic and supersonic
including mixed flow conditions with boundary
layer separation and presence of free vortex
flows. In addition the leading edge and trailing
edge flap deflections and travel rates need to be
taken into account. The cost of several wind
tunnel blow downs would be exorbitant and
would have be kept minimum. Moreover the
estimation of optimal warp is essentially a
theoretical exercise.

About four decades back, flow field
analysis was done using theoretical
aerodynamics, which essentially involves in an
integral formulation. Theoretical aerodynamics
provides powerful tools for optimization of wing
camber. The methodology is based on surface
integrals and is largely useful- for linearised
potential flow models. Recent research applies
theoretical ~ aerodynamic  computations to
nonlinear flows using field integrals'®. About
three decades back, the solution to quasi-linear
equations for transonic flow analysis using finite
difference techniques were formed. Theory
resulted in transonic flow analysis including
cases with imbedded weak shock waves.
Separate difference formulas are used for
elliptic and hyperbolic region which account for
local domain of dependance of difference
equation. Conservation of mass is possible by
moving switching functions inside the difference
operators. Finite difference methodology with
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line relaxation process is well known. solution
of unsteady transonic small disturbance
equation with time-accurate approximate
factorisation (AF) algorithms  subsequently
came-up. Stability characteristics of these
algorithms remained of prime importance
especially for the osciallatory flows.

Advances in the finite volume method for
transonic  potential-flow  calculations and
numerical solutions of compressible Navier-
Stokes equations followed. Improvements in
artifical viscosity to allow retention of second-
order accuracy in supersonic flows in important.
Advantage of finite volume methodology lies in
its decoupling of solution process from grid-
generation step. Three-dimensional, time-
dependent, compressible  Navier-Stokes
equations offer a viable tool for handling any
flow conditions in the Euleran formulation.
The conservative equations in integral form for
mass, momentum, and energy with respect to
a control volume (V) can be written down.
Accurate numerical modelling of shock waves
and other discontinuities is possible by giving
the algorithm a bias towards the direction of
propogation. Conservative differencing
schemes are possible within the directional
bias.

Numerical iterative  optimization
remains under the constant criticism®. Though
optimal body-wing warp can be generated
with  these  techniques for any flow
conditions, the type of warps resulted is seen
to be not very encouraging. Utilising the
principles of calculus of variations and an
objective function, converging good solutions
-are obtained but the technique is confined to
linearised flow conditions’. The genesis of
computational algorithms growth is summed
up as below”.
Years Algorithms
1960s - Theoretical aecrodynamics for flow

field analysis involving linearised

potential flow equations.

1\8]

.are fast

1970s - (1) Computational algorithms
using numerical analysis mainly
finite difference to quasi-linear
form of equations.

(i1) Theoretical aerodynamics for
optimisation using calculus of
variation.

1980s - (i) Computational algoritﬁms
largely for solution to nonlinear
equations.

(i1) Theoretical  aerodynamics
with some numerical support
e.g. field integral methods.

(iii) Attempts to headway in
numerical algorithms towards
optimization.

1990s - Computational algorithms
refinements and application to
allied fields e.g. aeroelasticity,
controls and stealth features.

Mesh grading and grid-point
redistribution is required using optimization
techniques for the accurate analysis and design
task. Some representative form of objective
function can be considered and associated
scaling parametring and nonlinear programming
could be done. However, multiple objective
environment is subjective to the objectivity of
parameters (weightages) which eould be varied
suiting the solutions convenience’. The problem
of grid generation lies in discretizing the
physical domain of interest to an appropriate
mesh - suitable for accurate interpolation or
approximation.  Computational  efficiency,
accuracy and stability are enhanced if the
mesh is graded in regions where the solutions
changing.
orthogonality functions
objective function.

are imparative in the

Speedup of computational algorithms is
required since the process building is extremely
slow "®. Typical computer architectures are

Smoothness and _ .
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required to Parallel up
reduce the run time*’ Moreover  the
development of aircraft requires integration
of multi-disciplinary technologies such as : 1)
fluid dynamics for flow management, (2)
aeroelastic  effects of  structures  with
favourable tailoring, (3) thrust through complex
propulsive system including thrust nozzle
vectoring, and (4) controls for stability including
special requirements of stabilisation of pitch
unstable airframes. Computational fluid
dynamics (CFD) based codes are both
vectorized and parallelized for efficient
execusion on a vector machine. Computers
with gigaflop execusion speed are expected to
perform well to handle complete aircraft
configuration for solutions to Navier-Stokes
equations.  Development of multi-displinary
computations are on the horizon which involve,
(1) CFD and aeroelastic coupling including
eigenstructure assignment, (2) CFD,
acroelastic and control coupling, and (3)
development of a  computational
electromagnetic (CEM) technology based on
CFD miethods. Considering low observability
and aerodynamic disciplines, the geometric
shape optimization with CFD/CEM constraints
make the problem size larger. Computers with
teraflop capability with artificial intelligence
would be required for such tasks. Numerical
process based on  knowledge, judgement,
reasoning and perception could provide
artificial intelligence (AI) base.

the operations to

Theoretical Algorithms

Much of the flow field analysis in
theoretical aerodynamics is possible through
"Laplace Eqn. (1) below. Equation truly
applies to linearised incompressible flow
conditions. Solution to Laplace Eqn. can be
written as Eqn.(2) below.

L¢g =0 (1)
$ = [[Te)axdy .. )

[198)

where L is Laplace operator, ¢ is the velocity

potential, I is the circulation in a s-domain
and considered piece-wise continuous on the
dx x dy area. I'(dx, dy) of higher order is
also possible.

The compressibility effects can be

progressed through x / ,”1 - leterm,

where M is the Mach number. Thus, the
elliptic and hyperbolic form of equations can
be separately written for subsonic and
supersonic flow regimes as below for the x, y &
z Cartesian co-ordinate system.

(1-M) g, +6,, +¢,, = 0, M<1 3)

(A-M) ¢, —¢,, — .. =0, M>1 4)

Loss in accuracy in the supersonic
linearised flow is associated with the use of
linearised boundary conditions, Eqns.(5) & (6)
below. The exact boundary condition is that of
normal mass flux to boundary surface being nil.
However the boundary condition used here is the
normal velocity to surface being zero. The
increasing value of Mach number in the Eqn.(6)
makes u << O (U) lesser valid.

;\zpq=0,5=(U+u);+v}+w; )
u<<0 )

1A1q=0,paz(U+ﬁ2 u);+v}+wz } (6)
M?u << O (U)

where B = ‘1—.M2 , and n is the

normal unit vector to surface, pis density, q is
the resultant velocity. U is the freestream
velocity; u,v & w are perturbation velocities.

The outward unit normal at any point of
boundary surface can be denoted by Eqn.(7).
Much of the accuracy comes from establishing
the normal unit vector using direction cosines’.
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n=nxi+n, j+n, k : (7

The supersonic use of these methods lies
mainly in the optimization effort in design using
calculus of variation. Table-1 shows drag
reduction of a delta wing of aspect ratio (AR) of
2.25. A well proven code of Ref. 5 is utilised.
The wing is slightly clipped at the tips to prevent
infinite solutions towards tips. Two conditions
in Table-1 for optimization are for constraints of

(Z and L, HI), where L is the lift

constraint and M_ is the pitching moment
constraint. Figures 1 shows this wing optimally
warped for M=1.25 for angle of attack (o) of
2° at off-design operating conditions of various
Mach numbers and angles of attack
combinations, only the lift constraint is used.

Figure 2 shows affect of canard
interactions with a wing at supersonic
conditions. Code of Ref 11 is utilised. Canard is
placed in line with wing to provide maximum
interaction. The presence of wing makes the
canard trailing edge pressure recoveries at
supersonic Mach numbers.

Computational Algorithms

Computational fluid dynamics utilises the
numerical techniques. The hierachy of fuid
dynamics lies in Eqn. (8) below.

Q: + Ex + F;+ G, = Source (8)

where Q is the solution vector and E,, Fy and G,
are the fluxes in the x, y and z directions.
- Accuracy of these methods lie in the body-
fitting co-ordinates and the stability of
the scheme. Finite difference schemes for the
solution of these equations to transonic small
disturbance Eqn. (9) below was developed about
three decades back. The mass conservative
form of solution process in a finite difference
technique is given by Eqn. (10) with the use of
artifical viscosity parameter (p).

=

[K6.-(r+182/2] +9,,+¢..=0

Pijk ¥ Qijk T Tige +

(/Ui Dije = Hiy pi—l,j,k) =0 (10)
where p, q and r are the difference operators in
three directions and p is the switching function
(artificial viscosity). The upwind bias in
supersonic flow provides the discontinuity to
capture waves. Rotated differences introduced
by well known (Albone & Jameson) ensure
stable calculations of a locally supersonic domain
(Fig.3). Artificial viscosity ensures mass
conservation  when difference schemes are
switched in solving potential flow equations.
The use of transonic small perturbation does not
allow conservation in momentum, which can be
done by using the Euler’s Eqn.(11) below.

Continuty p; + (pV): =0

Momentum (pV):+ (pV>+ pa’), =0 (11)

Using the vectors, the Eqn. (11) can be
written as Eqn. (12) in the conservative form
because the physically conservative law gets
naturally applied.

u + F;, =0 (12)

Finite difference are regarded simply as a
make shift for infinite signals, making the
difference small that errors due to finite size
would be diminishing. But reducing the finite
difference size has implications. Figure (4)
shows the pressure difference coefficient on a
2-d flat plate. A5 x5 mesh in a finite difference
scheme results in the AC, which is comparable
with the stable values of boundary integral
methodology. Larger mesh sizes result in drop
in AC, values °. Larger paneling in boundary

" integral does not result in changes in AC, values. -~

Finite volume methods provide to
calculate flow past arbitrary  geometrical
configurations with larger accuracy. Advantage
of finite volume method lies in its decoupling of
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FIGURE 1 - Off-design operating Lift/Drag values for

a Wing Optimised at a Supersonic Speed
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FIGURE 2 - Wing Optimization in the Presence
of Canard at a Supersonic Speed
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the solution procedure from the grid-generation
step. This allows the grid to be genereated in
any convenient manner, and allows application
of an essentially universal algorithm to any
problem for which a boundary-confirming
coordinate system can be originated.

Numerical optimization aims at arriving
at minimum drag configurations' or shapes
subject to required constraints.  Numerical
optimization results in geometry  shapes
which have large off-design penalities. This is
because the path to final design is bound by
number of constraints and only one constraint
can be met at a time during iterative process,
please see Fig.(5).

Optimization of Computational Grids

Grids are either structured or
unstructured. The later drew attantion in the
recent past. Arbitrarily shaped volume elements
can be well handled by unstructured grids.
Structural grids can be generated by algebraic or
partial differential equation based or through
conformal mapping. Algebraic grids have good
computational efficiency since these are derived
from functional relations. An example of
unidirectional interpolation algebraic based grid
generation is a below.

Linear fit between two end points is
given by Eqn. (13) below:

() = )+ & [r(Euu)—r (D) (13)

where &= (&- 1)/ (6o = 1)

Physical plane coordinate (x,y or z) is
related to  computational index  (€).
Undirectional interpolation is uncontrollable
boundary phenomenon. Grid boundary point
condition can be satisfied with transfinite
interpolation. An example of 2-d domain is as
below.

rEm)=(1-8r(1-7)+&r (o .n)
+(1 - 77) r(EN)+ 71 (€ M)

(-8 -7)r@)-(1-8)7r (L 7m)
(&) (1-7)7 (bae D~ () ()" (Sone )

(14)

Accuracy of computational techniques
depend upon mesh optimization and proper
distribution of grid points.  Computational
efficiency, accuracy and stability are enchanced if
the mesh is graded in regions where the
solutions are largely or/ and fast changing. A
global objective function could consist of
smoothness, orthogonality and/or solution
adaptivity.  Smoothness, orthogonality and
adaptive grading can be expressed through
serveral functions™®.

Completely unrelated course and fine
grid can be used. Thus course grid can be
designed to optimize the speed of convergence
and the fine mesh using solution adaptivity,
orthogonality etc. as objectives can be aimed to
result in accurate solutions. The course to fine
grid function propagation is possible through
interpolation of a course mesh function ¢

to a fine mesh locations x, , y/ . Uniform
interpolation  and nonuniform interpolation
approximation are used depending upon the

curvi-nonlinearity of grids.

Effect of grid tropologies on the
computational efficiency can be expressed in
the form : d@/dt = A6-f, where Ais a
large sparse matrix which encompasses flux
Jacobian, grid data and space differencing. A

. peculiar matrix A could look like as shown in

I~

Fig.6a for a finite difference scheme in second
order. In this the mesh coordinates are
represented in XY and Z. A time march process
retaining the accuracy order of algorithm is
possible through factored fully implicit technique
and Fig. 6b shows as to how the matrix [A]
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would become. Once arranged in this manner, it
would also be possible to progress on
computations in parallel at line intervals to retain
accuracy or  successive line over to retain
accuracy and speed of convergence. The order
of accuracy (p) of algorithm must satisfy p< r
+s, where r are upwind data points and s
are downwind data points. For a smaller time
step it has been found that p < 2 min (r, s + 1).

Parallel Computational Computing

Computational algorithms run slow in
sequential”®. Thus these algorithms can be
extensively paralleled and run in parallel in time
hence parallel computational computing i.e.
parallel algorithms on parallel machines provides
speedup. However, this could result in
deterioration in convergence rate due to
paralleling of operations and, excessive data
tracking and data management would be
necessitated. This also involves in architectured
parallel hardware support, otherwise the parallel
algorithms could run chaotic. Modular parallel
prggramming is also possible to provide
architecture  independence by  featuring
modularity. Efficiency of parallel computations
can be seen from the following equation.

Computing time on a serial machine

SR=
Computing time on a parallel machine

where SR is the speedup ratio and the
possible SR forms could be following for p
number of processors and machine dependent
quantity (K), O <K <1

SR forms examples
S=KP matrix calculations
S=KP/log, p tridiogonal linear system
S=Klog, p search
S=K certain nonlinear recurrences

An algorithm is a sequence of vector
operations of varying length. Construction of
parallel algorithms are idealised on two
principles. The first principle is to convert serial
algorithm into a procedure which operates on

o]

vectors, since vector operations can be carried
in parallel. The second principle involves in
vector iterations. This entails substituting an
iterative parallel algorithm for a direct (non-
iterative) serial algorithm. Speedup ratio
depends on the ratio of steps needed in a direct
version to those required by the iterations.

Numerical stability of parallel algorithms
involves in stability, rounding of errors, and
the propagation of errors in relation to parallel
algorithms. A case is shown here where better
results are possible while being in parallel.
Considering the sum below, Eqn.(16), the errors
are governed by Eqn.(17) and (18).

& o

N
Sv=2
K

ey

(16)
serial algorithm

-8+1

N -5
error< 2 a i=2aNN+1) 17

i=1
parallel algorithm

loga N
error < ZNa 25 =

K=1

2% Nalogy N=0(Nlog; N)  (18)

However, the effect of rounding of
numerical digits could be significant. Equation
below shows linear algebraic equation where
accurate solution could be demonstrated
through Eqn. (20), while doing computations.

Ax=b (19)

(A+H) x =b

where x is the computed solution. If H can
be shown to be small, than algorithm is stable.

20) o
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Self dependencies in DO loops could
be single or multiple. Intermittent
nondependence could also occur inside the
loops. It could be loop independent or loop
carried. For example, A)=B * A(I- 1)+ C
* A(I) has loop independent nondependence
whereas AI) =B * AI-1)+C* I+ 1) has
loop carried nondependence. Data dependency
in iterations results in slowing down of
iteration  process  and therefore data
arrangements being crucial.

Pertinent arrangement of processors
working on shared memeory resource are slow,
whereas processor arrangement with adjacent
memory block working on message passing are
fast machines. Modular parallel programming is
also possible for hardware architecture
independence. In this the programmes are so
constructed by being explicitly declared
communication channels to plug together
program modules called processors. Operations
on channels can be restricted so as to guarantee
deterministic  execution. Computational
algorithms can make much use of modular
parallel programming.  Figure 7 shows a
architecture which is the most generic for flow
field computations. Processing elements with
their own memories could be used to progress
iterations and retain data of immediate interest
for next iteration. Inputs on a grid geometric
‘variations could be ratained at the shared
memory resource. Inter-processor
communications is therefore minimised.

The data tracking being the most crucial
if the grid geometry variation is simultaneously
progressed. One thumb rule is to index all the

_iterations with the sequence of changes e.g. a
parameter could be written as F[GRID (O),
GRID STATION (1, J, K), Iteration (N)]. This
would ensure nil error in data fetching, however
excessive data and memory communication
link would be required. All processors
communicate (however, minimised) to all the
processors in parallel computations. There are
four well known exchange system on
information in the processors. These are namely,
linear exchange, pairwise exchange, recursive

exchange and balance exchange. In the linear
exchange, processor receive message from
every other processor except itself At a step i,
0 <i1<p, where i are the processors and p are
the steps. In the case of pairwise exchange, at
setpi, 1 < i< p - 1, each processor exchanges a
message with the processor determined by
taking the exclusive OR of its processor number
with i. In the case of recursive exchange,
number of processors are halved in each step
and each processor exchanges data with the
corresponding processor in the other half
Number of steps required in this case are log(p).
In each step i, ] < 1< log (p) and each
processor 1 exchanges with j + p/2t
Balance exchange processor is a cluster where
first exchange is completely with the other
processor in first cluster and then exchange
with processors is in other cluster. In steps O to
p/2-1, two processors in each cluster of size
p/2 communicate across cluster while rest
communicate within the cluster. In steps p/2 to
p - 1, two processors in each cluster of size p/2
communicate within the cluster while other
processors communcicate across cluster. While
the performance of pairwise exchange recursive
exchange and balance exchange is comparable,
the linear exchange is very inferior.

Table - 1
Aerodynamic optimization effort for delta wing
of aspect ratio of 2.25 a =2°

C,[BCE
M B A Befjor.e B After ‘optimization
optimi- | L Cons-|L, M, Cons-
zation traint traint
1.05 12 .83 .506 5427
1.1 1.031 | .6155 .388 40
1.2 1.492 436 311 311
1.3 1.87 .37 277 277
1.4 2.204 329 .26 26
1.5 2.51 3 25 25
1.6 2.8 .285 244 245
1.8 3.36 255 .24 .24

C, is induced drag and C, islift coefficient.
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